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Appendices

A EXPERIMENT ENVIRONMENT

Experiments are implemented with Python 3.7.5/Pytorch 1.6.0/CUDA 10.1 and run on two servers
with (1) Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz CPU and NVIDIA Quadro RTX 8000 GPU
and (2) Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz CPU and NVIDIA TITAN RTX GPU,
respectively. Codes will be open-sourced once the paper is published.

B COMPARISON WITH MIAS ON DATA AUGMENTED MODELS

Yu et al. (2021) consider the scenario of data augmentation in model training. Specifically, the attacker
has the original data, but only some augmented (transformed) versions are in the model training. On
the other hand, we consider the scenario where the data that the attacker collects are transformed.

Suppose z is the original data, and ' = g(z) is transformed data with transformation g. If g is
invertible, and = h(az’) where h is the mathematical inverse of g, we can switch the role of z
and 2/, that is, «’ is now regarded as the original example and z is the transformed version of z’
via transformation h. In such cases, our scenario is equivalent to the scenario where the model is
trained with single-time data augmentation. However, the assumption is not applicable for most
transformations as they lose information, especially for those strictly lossy transformations (e.g.,
JPEG, down-scaling, feature-missing). In addition, for data with bounded values such as images,
even invertible transformations can result in information loss due to value clipping. As a result, it is
hard to apply Yu et al.’s attack in our scenario since they must know the exact form of the (inverse)
transformation h.

On the contrary, both of our attacks can easily apply to any transformation. More importantly,
the reverse transformation attack applies to all situations where the attacker gets slightly different
examples from those in model training. In other words, the reverse transformation attack can also
apply to data augmentation scenarios or even the combination of both scenarios discussed above. We
will leave this topic in our future work.

C DETAILS OF CURRENT MIAS

Here we provide detailed information for the five current attacks we evaluated in Section 4. Four
of them are metric-based attacks, and the other one is an NN-based attack. Suppose f is the target
model, x is the target example, 7 is a real number represents the threshold, then the membership
inference functions M for the five attacks are:

Classification correctness (CC) Classification correctness attack (Yeom et al., 2018) simply treats
all correctly classified examples as training members.

Moac(, f) = Largmax f(z) = y)

Loss thresholding (LT) Loss thresholding attack (Yeom et al., 2018) treats all examples with
losses lower than a preset threshold as training members.

MLT(x’f) = 1(£(f($)ay) < 7-LT)

where L is the loss function of the target model.

Confidence score thresholding (ST) Confidence score thresholding attack (Salem et al., 2018)
treats all examples whose confidence score of the true label (the original attack selects the maximum
confidence score) is larger than a preset threshold as training members.

Msr(z, f) = 1(f(x)y > 7s7)
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Entropy thresholding (ET) Entropy thresholding attack (Song & Mittal, 2021) treats all examples
whose output’s entropy is smaller than a preset threshold as training members.

Mgr(z, f) = 1(E(f(2),y) < TeT)
where E(f,y) = —(1 — f,) - log(fy,) — Z#y fi - log(1 — f;) is the entropy metric.

NN-based attack (NN) NN-based attack (Shokri et al., 2017) collects an attack dataset containing
output logits from shadow models and then trains a binary classifier for membership inference.

Mnun(z, f) = argmax A(f(z))

where A is the binary classifier.

D DETAILS OF IMAGE FILTERS

The three filters we applied in our experiments are Clarendon, Gingham, and Moon. They are the
first three image filters implemented inside Instagram, a most popular photo-sharing platform with
one billion active users (version 207.0 by the time of the current submission). The effects of the three
filters are shown in Figure 3. The three filters are pretty different and represent various styles of image
filtering. For example, Clarendon increases image saturation while Gingham reduces it; Clarendon
and Gingham keep color while Moon goes grayscale. For experiment, we apply the implementation
from pilgram library (Kamakura, 2019).

Our experiments assume that the attacker applies the filters as a black box, which means they do
not need to know the detailed filter algorithm. Theoretically, for filters that only contain linear
transformations, such as only increasing brightness, attackers can obtain the original image by
applying the inverses of those linear transformations. However, in reality, image pixel values are
strictly bounded. Even if many filters only contain linear transformations, most filtered images lose
information during value clipping and cannot be reverted. On the other hand, we can apply our
attacks to any black-box filters with a unified reverse transformation function.

(a) Original (b) Clarendon (c) Gingham (d) Moon

Figure 3: Image filters

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 FULL EVALUATION RESULTS ON CIFAR-10

Table 5 and Table 6 are the full tables of Table 1 and Table 2, respectively.

