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ABSTRACT

Social networks represent a common form of interconnected data frequently de-
picted as graphs within the domain of deep learning-based inference. These com-
munities inherently form dynamic systems, achieving stability through continuous
internal communications and opinion exchanges among social actors along their
social ties. In contrast, neural message passing in deep learning provides a clear
and intuitive mathematical framework for understanding information propagation
and aggregation among connected nodes in graphs. Node representations are dy-
namically updated by considering both the connectivity and status of neighboring
nodes. This research harmonizes concepts from sociometry and neural message
passing to analyze and infer the behavior of dynamic systems. Drawing inspi-
ration from opinion dynamics in sociology, we propose ODNET, a novel mes-
sage passing scheme incorporating bounded confidence, to refine the influence
weight of local nodes for message propagation. We adjust the similarity cutoffs
of bounded confidence and influence weights of ODNET and define opinion ex-
change rules that align with the characteristics of social network graphs. We show
that ODNET enhances prediction performance across various graph types and al-
leviates oversmoothing issues. Furthermore, our approach surpasses conventional
baselines in graph representation learning and proves its practical significance in
analyzing real-world co-occurrence networks of metabolic genes. Remarkably,
our method simplifies complex social network graphs solely by leveraging knowl-
edge of interaction frequencies among entities within the system. It accurately
identifies internal communities and the roles of genes in different metabolic path-
ways, including opinion leaders, bridge communicators, and isolators.

1 INTRODUCTION

Sociometry is a quantitative method used in social psychology and sociology to describe social re-
lations (Moreno, 1934; 2012). In his pioneering work, Moreno (1934) conceptualized a graph as an
abstract representation of a group’s structure. The term social network was later coined to describe a
system comprising individual social actors and the social ties among them (Proskurnikov & Tempo,
2017). The development of cybernetics has led to increased attention to the study of messages and
communication within society (Wiener, 1988). Statistical physics has contributed by introducing
methods and tools from dynamical systems theory, giving rise to the field of sociodynamics (Wei-
dlich, 2006; Helbing, 2010).

Graph neural networks (GNNs), on the other hand, are rooted in the same basic structure as social
networks: graphs. The primary challenge in designing GNN models lies in effectively aggregating
information based on local interactions for efficiently extracting hidden representations. This design
philosophy has been generalized as neural message passing (MP; Gilmer et al. (2017)) and later
became a fundamental feature extraction unit of graph-structured data for aggregating features of
neighbors during network propagation.

This work explores the connection between these two fields by delving into opinion dynamics, a
subfield of sociodynamics. We establish a link between the French-DeGroot (FD) model (French Jr,
1956; DeGroot, 1974) and MP, emphasizing a shared phenomenon that in both FD models and
MPs a network converges exponentially to a stable state when it exhibits strong local connectivi-
ties, a property that is frequently observed in hypergraphs. Moreover, we draw inspiration from the
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Figure 1: Given a graph with initial connections, ODNET is defined with bounded confidence to
update the influence weights by the graph’s position on the opinion spectrum.

Hegselmann-Krause (HK) model (Rainer & Krause, 2002) and incorporate the concept of bounded
confidence into our novel MP formulation termed ODNET, which features a confidence filtration
mechanism on initial edge connections. Based on the similarity of node pairs and connection prox-
imity, ODNET aggregates neighboring information through automatic adjustment on edge weights.
With piecewise MP schemes, the model strengthens, weakens, or removes initial links within the
graph. Additionally, it allows for assigning negative weights to capture adverse perspectives from
neighboring nodes with substantial disparities. This feature is essential when investigating het-
erophilic networks, where connected entities exhibit dissimilar characteristics.

The opinion dynamics-inspired propagation scheme can take on a static or dynamic nature, con-
tingent on the choice of the similarity measure applied to nodes. The new mechanism emulates
the dynamic spreading of opinions in a community, where effective communications converge indi-
viduals or agents towards consensus or several predominant viewpoints. For instance, in microbial
communities, analyzing the co-occurrence network of metabolic genes across various species can
reveal the potential biologically key genes act as predominant roles (Liu et al., 2018). When ex-
changing ideas, individuals tend to support opinions akin to their own. Depending on the position
of the community on the opinion spectrum (Figure 1), when encountering significantly divergent
thoughts, individuals may choose to disregard or oppose them. For instance, researchers typically
focus on studies within their expertise but would love to learn new perspectives from other domains,
whereas politicians usually have strong conflicts and resist propositions from competing parties.

The proposed approach offers an enhanced description of neighborhood influence across various
scenarios by categorizing the relationships among nodes into three levels. We assess the versatile
ODNET across three categories of graphs: homophilic graphs, heterophilic graphs, and hypergraphs,
each characterized by its unique properties. Empirically, the introduced piecewise aggregation be-
havior enhances the performance of previously established MP methods (such as GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), and HGNN (Gao et al., 2022)). We also demonstrate
our model’s capacity to progressively simplify graph structures, a crucial feature for deciphering
complex social networks. To underscore the practical significance of this simplification capability,
we provide a concrete application in the field of microbiology. Our model is shown to effectively
prune weak connections among genes, thus extracting biologically relevant genes and connections
from co-occurrence networks of metabolic genes.

2 NEURAL MESSAGE PASSING FOR GRAPHS AND HYPERGRAPHS

Graph A graph G[W ] = (V, E [W ]) of N nodes can be associated with any square non-negative
weight matrix W ∈ RN×N , where V represents the node set and E is the edge set. An edge
(vi, vj) ∈ E if and only if wij > 0. We denote xi as the feature of node vi or the opinion of
individual i. G is strongly connected (Godsil & Royle, 2001) if there exists a path from every node
to every other node. A cycle is a directed path that both begins and ends at the same node with no
repeated nodes except for the initial/final one. The length of a cycle is defined by the number of
edges in the cyclic path. The periodicity of a graph is defined as the smallest integer k that divides
the length of every cycle in the graph. When k = 1, G is termed aperiodic (Bullo et al., 2009).

