
A PROOFS FOR SECTION 3

In this section, we provide the proofs for Section 3 in the following order. We first prove the gradient
of the empirical Gibbs loss in Theorem 2. Then, we show in Proposition 5 that for meaningful
posteriors (depends on training data), the gradient won’t be zero. Before proving Proposition 3 and
Theorem 4, we first provide Proposition 6, stating an alternative expression of the gradient of the
Bayes loss. The proofs of Proposition 3 and Theorem 4 then follow from that.

A.1 PROOF OF THEOREM 2

We first show a slightly more general result of r�Ep� [f(✓)] for any function f(✓) that is independent
of �. Recall that the posterior p�(✓|D) / p(D|✓)�p(✓). With the fact that r�

�
p(D|✓)�p(✓)

�
=

ln(p(D|✓))p(D|✓)�p(✓), the gradient

r�Ep� [f(✓)] = Ep� [ln p(D|✓)f(✓)]� Ep� [ln p(D|✓)]Ep� [f(✓)] = COVp�(ln p(D|✓), f(✓)) ,
(14)

where we denote COV(X,Y) as the covariance of X and Y . Hence, the gradient of the empirical
Gibbs loss

r�Ĝ(p�, D) = r�Ep� [� ln p(D|✓)] = COVp�(ln p(D|✓),� ln p(D|✓)) = �Vp�(ln p(D|✓)) .

A.2 PROPOSITION 5

Proposition 5. For any � > 0 and D 6= ;, if the tempered posterior p�(✓|D) / p(D|✓)�p(✓)
satisfies Vp�(lnP (D|✓)) = 0, then, p�(✓|D) = p(✓).

Proof. First of all, note that the tempered posterior is defined as

p�(✓|D) =
p(D|✓)�p(✓)R
✓ p(D|✓)�p(✓)

. (15)

Then,

Vp�(ln p(D|✓)) = 0 =)
Z

✓
p�(✓|D)

�
ln p(D|✓)� Ep� [ln p(D|✓)]

�2
= 0

Thus, for any ✓ 2 supp(p�), it verifies that

ln p(D|✓) = Ep� [ln p(D|✓)] .

That is, ln p(D|✓) is constant in the support of p�. Let c denote such constant, then

p�(✓|D) =
ec�p(✓)R
✓ e

c�p(✓)
=

ec�p(✓)

ec�
R
✓ p(✓)

= p(✓) .

A.3 PROOF OF PROPOSITION 3 AND THEOREM 4

In order to prove Proposition 3 and Theorem 4, we first show in Proposition 6 that the gradient of the
Bayes loss of the tempered posterior p� can be expressed by the difference between the empirical
Gibbs loss of p̄� and the empirical Gibbs loss of p�.
Proposition 6. The gradient of the Bayes loss of the tempered posterior p� can be expressed by

r�B(p�) = Ĝ(p̄�, D)� Ĝ(p�, D) . (16)

Proof. By definition,

r�B(p�) = r�E⌫

⇥
� lnEp� [p(y|x,✓)]

⇤
= �E⌫

⇥
r� lnEp� [p(y|x,✓)]

⇤
,

where

r� lnEp� [p(y|x,✓)] =
r�Ep� [p(y|x,✓)]
Ep� [p(y|x,✓)]

=
COVp�(ln p(D|✓), p(y|x,✓))

Ep� [p(y|x,✓)]

12

due to Equation (14). By expanding the covariance, the above formula further equals to

Ep� [ln p(D|✓)p(y|x,✓)]� Ep� [ln p(D|✓)]Ep� [p(y|x,✓)]
Ep� [p(y|x,✓)]

= Ep̃� [ln p(D|✓)]� Ep� [ln p(D|✓)] ,

where the probability distribution p̃�(✓|D, (y,x)) / p�(✓|D)p(y|x,✓). Put everything together,
we have

r�B(p�) = Ep� [ln p(D|✓)]� E⌫Ep̃� [ln p(D|✓)] = Ep� [ln p(D|✓)]� Ep̄� [ln p(D|✓)] , (17)

where

p̄�(✓|D) = E⌫ [p̃
�
(✓|D, (y,x))] = E⌫


p�(✓|D)p(y|x,✓)
Ep� [p(y|x,✓)]

�
.