Table 5: Accuracies of current attacks on CIFAR-10

Gaussian(c) Adversarial JPEG(q) Scaling(r) Filtering Rotation(d)

1001]  [002] [003] Istep 10-step loss=10 50 10 1 05 15 10 Clarendon Gingham  Moon  [0°,10°] [0°.20°] [0°,30°]
CC 65.64% 6621% 6553% 6348% 78.89% 50.22% 50.22% 66.68% 66.07% 56.15% 58.65% 68.02% 67.97% 66.72%  63.60% 6441% 66.10% 63.11% 60.09%
LT 8047% 77.32% 69.66% 6478% 62.63% 50.02% 50.02% 74.13% 61.13% 51.98% 5346% 69.54% 7032% 7278%  59.13% 60.56% 6951% 62.78% 59.03%
ST 7832% 7584% 69.19% 6457% 6486% 50.10% 50.10% 7340% 6142% 52.06% 53.64% 69.61% 7038% 72.04%  5929% 60.69% 68.99% 62.63% 58.97%
ET  7758% 7644% 7033% 6550% 6849% 50.03% 50.03% 7559% 6441% 5293% 5494% 7230% 73.11% 7381%  61.50% 63.20% 71.32% 64.67% 60.51%
NN 7946% 7633% 68.87% 63.14% 5423% 4871% 5325% 73.10% 359.48% 5137% 51.90% 67.56% 68.33%  72.18%  57.56% 359.75% 67.94% 61.63%  58.14%

Original
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Table 6: Accuracies and coverage difference rates w of our attacks on CIFAR-10

(a) Gaussian noise, o— range of standard deviation

o [0,0.1] [0,0.2] [0,0.3]
LTT 77.34% 71.13% 65.68%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
R? 71.02% 75.04% 7735% 68.92% 70.00% 70.93% 65.58% 64.14% 6591%
w 837%  6.96% 1.35% 927%  4.14% 381% 7.63%  2.52%  8.51%
(b) Adversarial noise
PGD 1-step 10-step loss=10
LTT 78.87% 64.32% 56.17%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
E 79.20% 79.19% 77.92% 60.26% 55.37% 52.81% 64.45% 61.30% 55.57%
2.49% 5.62% 10.33% 38.28% 42.76% 44.85% 42.47% 4290% 47.45%
(c) JPEG compression, g—compression quality
q 50 10 1
LTT 75.43% 66.37% 57.00%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
Ig 71.10% 74.68% 7531% 66.57% 67.08% 6681% 57.31% 57.51% 56.95%
w 9.02% 5.62% 2.17% 1.66% 747% 12.46% 1097% 18.88% 23.11%
(d) Scaling, r—scaling factor
T 0.5 1.5 10.0
LTT 58.87% 73.27% 73.78%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 61.09% 61.46% 61.09% 71.81% 73.40% 73.84% 71.98% 73.88% 74.28%
w 13.53% 18.68% 23.41% 693% 2.06%  6.60% 7.11% 1.23%  6.00%
(e) Filtering
Filter Clarendon Gingham Moon
LTT 74.49% 64.05% 65.49%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 71.00% 74.03% 74.15% 64.11% 64.00% 6347% 6551% 65.56% 64.85%
759%  3.70%  4.47% 1.66%  553% 10.72% 0.80% 521% 10.58%
(f) Rotation, 6—range of rotation degree
5 [0°,10°] [0°,20°] [0°,30°]
LTT 70.73% 64.79% 60.93%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
R? 69.13% 72.26% 7732% 64.58% 68.64% 76.38% 61.52% 66.44% 75.57%
w 847%  9.84% 142%  626% 13.73% 29.68% 13.69% 18.72% 39.47%

E.2 EVALUATION ON SVHN

SVHN (Netzer et al., 2011) is an image dataset for street house numbers. We use the cropped version

of the original dataset that contains around 70k of 32 x 32 images of digits from 0 to 9.

For training SVHN models, we apply the same architecture and training settings as CIFAR-10 in
Section 4. The final model of SVHN has a training accuracy of 99% and a testing accuracy of 89%.

For MIAs, we also evaluated the six image transformations.

Table 7 and Table 8 show the results of current attacks and our attacks on SVHN with transformations.
Similar to the results of CIFAR-10 and Purchase-100, we can see that our attacks can achieve better
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accuracies with a properly selected e-robust area, and our two attacks discover different sets of
transformed training examples.