Hypergraphs A hypergraph is a generalization of a graph in which an edge can connect any
number of vertices. A hypergraph can be denoted by a triple H[W h] = {V, E ,W h}. To avoid
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notation confusion, we still use V for the set of nodes and E for the set of hyperedges. We set |V| =
N and |E| = M , and E(i) denotes a set containing all the nodes sharing at least one hyperedge with
node i. Usually, W h is a diagonal matrix for hyperedges, where Wh

ee represents the weight of the
hyperedge e. In this paper, we extend the weight representation to a triple tensor W h ∈ RN×N×M ,
where we

i,j designates an element in W h. The incidence matrix H ∈ RN×M defines Hi,e = 1 if
the node i belongs to the hyperedge e, otherwise Hi,e = 0. We generalize the indicator within W h

by setting we
i,j as nonzero if node i, j are connected by a hyperedge e, otherwise 0.

Neural Message Passing Neural Message Passing (MP; Gilmer et al. (2017)) stands as the pre-
vailing propagator for updating node representations in GNNs. We denote x

(k−1)
i as the features of

node i in layer (k− 1) and aj,i ∈ Rd as the edge features from node j to node i. An MP layer reads

x
(k)
i = γ(k)

(
x
(k−1)
i ,□j∈Ni ϕ

(k)
(
x
(k−1)
i ,x

(k−1)
j , aj,i

))
, (1)

where □ denotes a differentiable, (node) permutation invariant function, such as summation, mean,
or maximization. The γ and ϕ denote differentiable functions such as MLPs (Multi-Layer Percep-
trons), and Ni represents the set of one-hop neighbors of node i. The MP mechanism updates the
feature of each node by aggregating their self-features with neighbors’ features.

The classic MPs can be extended to hypergraphs that to consider interactions among multiple nodes
reflected in a hyperedge. At the kth layer:

x
(k+1)
i = Ψ(k)

(
x
(k)
i ,Φ1,e∈E(i)

(
e,Φ

(k)
2,j∈e({x

(k)
j }, {aej,i})

))
, (2)

where Φ
(k)
1 denotes a differentiable, (hyperedge) permutation-invariant function, and Φ

(k)
2 is a dif-

ferentiable, (node) permutation invariant function. Ψ(k) denotes another differentiable function of
propagation, and j ∈ e implies Hj,e = 1 or aej,i ̸= 0.

3 CONNECTING OPINION DYNAMICS WITH MESSAGE PASSING

3.1 FRENCH-DEGROOT MODEL

The French-DeGroot (FD), originally introduced by French Jr (1956) and later developed by Harary
(1959), Norman et al. (1965) and DeGroot (1974), is a groundbreaking agent-based model that
simulates the evolution of opinions. In a given population of N individuals, each individual holds
an opinion xi(k) at discrete time instances k = 0, 1, · · · . The evolution of an individual’s opinion is

xi(k + 1) =
∑N

j=1
wijxj(k), (3)

where the non-negative influence weight wij satisfying
∑N

j=1 wij = 1. If wij > 0, individuals i
and j are neighbors. The influence weight signifies the relative impact that j exerts on i during each
opinion update. Importantly, all individuals concurrently update their opinions at each time step.
The FD model captures how individual opinions converge within a group, potentially leading to
consensus, resembling an opinion pooling process. It can be interpreted as an MP, where the graph
represents a community with each node representing an individual, emulating how information is
exchanged within a specific type of neural network.

Convergence Analysis A fundamental result regarding the convergence of the FD model is well-
established, demonstrating that consensus is achieved exponentially fast for a strongly connected and
aperiodic graph. This result can be found in references such as Ren & Beard (2008); Proskurnikov
& Tempo (2017); Bullo et al. (2009); Ye (2019).
Proposition 1. Consider the evolution of opinions xi(k) for each individual i within the network
G[W] according to (3). Assuming that G[W] is strongly connected and aperiodic, and that W is
row-stochastic. Define ζ as the dominant left eigenvector of W, then limk→0 x(k) = (ζ⊤x(0))1N

exponentially fast.

It’s worth noting that any graph with a self-loop is considered aperiodic, implying that exponential
decay is likely to occur in graphs with relatively strong connectivity. Coincidentally, a similar phe-
nomenon, known as oversmoothing (Nt & Maehara, 2019; Oono & Suzuki, 2019), has been explored
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in the context of GNNs, where it is associated with the exponential decay of the Dirichlet energy,
a measurement of the convergence degree of all features (weighted by graph structure). Despite
originating from different fields, these two phenomena appear to describe similar processes.

Connection to Neural Message Passing It’s intriguing to observe that the FD model, often re-
garded as a micro-level model based on individuals simulating the evolution of individual opinions,
shares similarities with a GNN model known as GRAND (Chamberlain et al., 2021). It describes a
diffusion process on graphs by connecting heat conduction with MP. This connection is established
through the discretization of a partial differential equation on graphs:

∂

∂t
x(t) = (A(x(t))− IN )x(t), (4)

where A(x(t)) denotes the N×N attention matrix on nodes and IN is an identity matrix. GRAND
coincides with the FD model when (A(x(t))−IN ) satisfies the row-stochastic property and a simple
forward-Euler method is applied with a time step of one. This intriguing parallel between the two
models highlights the interconnectedness of ideas in different domains of research.

3.2 HEGSELMANN-KRAUSE MODEL

In the FD model, each agent possesses the capability to interact with any other agent, regardless of
their opinions. However, in real-life scenarios, individuals typically engage in conversations primar-
ily with those who share similar viewpoints. This fundamental aspect of human communication is
accurately characterized and referred to as bounded confidence within the context of sociodynamics.
The Hegselmann-Krause (HK) model (Rainer & Krause, 2002) defines bounded confidence as

xi(k + 1) =
1

|B(i,xi))|
∑

j∈B(i,xi)

xj(k), (5)

where B(i,xi) = {j : ∥xj(k) − xi(k)∥ < ϵ} encompasses all individual i’s associated peers j,
whose opinions diverge from individual i within a confined region of radius ϵi ∈ R. This parameter
represents the degree of uncertainty or tolerance within the model.

Clustering and Oversmoothing in Heterophilious Dynamics The HK model demonstrates a
clustering phenomenon driven by the self-alignment of agents. The number of clusters has been
shown to have a negative correlation with the heterophily dependence among agents in a system
(Motsch & Tadmor, 2014). Specifically, when interactions exhibit significant heterophily–meaning
that agents tend to form stronger bonds with counterparts rather than with similar individuals–the
dynamics tend to foster consensus. This tendency of individuals converging toward an ‘environmen-
tal averaging’ aligns with the oversmoothing issue in GNNs. One solution is to require an MP to
retain at least two clusters at the end, where the Dirichlet energy is proven to have a lower bound.
This can be achieved through techniques such as bi-clustering with repulsion (Fang et al., 2019; Jin
& Shu, 2021; Wang et al., 2023). In the context of the HK model, it is advisable to avoid steep
increases over compact supports when aggregating neighboring information.

4 ODNET: OPINION DYNAMICS-INSPIRED NEURAL MESSAGE PASSING

Inspired by the mechanism of opinion dynamics, we introduce ODNET, a novel MP framework, em-
ploying the influence function ϕ(s) with bounded confidences. We offer a comprehensive interpre-
tation of each component within ODNET, beginning with a discrete formulation and subsequently
extending it to continuous forms that are applicable to both graphs and hypergraphs.

Discrete Formation In the discrete domain, we formulate the update rule as follows:

xi(t+ 1) =

N∑
i=1

ϕ(sij)(xj(t)− xi(t)) + xi(t) + u(xi(t)), (6)

where ϕ is a non-decreasing function of the similarity measure si,j to node i and node j, and u(xi)
is a control term for stability. For instance, sij could be defined as the normalized adjacency matrix
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(Kipf & Welling, 2017) or attention coefficients (Veličković et al., 2018). The monotonicity of ϕ
characterizes the influence weight concerning node-node similarity. Our model opts for a piecewise
ϕ function to delineate influence regions akin to bounded confidence. In a special case, with

ϕ(s) =


µs, if ϵ2 < s

s, if ϵ1 ≤ s ≤ ϵ2

0, otherwise,
(7)

our model (6) can be written as

xi(t+ 1) = µ
∑

ϵ2<si,j

si,j(xj(t)− xi(t)) +
∑

ϵ1≤si,j≤ϵ2

si,j(xj(t)− xi(t)) + xi(t). (8)

This formulation amplifies the influence weight for highly similar node pairs with coefficient µ > 0
while cutting connections for node pairs with low similarity, resembling how individuals tend to
ignore opinions beyond their bounded confidence.

Additionally, in certain extreme scenarios, individuals with significantly divergent opinions may
exhibit hostile attitudes toward each other. To model such instances, we consider:

ϕ(s) =


µs, if ϵ2 < s

s, if ϵ1 ≤ s ≤ ϵ2

ν(1− s), otherwise,
(9)

where µ > 0 and ν < 0. In the context of GNNs, it allows not only learning from positive neighbors
with similarity but also extracting negative information from nodes with discrepancies. It’s worth
noting that the negative coefficient ν implies that some node pairs consistently repel each other,
potentially causing undesirable system dilation. Therefore, a control term u(xi) is introduced for
system stability. A simple approach is to design a potential function P (x) where ∇P (x) → ∞ as
x → ∞, and set u(xi) = ∇P (x)|x=xi

. Various choices for P (x) can be explored, as discussed
by Kolokolnikov et al. (2011). The function P (x) can be viewed as a moral constraint preventing
individuals from resorting to extreme violence in conflict situations.

The different definitions of bounded confidence provided by (7) and (9) reflect the various behav-
iors of opinion exchange in a system, and these behaviors are linked to the different positions of
the system along the opinion spectrum. While this can be conceptually determined by the intrinsic
characteristics of the graph or the system, we propose the use of the homophily level (Pei et al.,
2020) as an alternative quantitative measure. When passing messages on a specific graph, we rec-
ommend employing the former formulation for homophilic graphs and the latter for heterophilic
graphs. Further investigations and explanations will be provided in Section 5.

Continuous Formation In the realm of opinion dynamics, an individual’s viewpoint typically
undergoes gradual shifts rather than abrupt reversals. For instance, a person’s political orientation
is seldom confined to the extremes of either far-right or far-left, and an ultra-leftist rarely makes
an overnight transition to a far-right position. Therefore, a natural refinement of the discrete MP
model presented above is to generalize it into a continuous version. In broader terms, one can view
a conventional MP model as a numerical discretization of the following continuous model:

∂xi(t)

∂t
=

N∑
i=1

ϕ(sij)(xj(t)− xi(t)) + u(xi) (10)

The continuous formulation (10) outlined above is amenable to various numerical approximation
techniques corresponding to a discrete model with a specific residual compensation scheme. Con-
sequently, a range of Ordinary Differential Equation (ODE) solvers can be employed for ODNET,
including Neural ODEs (Chen et al., 2018).

Generalization on Hypergraphs Since ODNET constructs a general formulation for MP, it can
be extended to hypergraphs as well. The primary distinction between graphs and hypergraphs lies in
the fact that a hyperedge extends connectivity beyond the scope of traditional edges. This extension
can be accommodated by generalizing the weight aggregation:

∂xi

∂t
=

∑
e:i∈e

∑
j∈e

ϕ(sei,j)(xj − xi) + u(xi). (11)
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Table 1: Average test accuracy on homophilic graphs over 10 random splits.
Model Cora CiteSeer PubMed Coauthor CS Computer Photo
GCN (Kipf & Welling, 2017) 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2
MONET (Monti et al., 2017) 81.3±1.3 71.2±2.0 78.6±2.3 90.8±0.6 83.5±2.2 91.2±2.3
GRAPHSAGE-MEAN (Hamilton et al., 2017) 79.2±7.7 71.6±1.9 77.4±2.2 91.3±2.8 82.4±1.8 91.4±1.3
GRAPHSAGE-MAX (Hamilton et al., 2017) 76.6±1.9 67.5±2.3 76.1±2.3 85.0±1.1 N/A 90.4±1.3
GAT (Veličković et al., 2018) 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±1.9 85.7±2.0
GAT-PPR (Veličković et al., 2018) 81.6±0.3 68.5±0.2 76.7±0.3 91.3±0.1 85.4±0.3 90.9±0.3
CGNN (Xhonneux et al., 2020) 81.4±1.6 66.9±1.8 66.6±4.4 92.3±0.2 80.3±2.0 91.4±1.5
GDE (Poli et al., 2020) 78.7±2.2 71.8±1.1 73.9±3.7 91.6±0.1 82.9±0.6 92.4±2.0
GRAND-L (Chamberlain et al., 2021) 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9
ODNET (ours) 85.7±0.3 75.5±1.2 80.6±1.1 93.1±0.7 83.9±1.5 92.7±0.6

† The top three are highlighted by First, Second, Third.