Table 7: Accuracies of current attacks on SVHN

Gaussian(c) Adversarial JPEG(q) Scaling(r) Filtering Rotation(s)
[001]  [002] [003] Istep 10-step loss=10 50 10 1 05 15 10 Clarendon Gingham  Moon  [0°,10°] [0°.20°] [0°,30°]
CC 5565% 55.82% 5599% 55.68% 63.90% 50.29% 50.29% 55.71% 56.14% 50.99% 5640% 55.75% 55.72%  56.08%  55.58% 55.72% 55.84% 5443%  5255%
LT 6521% 63.24% 60.02% 5838% 5296% 49.99% 49.99% 6339% 5627% 5047% 59.39% 6411% 6423% 61.77%  5685% 59.74% 5930% 55.10% 53.05%
ST 64.54% 62.90% 59.97% 5839% 53.26% 49.99% 49.99% 6294% 56.39% 50.49% 59.24% 6370% 63.80% 6144%  57.17% 5959% 59.07% 55.10% 53.10%
ET  6539% 6343% 60.14% 5844% 53.01% 49.99% 49.99% 63.53% 5633% 5047% 5947% 64.25% 64.38% 6190%  5687% 59.86% 59.37% 55.13% 53.12%
NN 6589% 64.37% 6045% 58.11% 5046% 50.84% 5059% 6427% 5625% 5041% 5948% 65.32% 65.13% 62.76%  55.50% 60.10% 59.97% 56.03% 53.73%

Original

Table 8: Accuracies and coverage difference rates w of our attacks on SVHN

(a) Gaussian noise, o— range of standard deviation

o [0,0.1] [0,0.2] [0,0.3]
LTT 63.49% 61.65% 60.09%
P 0.1 001 0001 0.1 001 0001 0.1 001 0.001

RT 58.38% 61.50% 65.06% 5829% 60.49% 62.45% 5747% 59.25% 60.03%
w 21.33% 21.35% 1931% 2293% 19.67% 14.82% 20.52% 1531% 7.32%
(b) Adversarial noise

PGD 1-step 10-step loss=10
LTT 61.39% 52.03% 50.72%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 6333% 61.52% 62.10% 56.02% 53.18% 51.35% 56.76% 56.98% 55.51%
11.86% 1.29% 8.15% 2555% 32.16% 39.61% 40.71% 43.60% 45.09%
(c) JPEG compression, g—compression quality

q 50 10 1
LTT 63.55% 57.47% 50.92%
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

€

RT 5828% 6144% 65.22% 57.69% 58.74% 58.67% 51.62% 52.21% 52.68%

w  21.52% 21.42% 19.89% 27.25% 21.69% 11.78% 6.09%  9.94% 13.56%
(d) Scaling, r—scaling factor

0 0.5 1.5 10
LTT 59.81% 64.00% 64.10%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 5885% 61.09% 62.03% 58.40% 61.78% 66.16% 58.38% 61.76% 66.21%
w  2861% 2591% 1850% 21.87% 21.86% 21.38% 21.68% 21.67% 21.29%

(e) Filtering
0 Clarendon Gingham Moon
LTT 63.04% 57.45% 60.16%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 58.79% 62.13% 65.00% 57.25% 58.38% 58.46% 58.17% 60.83% 62.55%
w 23.65% 22.96% 18.78% 29.72% 24.30% 14.65% 28.35% 26.68% 20.49%
(f) Rotation, d—range of rotation degree

5 [0°,10°] [0°,20°] [0°,30°]
LTT 59.77% 56.34% 53.74%
P 0.1 001 0.001 0.1 001 0.001 0.1 001 0.001
RT  57.69% 59.58% 61.11% 55.19% 56.07% 56.53% 5291% 5351% 54.87%
w  2624% 2306% 1688% 2333% 1591% 5.67% 17.82% 11.84% 6.29%
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E.3 EVALUATION ON DEFENDED MODELS

We mainly evaluate our attacks on undefended models in Section 4. Here we provide evaluation
results of CIFAR-10 models trained with two popular defense strategies: (1) large weight decay
rate (Shokri et al., 2017), and (2) deferentially-private (DP) training (Abadi et al., 2016). We assume
that the attacker knows the defense algorithms and the parameters so that the attacker can also train
shadow models with the same defenses. Note that we only evaluate two defenses as our goal is not to
evaluate the performance of state-of-the-art defenses but to show the effectiveness of current defenses
against all MIAs.