Model Texas Wisconsin Cornell
MLP 80.8±4.8 85.3±3.3 81.9±6.4
GPRGNN (Chien et al., 2021) 78.4±4.4 82.9±4.2 80.3±8.1
H2GCN (Zhu et al., 2020) 84.9±7.2 87.7± 5.0 82.7±5.3
GCNII (Chen et al., 2020) 77.6±3.8 80.4±3.4 77.9±3.8
GEOM-GCN (Pei et al., 2020) 66.8±2.7 64.5±3.7 60.5±3.7
PAIRNORM (Zhao & Akoglu, 2020) 60.3±4.3 48.4±6.1 58.9±3.2
GRAPHSAGE (Hamilton et al., 2017) 82.4±6.1 81.2±5.6 76.0±5.0
GAT (Veličković et al., 2018) 52.2±6.6 49.4±4.1 61.9±5.1
GCN (Kipf & Welling, 2017) 55.1±5.2 51.8±3.1 60.5±5.3
GRAPHCON (Rusch et al., 2022) 85.4±4.2 87.8±3.3 84.3±4.8
ODNET 88.3±3.2 89.1± 2.9 86.5±5.5

Table 2: Average test accuracy on heterophilic graphs.
Figure 2: Decays of Dirichlet
energy with layers on Texas.

Figure 3: Impact of scaling factors ν and µ on Texas and Cora.

This formulation aligns with the notion that in large communities, information propagates through
smaller sections (nodes that share a hyperedge) rather than through individual pairwise interactions.
Similar to the graph case, the choice of sei,j may vary, such as attention coefficients (Bai et al., 2021).

Remark 1. The collective behaviors in HK-driven modeling mitigate the oversmoothing issue for
continuous MP schemes on hypergraphs. See Appendix A for further discussions.

5 GRAPH REPRESENTATION LEARNING

5.1 EXPERIMENTAL PROTOCOL

Benchmark Datasets This section validates the efficacy of ODNET through classic node-level
representation learning tasks on a variety of datasets spanning three types of graphs, including six
homophilic graphs (Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), Pubmed (Namata
et al., 2012), Coauthor CS (Shchur et al., 2018), Computer (Namata et al., 2012), and Photo
(Namata et al., 2012)), three heterophilic graphs (Texas, Wisconsin, and Cornell from the WebKB
dataset (Garcı́a-Plaza et al., 2016)), and four hypergraphs based on the citation network (Yadati
et al., 2019). For additional descriptions, please refer to Appendix B.1.

Training Setup We compare our model to a diverse set of top-performing baseline GNN models,
including classic graph convolutions, MPs with continuous updating schemes, and the latest hyper-
graph models. For ODNET, we trained the model using a neural ODE solver with Dormand–Prince
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Table 3: Average test accuracy on hypergraphs over 10 random splits.
Model Cora-coauthor Cora-cocitation CiteSeer-cocitation PubMed-cocitation
HGNN (Feng et al., 2019) 82.6±1.7 79.4±1.4 72.5±1.2 86.4±0.4
HYPERGCN (Yadati et al., 2019) 79.5±2.1 78.5±1.3 71.3±0.8 82.8±8.7
HCHA (Bai et al., 2021) 82.6±1.0 79.1±1.0 72.4±1.4 86.4±0.4
HNHN (Dong et al., 2020) 77.2±1.5 76.4±1.9 72.6±1.6 86.9±0.3
UNIGCNII (Huang & Yang, 2021) 83.6±1.1 78.8±1.1 73.0±2.2 88.3±0.4
HYPERND Tudisco et al. (2021) 80.6±1.3 79.2±1.1 72.6±1.5 86.7±0.4
ALLDEEPSETS (Chien et al., 2022) 82.0±1.5 76.9±1.8 70.8±1.6 88.8±0.3
ALLSETTRANSFORMER (Chien et al., 2022) 83.6±1.5 78.6±1.5 73.1±1.2 88.7±0.4
ED-HNN (Wang et al., 2022) 84.0±1.6 80.3±1.4 73.7±1.4 89.0±0.5
ODNET (Ours) 84.5±1.6 80.7±0.9 74.0±0.9 89.0±0.4

adaptive step size scheme (DOPRI5). In homophilic datasets, we utilized 10 random weight initial-
izations and random splits, with each combination randomly selecting 20 instances for each class.
In heterophilic and hypergraph datasets, we used the fixed 10 training/validation splits by Pei et al.
(2020) and Yadati et al. (2019), respectively. For further details, please refer to Appendix C.

5.2 NODE CLASSIFICATION

Graphs Tables 1-2 present the average accuracy for predicting node labels in both homophilic and
heterophilic graphs. ODNET consistently ranks among the top-performing methods with minimal
variance. The performance results for baseline methods are sourced from prior studies (Chamberlain
et al., 2021; Chien et al., 2021; Wang et al., 2022). Notably, our model outperforms other continu-
ous MP techniques, such as GRAND, by introducing the bounded confidence mechanism and the
respective influence weights. This superiority is particularly evident on heterophilic graphs, where
the repulsive force among dissimilar node pairs significantly enhances prediction accuracy. Fur-
thermore, Figure 3 illustrates the distinct preferences of the influence function for homophilic and
heterophilic graphs. We recommend following (7) for the former and (9) for the latter in general.
The similarity cutoff also exhibits differing preferences. In homophilic graphs, nodes tend to am-
plify attraction among similar entities, while in heterophilic graphs, dissimilar nodes benefit more
from emphasizing repulsion. Additional evidence is provided in Appendix D.1.

Hypergraphs In contrast to graph data with relatively sparse connections, hypergraphs utilize
a few hyperedges and establish densely connected local communities. As reported in Table 3,
ODNET consistently outperforms most baseline methods with a significant improvement. The only
exception is ED-HNN, where our method achieves a slightly less pronounced advantage. It is worth
noting that our ODNET adopts the hypergraph weights aeij from HGNN (Feng et al., 2019) with a
simple Euler scheme of first-order forward differences. In contrast, ED-HNN employs the second-
order difference, which intrinsically contains more comprehensive and expressive information. In
this case, our method demonstrates great potential for significantly enhancing the performance of a
basic method with minimal additional complexity, surpassing even the most advanced methods.

5.3 DIRICHLET ENERGY, OVERSMOOTHING, AND COMMUNITY CONSENSUS

Many MP methods encounter the issue of oversmoothing, limiting their ability to enable deep net-
works to achieve expressive propagation. As a common metric, a GNN model is considered to
alleviate the oversmoothing problem if its Dirichlet energy rapidly approaches a lower bound as
the number of network layers increases (Cai & Wang, 2020). Figure 2 illustrates the decay of
Dirichlet energy on Texas with all network parameters randomly initialized. The two conventional
MPs, GCN and GAT, exhibit a sudden progression of Dirichlet energy with exponential decay. In
contrast, GRAND employs a small multiplier to delay all nodes’ features to collapse to the same
value. ODNET stabilizes the energy decay with bounded confidence and the influence weights, of-
fering a simple and efficient solution to alleviate the oversmoothing issue. Since stable Dirichlet
energy reflects the disparity of feature clusters, the observation that a decreasing profile of ϕ reduces
Dirichlet energy under stable conditions is consistent with simulation results in opinion dynamics
that heterophily dynamics enhances consensus (Motsch & Tadmor, 2014). Here ‘heterophily’ sig-
nifies the tendency of a graph to form stronger connections with those who are different rather than
those who are similar, which is a different concept from the ‘heterophilic graph’ in GNNs.
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Figure 4: Co-occurrence network of selected metabolic genes in ME or MT before (a-b) and after
(c-d) being simplified by ODNET. Connections are considered strong with weights> 0.05, and
genes without a strong connection with any other peers are removed.

6 SOCIAL NETWORK ARCHITECTURE SIMPLIFICATION

Microorganisms are the most extensively distributed and numerous group on Earth, which thrive in
a wide array of moderate and extreme environments, such as deep-sea hydrothermal vents, ocean
trenches, and plateaus (Shu & Huang, 2022). The remarkable diversity among microorganisms finds
its primary expression through their intricate metabolic pathways (Louca et al., 2018; Coelho et al.,
2022). Consequently, investigating the connections between microbial metabolism in distinct envi-
ronments carries profound significance in unraveling the intricate interplay between Earth’s diverse
ecosystems and the lives inhabiting them. Metagenomic analyses have revealed the remarkable com-
plexity inherent to metabolic gene networks, due to the diversity and richness of functional genes
and their interconnections. It thus becomes a necessity to simplify metabolic gene networks for in-
vestigating relationships among functional genes and key genes. Presently, the prevailing approach
involves adjusting connection weights to streamline the network, often relying on the biological ex-
pertise (Liu et al., 2022). However, the absence of a standardized simplification criterion results in
a heavy bias in network structures influenced by the subjective opinions of biologists.

Problem Formulation and Training Setup As an example of the environmental microbiome
analysis, the co-occurrence network is challenging to interpret due to the massive and complicated
characteristics of genes and the unclear standard for assessment. The target here is to learn mean-
ingful influence weights between gene pairs that simplify the co-occurrence network with effective
biological justification. To this end, two networks originated from the microbial comparison be-
tween the Mariana Trench (MT) and Mount Everest (ME) networks (Liu et al., 2022) are utilized,
where nodes are functional genes and edges are weighted by the probability of two key functional
gene sets simultaneously occurring in the same species. Edges with exceptionally small weights will
be discarded as noisy observations. As we are eager to identify the key genes and gene clusters from
gene interactions, we construct the graph with initial connectivity (edges and edge weights), leaving
any node attributes (e.g., function, pathway) unobserved. We define a node-level classification task
for predicting whether a node is a ‘strong’, ‘medium’, or ‘weak’ influencer to its community, where
the three levels are cut by their degree. Further details are provided in Appendix E.

Result Analysis We trained two independent ODNETs on ME and MT networks, which achieved
prediction accuracy as high as 96.9% and 75.0%, respectively. For both networks, metabolic genes
were classified based solely on topological information, without the introduction of any a priori
node features. Figure 4 visualizes the two networks in their original and the simplified appearance,
respectively. For all the networks, an edge weight cutoff of 0.05 was applied to eliminate weak
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connections that could not be distinguishable from background noise. The original network with-
out any simplification appeared cluttered and difficult to interpret (Figure 4a-b). In contrast, the
simplified networks greatly enhanced the readability of the co-occurrence network while retaining
reasonable biological significance (Figure 4c-d). Furthermore, the simplified network was able to
identify the biologically key genes that acted as “opinion leaders”, serving as bridges connecting
different metabolic pathways. For example, in the MT network, the key gene nitrous oxide reduc-
tase (nos) bridged the carbon (Alkane, Aromatic, Complex sugar, D-AA and L-sugar) and nitrogen
metabolism (N) in Figure 4c, whereas in the ME network, the key genes of sulfate reduction (sat and
aprA) coupled the carbon and sulfur metabolism (S) (Figure 4d). Thus, ODNET could be employed
to present more discernible networks in environmental microbiome studies, and aid in comprehend-
ing key metabolic functions within microbiomes from diverse environments.

7 RELATED WORK

Neural Message Passing on Graphs and Hypergraphs Neural message passing establishes a
general computational rule for updating node representations in attributed graphs (Gilmer et al.,
2017; Battaglia et al., 2018; Hamilton, 2020). This framework has seen active extensions into con-
tinuous graph convolutions (Poli et al., 2020; Brandstetter et al., 2021; Chamberlain et al., 2021;
Liu et al., 2023; Wang et al., 2023). Notably, SINN (Okawa & Iwata, 2022) explored the possible
combination of opinion dynamics and MP with a different implementation from ours. We employed
a potential term to avoid excessive attraction or repulsion from neighbors and circumvent the over-
smoothing issue. Also, we established bounded confidence with adjustable scaling factors to balance
the attractive or repulsive forces when aggregating the neighborhood information. In parallel, Feng
et al. (2019); Gao et al. (2022) extended GCN and established a general convolution framework
employing the incidence matrix for hypergraph learning. Various techniques have also undergone
expansion, such as the attention mechanism (Bai et al., 2021), spectral theory (Yadati et al., 2019),
and node potential (Wang et al., 2022).