For the first defense, we set the weight decay rate to 0.1 (target model trained with 5e-4) and trained
the model until convergence. For DP, we applied the implementation from Opacus (Facebook, 2020)
with an RMSprop optimizer for better convergence, a gradient clipping value of 1.2, a noise multiplier
of 2.3, and trained for 100 epochs, which achieves (5, 1e-5)-differential privacy. All the other training
settings are the same as in Section 4.1 in order to control variates. The final models trained with a
large weight decay rate have an average of 85% training accuracy and 64% testing accuracy, and the
final models trained with DP have an average of 40% training accuracy and 39% testing accuracy.

Table 9, Table 10 and Table 11 show the attack results of current attacks and our attacks on the
defended models. We can see that both defenses are effective against all MIAs, including ours. DP
with a small privacy budget provides the best privacy guarantee, reducing all attacks to random
guesses, with a trade-off between utility as the model accuracy is considerably lower than undefended
ones.

While loss-thresholding with transformations is still working better than the current attacks, we notice
that the performance of reverse transformation attack is ineffective under the defenses when the €
settings are the same with attacking undefended models in Section 4. This is due to the defenses
increasing the average loss so that both training and testing examples are far away from the robust area
of a small e. However, an adaptive attacker can always select a better € for the reverse transformation
attack. In Figure 4, we compare reverse transformation attacks with different e-robust areas on the
model with weight decay defense. We can see that a proper selection of € = 0.5 can still lead to a
better attack accuracy than the random guessing baseline and the loss-thresholding attacks. How to
optimally select € is an interesting topic and is left as our future work.

Table 9: Accuracies of current attacks on defended models

(a) Weight decay
Original Gaussian(c) Adversarial IPEG(q) Scaling(r) Filtering Rotation(d)
[001] [002] [003] I-step 10-step loss=10 50 10 1 0.5 15 10 Clarendon Gingham Moon  [0°,10°] [0°,20°] [0°,30°]

CC  6098% 60.50% 58.59% 57.03% 58.54% 50.13% 50.13% 58.60% 54.54% 51.17% 52.55% 59.16% 59.35% 60.67% 59.54%  59.73% 58.63%  56.16%  54.60%
LT 61.33% 60.53% 58.19% 56.34% 56.01% 50.11% 50.11% 57.94% 53.52% 50.78% 51.86% 58.61% 58.90% 61.11% 59.31%  59.26%  58.32%  55.81%  54.23%
ST 61.35% 60.55% 58.20% 56.34% 56.06% 50.12% 50.12% 57.92% 53.52% 50.78% 51.90% 58.63% 58.90% 61.02% 59.30%  59.27%  58.32%  55.78%  54.23%
ET  6133% 60.55% 58.19% 56.32% 56.02% 50.11% 50.11% 57.95% 53.54% 50.79% 51.86% 58.63% 58.89% 61.11% 59.33%  59.24%  58.33%  55.81%  54.23%
NN 5781% 5721% 5541% 53.53% 46.96% 49.86% 49.89% 54.76% 51.14% 49.88% 50.32% 54.83% 55.26% 57.26% 5571%  5573% 55.09%  53.23%  52.29%

(b) DP

Gaussian(c) Adversarial JPEG(q) Scaling(r) Filtering Rotation(d)

[001]  [002] [003] lstep 10-step loss=10 50 10 1 05 15 10 Clarendon Gingham Moon  [0°,10°] [0°.20°] [0°,30°]
CC 50.67% 50.70% 50.62% 5048% 50.15% 50.00% 50.00% 50.63% 50.50% 5024% 5034% 5059% 50.58%  50.70%  5052% 50.62% 50.63% 50.70% 50.51%
LT 50.79% 50.72% 50.79% 5053% 50.18% 50.01% 50.01% 50.72% 5046% 50.30% 50.27% 50.70% 50.74%  50.88%  50.68% 50.68% 50.70% 50.66%  50.53%
ST 50.55% 50.54% 5045% 5032% 50.17% 50.04% 50.04% 5031% 50.26% 50.08% 50.25% 50.61% 50.65% 50.59%  5043% 50.50% 5046% 50.28%  50.19%
ET  50.86% 50.73% 50.82% 50.53% 50.23% 50.00% 50.00% 50.72% 5049% 50.28% 50.35% 50.79% 50.81% 5094%  50.69% 50.69% 50.74% 50.68% 50.57%
NN 49.82% 49.93% 50.10% 50.14% 49.63% 50.07% 50.17% 49.90% 50.05% 50.18% 49.97% 50.23% 50.09% 49.92%  50.01% 50.08% 50.13% 50.14%  50.18%