Collective Dynamics In classical opinion dynamics systems, a first-order formulation of infor-
mation exchange is typically employed, relying on the positions of individuals. This formulation
naturally connects with a second-order formulation consistent with Newtonian dynamics, which
finds applications in phenomena like animal flocking, cell clusters, and self-organizing particles
(Holm & Putkaradze, 2006; Carrillo et al., 2010a; Kolokolnikov et al., 2013). These scenarios fall
under the purview of collective dynamics, wherein agents move together based on attraction and
repulsion forces (D’Orsogna et al., 2006; Carrillo et al., 2010b; Motsch & Tadmor, 2014; Carrillo
& Shu, 2023). For example, the Cucker-Smale model (Cucker & Smale, 2007) extends the HK
model to a second-order formulation involving both position and velocity; Fang et al. (2019) investi-
gated bi-cluster flocking with Rayleigh friction and attractive-repulsive coupling; Jin & Shu (2021)
demonstrated a similar collective phenomenon with stochastic dynamics.

8 CONCLUSION

This study establishes intriguing connections between sociodynamics and graph neural networks,
two distinct fields that both actively investigate social networks from different perspectives. By
bridging concepts from these two fields, we introduce bounded confidence for neural message pass-
ing, a novel mechanism inspired by opinion dynamics. The proposed ODNET effectively addresses
oversmoothing issues and consistently achieves top-notch performance in node prediction tasks
across graphs with diverse local connectivity patterns. This success is attributed to the simplicity and
efficacy of our piecewise message propagation rule. Moreover, our method showcases significant
potential in simplifying complex real-world social networks, offering a fresh analytical approach
that does not rely on existing attributive classification conventions.

The robust performance of ODNET extends its applicability to simplifying intricate networks con-
taining a wealth of biological information, such as genes, gene-gene interactions, and metabolic
pathways. This method’s exceptional capacity to extract accurate insights and unveil the intrin-
sic mechanisms of cellular physiology provides invaluable support to biologists in deciphering the
mechanisms of adaptation and pathway functions in the microbial realm. These findings are signifi-
cant in understanding the interactions between Earth’s environments and the metabolism of life.
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The Appendix is structured as follows:

• Appendix A extends the diffusion process on hypergraphs and justifies the collective behaviors in
ODNET in effectively alleviating the oversmoothing issue encountered in hypergraph learning.

• Appendix B introduces benchmark datasets for node classification tasks.

• Appendix C specifies training setups for ODNET.

• Appendix D reports ablation study and additional experimental results of ODNET.

• Appendix E introduces more problem setup for the learning tasks on the co-occurrence gene net-
work.

• Appendix F supplements additional biological backgrounds for understanding the co-occurrence
network we assessed in Section 6.

A SCALE TRANSLATION OF HYPERGRAPH: DIFFUSION AND PARTICLE
DYNAMICS

In Section 4, we derived diffusion-type dynamics based on collective behaviors for hypergraphs. It
is also possible to incorporate diffusion-based models with macroscopic interpretations, which only
consider attractions between individuals or agents.

A.1 HYPERGRAPH DIFFUSION

Consider the node feature space Ω = Rd and the tangent vector field space TΩ = Rd. For x,y ∈ Ω
and x, y ∈ TΩ, where xi,j = −xj,i, we adopt the following inner products:

⟨x,y⟩ =
∑
i,j

xiyj , [x, y] =
∑
i>j

∑
e∈E

he
i,j xi,jyi,j . (12)

Here he
i,j represents a tuple related to node i, j and hyperedge e, and he

i,j = 0 if Hi,eHj,e = 0. We
set he

i,j to satisfy
∑
j

∑
e∈E

he
i,j = 1. For any u ∈ TΩ,, by the adjoint relation:

[u,∇x] = ⟨x, divu⟩ ,

where ∇x = xj − xi, we derive:

(divu)j =
∑
i

∑
e∈E

he
i,jui,j . (13)

This leads to a formal diffusion process of a hypergraph:

dxi

dt
= div∇xi =

∑
j

∑
e∈E

he
i,j(xj − xi). (14)

For simplicity, we rewrite (14) as
dx

dt
= −Lx, (15)

where L = I − (
∑
e∈E

he
i,j) is a hypergraph operator. When L is semi-positive definite (s.p.d.), we

define (14) as a diffusion-type process of a hypergraph. The different choices of he
i,j lead to diverse

diffusion-type equations. For example, when we take forward Euler discretization on (14) and use
the matrix

(
∑
e∈E

he
i,j) = D

− 1
2

v HWD−1
e HTD

− 1
2

v ,

we obtain a simplified HGNN without channel mixing.
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A.2 OVERSMOOTHING ANALYSIS ON HYPERGRAPH DIFFUSION

In the context of diffusion-type hypergraph networks, we define the Dirichlet energy of a hypergraph
H of vector field x ∈ RN×d as

E(x) :=

N∑
i,j=1

∑
e∈E

Hi,eHj,e∥xi − xj∥2. (16)

Remark 1. It’s worth noting that, on hypergraphs, the Dirichlet Energy can also be defined as
E(x) := tr(x⊤Lx) associated with the graph Laplacian L. However, for simplicity and because L
is not a deterministic matrix, we adopt a more straightforward definition as used in previous work
(Rusch et al., 2022). This simplification allows us to effectively capture the differences among node
features, making it an acceptable choice.

Furthermore, we define oversmoothing as follows:

Definition 1. Let xl denote the hidden features of the lth layer. We define oversmoothing in a
hypergraph neural network as the exponential convergence to zero of the layer-wise Dirichlet energy
as a function of l, i.e.,

E(xl) ≤ C1e
−C2l, (17)

where C1 and C2 are positive constants.

Our analysis reveals that oversmoothing is a common issue in hypergraph diffusion networks, as
|x| ≤ Ce−γt, where γ is the smallest positive eigenvalue of L. This oversmoothing arises due to the
diffusion structure, as node features x decay exponentially to zero under an s.p.d kernel L.

Connection to Particle Dynamics It is noteworthy that there is a striking similarity between (14)
and self-organized dynamics in particle systems (Motsch & Tadmor, 2014). In this context, rather
than a mere discretization of diffusion on hypergraphs, (14) represents a particle dynamics scenario
where he

i,j signifies the interactive force between nodes i, j under a specific field e. Equation (14)
corresponds to a particular case of (11) where only attractive forces influence the message evolution.
However, this assumption is not universal for particle systems, and as demonstrated in Section A.2,
it can lead to oversmoothing issues.

A.3 FINAL JUSTIFICATION

Oversmoothing has emerged as a well-recognized concern in many MP schemes, particularly when
applied to hypergraphs characterized by denser local connections than traditional graphs. Therefore,
addressing the oversmoothing issue becomes of great importance in the design of propagation rules
for hypergraph networks.