Original
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Table 10: Accuracies and coverage difference rates w of our attacks on CIFAR-10 models trained

with large weight decay rate

(a) Gaussian noise, o— range of standard deviation

o [0,0.1] [0,0.2] [0,0.3]
LTT 60.57% 58.50% 56.88%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT  50.08% 50.07% 50.09% 4991% 50.02% 50.08% 50.27% 50.06% 50.07%
49.40% 49.66% 49.83% 48.86% 49.82% 50.28% 49.33% 50.43% 50.12%
(b) Adversarial noise
PGD 1-step 10-step loss=10
LTT 60.33% 50.75% 50.75%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT  50.06% 49.82% 50.04% 50.05% 50.06% 50.10% 50.04% 49.77% 49.74%
48.98% 50.19% 50.26% 50.04% 49.98% 50.21% 50.30% 50.34% 49.82%
(c) JPEG compression, g—compression quality
q 50 10 1
LTT 58.50% 54.65% 51.39%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 5026% 50.27% 49.74% 49.90% 50.17% 49.95% 50.27% 50.11% 50.07%
w  4894% 50.48% 49.82% 4897% 49.64% 49.72% 49.81% 50.17% 50.10%
(d) Scaling, r—scaling factor
0 0.5 1.5 10
LTT 52.98% 59.13% 59.38%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT  50.14% 49.89% 50.23% 50.33% 5025% 50.09% 50.13% 50.20% 49.92%
49.03% 50.27% 50.28% 48.66% 49.67% 49.90% 48.87% 50.31% 49.83%
(e) Filtering
1 Clarendon Gingham Moon
LTT 61.03% 59.55% 59.75%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 49.98% 49.96% 49.76% 50.13% 49.72% 49.89% 50.03% 49.70% 50.08%
w 49.13% 50.01% 49.95% 49.08% 50.51% 49.83% 48.79% 50.09% 49.99%
(f) Rotation, 6—range of rotation degree
5 [0°,10°] [0°,20°] [0°,30°]
LTT 58.64% 56.28% 54.63%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 50.17% 50.01% 49.89% 49.88% 50.01% 49.81% 49.86% 49.95% 49.97%
43.00% 43.20% 43.70% 38.79% 39.28% 39.15% 34.65% 3491% 34.93%
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Table 11: Accuracies and coverage difference rates w of our attacks on CIFAR-10 models trained

with DP

(a) Gaussian noise, o— range of standard deviation

o [0,0.1] [0,0.2] [0,0.3]
LTT 50.76% 50.64% 50.61%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT  5022% 50.25% 50.02% 49.95% 50.01% 50.37% 50.19% 49.96%  50.04%
4732% 50.06% 49.92% 47.61% 50.18% 49.62% 48.22% 50.05% 49.99%
(b) Adversarial noise
PGD 1-step 10-step loss=10
LTT 50.76% 50.67% 50.67%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT  50.14% 50.06% 49.96% 50.04% 50.11% 49.79% 50.08% 49.96% 50.07%
4798% 49.57% 49.79% 49.47% 49.93% 50.07% 49.05% 49.86% 49.76%
(c) JPEG compression, g—compression quality
q 50 10 1
LTT 50.70% 50.50% 50.27%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 49.96% 50.08% 50.05% 50.17% 50.05% 50.28% 49.98% 50.11% 50.12%
w  4691% 4938% 50.12% 47.48% 50.05% 49.52% 47.81% 50.25% 49.71%
(d) Scaling, r—scaling factor
0 0.5 1.5 10
LTT 50.39% 50.70% 50.73%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT ~ 49.96% 49.92% 50.07% 49.99% 50.12% 49.93% 50.09% 49.90% 50.00%
48.04% 50.21% 50.02% 47.00% 49.86% 49.89% 47.33% 49.70% 50.00%
(e) Filtering
1 Clarendon Gingham Moon
LTT 50.86% 50.68% 50.70%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 5025% 4971% 50.04% 49.94% 50.28% 49.78% 49.90% 50.16% 49.89%
w 46.54% 49.79% 49.97% 46.94% 49.71% 49.96% 47.67% 49.88% 50.07%
(f) Rotation, 6—range of rotation degree
5 [0°,10°] [0°,20°] [0°,30°]
LTT 50.66% 50.52% 50.46%
€ 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
RT 5035% 50.07% 50.16% 49.56% 49.91% 50.14% 49.70% 50.12% 49.90%
48.28% 49.37% 49.63% 47.58% 48.777% 48.86% 46.64% 48.10% 48.34%
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Figure 4: Comparison of different e-robust areas for RT attack (CIFAR-10 with weight-decay defense,
Rotation of [0°, 30°]). The x-axis represents the €, and the y-axis represents the attack accuracy.
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