While it is conceivable to extend a GRAND-like framework (Chamberlain et al., 2021) to hyper-
graphs with macroscopic interpretations, these diffusion-type dynamics at the macro level are sus-
ceptible to oversmoothing of feature evolution, similar to traditional GNNs. Alternatively, as we
discussed in Section 4, the HK model can be interpreted as a diffusion process on graphs featuring
piecewise attraction and repulsion behaviors, as outlined in (10) and (11). When devising MP ag-
gregation rules, employing a comprehensive framework for microscopic models based on collective
behaviors within a complete interaction system proves effective in mitigating the oversmoothing
issue.

B BENCHMARK DATASETS FOR NODE CLASSIFICATION

B.1 BENCHMARK DATASETS

Graphs We consider two types of homophilic and heterophilic graphs. These categorizations are
based on the concept of homophily level introduced by Pei et al. (2020):

H =
1

|V |
∑
v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

.
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Table 4 provides an overview of the statistical information for the six homophilic graphs and three
heterophilic graphs, along with their respective homophily levels. A low homophily level indicates
that the dataset leans more towards being heterophilic, where most neighbors do not share the same
class as the central node. Conversely, a high homophily level signifies that the dataset tends towards
homophily, with similar nodes more likely to be interconnected. The datasets considered in Section 5
encompass a wide range of homophily levels to guarantee a diverse set of scenarios for evaluation.

Table 4: Summary of graph datasets used in experiments.

Dataset # classes # features # nodes # edges homophily level
Cora 7 1,433 2,708 5,429 0.83
CiteSeer 6 3,703 3,327 4,732 0.71
PubMed 3 500 19,717 44,338 0.79
CoauthorCS 15 6,805 18,333 100,227 0.80
Computer 10 767 13,381 245,778 0.77
Photo 8 745 7,487 119,043 0.83

Texas 5 1,703 183 309 0.11
Wisconsin 5 1,703 251 499 0.21
Cornell 5 1,703 183 295 0.30

Hypergraphs The hypergraph variant of ODNET undergoes an evaluation through semi-
supervised node classification tasks conducted on four benchmark hypergraphs extracted from ci-
tation networks. For co-citation networks (Cora-cocitation, CiteSeer-cocitation, and PubMed-
cocitation), documents cited by a given document are interconnected by a hyperedge. Similarly,
the co-authorship networks (Cora-coauthor) aggregates all documents co-authored by an individ-
ual into a single hyperedge. For further elaboration and in-depth details, we encourage interested
readers to refer to the work by Yadati et al. (2019).

Table 5: Summary of hypergraph datasets used in experiments.

Dataset # classes # features # hypernodes # hyperedges avg. hyperedge size
Cora-coauthor 7 1,433 2,708 1,072 4.2±4.1
Cora-cocitation 7 1,433 2,708 1,579 3.0±1.1
CiteSeer-cocitation 6 3,703 3,312 1,079 3.2±2.0
PubMed-cocitation 3 500 19,717 7,963 4.3±5.7

C TRAINING SETUP FOR ODNET

All implementations are programmed with PyTorch-Geometric (version 2.0.1) (Fey &
Lenssen, 2019) and PyTorch (version 1.7.0) and run on NVIDIA® Tesla A100 GPU with 6, 912
CUDA cores and 80GB HBM2 mounted on an HPC cluster. All the details to reproduce our results
have been included in the submission. The program will be publicly available upon acceptance.

For common hyperparameters, such as learning rate and weight decay, we used Ray Tune with a
hundred trials using an asynchronous hyperband scheduler with a grace period of 50 epochs. The
tuning space is reported in Table 6 For homophilic datasets, we use 10 random splits, with each
combination randomly selecting 20 numbers for each class. For heterophilic data, we use the original
fixed 10 split datasets. The optimal combination of hyper-parameters are reported in Table 7.

D ADDITIONAL INVESTIGATION

D.1 INFLUENCE FUNCTION

In this section, we delve into the impact of different selections of the influence function ϕ on the
performance of ODNET. This investigation encompasses various aspects, including the choice of
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Table 6: Hyperparameter Search Space

Hyperparameters Search Space Distribution

learning rate [10−6, 10−1] log-uniform
weight decay [10−3, 10−1] log-uniform
dropout rate [0.1, 0.8] uniform
hidden dim {64, 128, 256} categorical
β [0, 1] uniform

Table 7: Optimal setting of hyperparameters in reproducing the results in Section 5.

Dataset ϵ1 ϵ2 time (T) ν µ

Cora 0.012 0.40 12 0 1.4
CiteSeer 0.01 0.90 10 0 3.0
PubMed 0.01 0.40 20 0 2.2

CoauthorCS 0.01 0.40 15 0 1.7
Computer 0.01 0.50 15 0 5.0

Photo 0.01 0.40 12 0 10.0

Texas 0.50 0.80 12 -50 1.0
Wisconsin 0.60 0.80 12 -10 2.0

Cornell 0.12 0.40 12 0 2.0

Cora-coauthor 0 1 0.1 1.0 1.0
Cora-cocitation 0 1 0.1 1.0 1.0

PubMed-cocitation 0 1 0.1 1.0 1.0
CiteSeer-cocitation 0 1 0.1 1.5 1.0

Table 8: Choices of influence function and scaling factors for Cora.

ϵ1 ϵ2 µ ν Accuracy
0.04 0.45 1.4 0 79.6±0.3

0.012 0.40 2.0 0 80.2±0.3
0.03 0.45 1.4 0 81.0±0.2
0.02 0.45 1.4 0 81.8±0.2

0.012 0.20 1.4 0 82.3±0.2
0.012 0.40 1.4 -1 83.7±0.4
0.012 0.40 1.8 0 83.9±0.2
0.012 0.40 1.6 0 84.1±0.3
0.012 0.30 1.4 0 84.2±0.3
0.012 0.40 1.0 0 85.0±0.3
0.012 0.40 1.2 0 85.0±0.3
0.012 0.40 1.4 0 85.7±0.3
0.012 0.40 1.4 0 85.7±0.3
0.012 0.40 1.4 0 85.7±0.3
0.012 0.45 1.4 0 85.7±0.3

scaling factors (µ and ν) and the definition of the similarity cutoffs (ϵ1 and ϵ2). Our findings are
meticulously detailed in Table 8 and Table 9, with a particular focus on the homophilic graph (Cora)
and the heterophilic graph (Texas), respectively. An interesting trend emerges concerning the pa-
rameter ν, indicating a clear preference. Specifically, it is advisable to incorporate a repulsive effect
on heterophilic graphs by assigning a negative value to ν. Conversely, for homophilic graphs, where
similarity plays a pivotal role, setting ν = 0 is more appropriate.

To provide a direct comparison, Figure 5 showcases ODNET’s performance under different simi-
larity cutoffs, i.e., ϵ1 and ϵ2. For Cora, we maintain µ = 1.4 and ν = 0, while for Texas, we set
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Table 9: Choices of influence function and scaling factors for Texas.

ϵ1 ϵ2 µ ν Accuracy
0.50 0.80 2.0 -1000 73.0±10.1
0.50 0.80 1000.0 -50 78.2±8.4
0.50 0.80 2.0 -100 78.8±7.2
0.50 0.80 2.0 0 78.8±1.6
0.50 0.80 100.0 -50 80.5±4.2
0.50 0.60 1.0 -50 81.0±3.0
0.70 0.80 1.0 -50 81.1±4.2
0.50 0.80 2.0 -80 81.6±3.4
0.50 0.80 2.0 -1 81.6±2.0
0.60 0.80 1.0 -50 86.5±3.5
0.50 0.90 1.0 -50 86.5±3.0
0.50 0.70 1.0 -50 87.0±3.4
0.50 0.80 2.0 -10 86.7±3.2
0.40 0.80 1.0 -50 87.0±3.0
0.50 0.80 2.0 -50 87.6±4.0
0.50 0.80 2.0 -50 87.6±4.0
0.50 0.80 10.0 -50 88.1±4.2
0.50 0.80 1.0 -50 88.3±3.2
0.50 0.80 1.0 -50 88.3±3.2
0.50 0.80 1.0 -50 88.3±3.2

Figure 5: The impact of different ϵ1 and ϵ2 on ODNET.

µ = 1.0 and ν = −50. Generally, in the context of homophilic graphs, setting a relatively small
value for ϵ2 tends to expand the region of nodes considered similar. This approach may be beneficial
in mitigating the oversmoothing issue. Conversely, for heterophilic graphs, it is advisable to reverse
information from only highly similar nodes, reflected in the choice of a larger ϵ2 value (up to 0.8).
However, it is crucial to exercise caution when pushing ϵ2 towards 1.0, as a discernible reduction in
performance becomes evident.

D.2 NEURAL ODE SOLVERS

The Dormand–Prince adaptive step size scheme (DOPRI5) served as the neural ODE solver for
ODNET. Additionally, we evaluated the performance of two other solvers across various datasets:
the Runge-Kutta method (rk4) and the first-order Euler scheme (Euler). The outcomes are presented
in Figure 6. Although different solvers did not consistently demonstrate a significant and sustained
advantage of one over the others, our selection of DOPRI5 yielded the overall best results.

18



Under review as a conference paper at ICLR 2024

Figure 6: Prediction performance with different neural ODE solvers.

D.3 EMBEDDING DYNAMICS

We employ the t-SNE algorithm to visualize the embedded features in a two-dimensional plane for
the Texas dataset. We choose the output embeddings from the last layer at epochs 1, 10, and 50. As
shown in Figure 7, an evident clustering trend becomes apparent as the number of training epochs
increases. By the 50th epoch, nodes with different labels are distinctly separable even in the reduced
two-dimensional space.

Figure 7: t-SNE visualization on node embeddings for Texas at epoch=1, 10, 50.

E EXPERIMENTAL DETAILS FOR THE CO-OCCURRENCE NETWORK
SIMPLIFICATION TASK

Figure 8: Distribution of node degree on ME and MT networks.

We established two distinct graphs for the Mariana Trench (MT) and Mount Everest (ME) gene
co-occurrence networks, utilizing source data from Liu et al. (2022). In both networks, the nodes
represent the same set of functional genes. The primary difference between them lies in the edge
weights, which reflect unique co-occurrence patterns of gene pairs in MT and ME. This distinction
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Figure 9: Distribution of edge weights on ME and MT networks.

is visually evident when comparing the top two histograms in Figure 9, illustrating the varying
distributions of gene influence weights in MT and ME graphs.

To construct these graphs, we connected all node pairs with non-zero edge weights, resulting in a
total of 2, 517 edges for 96 nodes. Each node was associated with a 20-dimensional unit vector as
pseudo-features. Additionally, we assigned a three-class categorical label to each node, categorizing
them as ‘strong,’ ‘medium,’ or ‘weak’ influencers within their respective local communities. The la-
bel assignment was determined based on the nodes’ degrees with cutoffs at 20 and 60. For example,
a node with a degree of 30 would be classified as a ’medium influencer.’

To facilitate model training, we applied random masking to the training, validation, and test sets, en-
suring equal proportions in each set. During the training process, we recorded the learned similarity
scores sij at the final layer for later use in generating the simplified network.

Figure 9 highlights a noticeable divergence between the top two histograms (representing the weight
distributions in the original networks) and the bottom two histograms (depicting the weight distri-
butions in the simplified networks). Specifically, a higher concentration of weights is observed at
the extreme regions (with weights close to 0 and 1) in the simplified networks. This divergence
underscores the impact of our simplification approach on the network’s edge weight distribution.

F ADDITIONAL BACKGROUND: CO-OCCURRENCE NETWORK OF
METABOLIC GENES

The co-occurrence network of metabolic genes is a graph representation that illustrates the statistical
associations and co-occurrence patterns among various metabolic genes within a biological system
(Bello et al., 2020). This network emerges from computational analyses of extensive genomic data,
with each node denoting metabolic genes linked to distinct biochemical functions, such as sugar
production and TMAO (trimethylamine N-oxide) synthesis. These connections are quantified by the
likelihood of two crucial functional genes co-occurring within the same species at a given time (Liu
et al., 2022). Due to the complexity of the co-occurrence network of metabolic genes in different
microorganism species, which arise from a large number of genes and connections, simplifying
the network enables us to identify how key metabolic genes in microorganisms can be gathered
into several interdependent modules. This is significantly important for revealing the mechanism of
how genes work together within metabolic pathways, how they respond to different environmental
conditions, and which genes may have essential roles in specific biological processes, highlighting
the significance of the adaptation of microorganisms to changing environmental conditions (Levy &
Borenstein, 2013).
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