The last equality is because

E⌫Ep̃� [ln p(D|✓)] =
Z

(y,x)
⌫(y,x)

Z

✓
p̃�(✓|D, (y,x)) ln p(D|✓)d✓d(y,x)

=

Z

✓

 Z

(y,x)
⌫(y,x)p̃�(✓|D, (y,x))d(y,x)

!
ln p(D|✓)d✓

=

Z

✓
E⌫ [p̃

�
(✓|D, (y,x))] ln p(D|✓)d✓

= Ep̄� [ln p(D|✓)] .

The last expression in Equation (17) further equals to Ĝ(p̄�, D)� Ĝ(p�, D) by definition.

A.3.1 PROOF OF PROPOSITION 3

Note that for any distribution ⇢, we have Ĝ(⇢, D) := E⇢ [� ln p(D|✓)] � min✓ � ln p(D|✓). On the
other hand, Proposition 6 together with Definition 1 give that the CPE takes place if and only if

r�B(p�)|�=1 = Ĝ(p̄�=1, D)� Ĝ(p�=1, D) < 0 .

Therefore, it is not possible to have Ĝ(p�=1, D) 6> min✓ � ln p(D|✓) and, at the same time,
Ĝ(p̄�=1, D) < Ĝ(p�=1, D) because Ĝ(p̄�=1, D) � min✓ � ln p(D|✓).

A.3.2 PROOF OF THEOREM 4

It’s easy to see from Proposition 6 that

r�B(p�)|�=1 = Ĝ(p̄�=1, D)� Ĝ(p�=1, D) = 0

if and only if Ĝ(p̄�=1, D) = Ĝ(p�=1, D).

B PROOFS FOR SECTION 5

B.1 PROOF OF EQ. (9)

Note that

r�G(p�) = r�Ep� [L(✓)] = COVp�(ln p(D|✓), L(✓)) = COVp�(�L̂(D,✓), L(✓)),

where the second equality is by applying Equation (14). By taking � = 1, we obtain the desired
gradient.

13

B.2 PROOF OF EQ. (11)

Recall from the proof of Theorem 6 that

r�B(p�) = Ep� [ln p(D|✓)]� Ep̄� [ln p(D|✓)] = Ep̄� [L̂(D,✓)]� Ep� [L̂(D,✓)],

where p̄�(✓|D) = E⌫

⇥
p̃�(✓|D, (y,x))

⇤
(Equation (6)), and p̃�(✓|D, (y,x)) / p�(✓|D)p(y|x,✓)

is the distribution obtained by updating the posterior p� with one new sample (y,x).

Therefore,

Ep̄� [L̂(D,✓)] = E⌫Ep̃� [L̂(D,✓)] = E⌫


Ep�


p(y|x,✓)

Ep� [p(y|x,✓)]
L̂(D,✓)

��
.

By Fubini’s theorem, the above formula further equals to

Ep�


E⌫


p(y|x,✓)

Ep� [p(y|x,✓)]
L̂(D,✓)

��
= Ep�


E⌫


p(y|x,✓)

Ep� [p(y|x,✓)]

�
L̂(D,✓)

�
= Ep�

h
�Sp�(✓) · L̂(D,✓)

i
.

On the other hand, since

Ep� [�Sp�(✓)] = Ep�


E⌫


p(y|x,✓)

Ep� [p(y|x,✓)]

��
= E⌫


Ep�


p(y|x,✓)

Ep� [p(y|x,✓)]

��
= 1 ,

we have
Ep� [L̂(D,✓)] = Ep� [L̂(D,✓)]Ep� [�Sp�(✓)] .

By putting them altogether,

r�B(p�) = Ep�

h
�Sp�(✓) · L̂(D,✓)

i
�Ep� [L̂(D,✓)]Ep� [�Sp�(✓)] = �COV

⇣
L̂(D,✓), Sp�(✓)

⌘
.

C EXPERIMENT DETAILS

Our experimental results can be divided into two parts. In Appendix C.1, we detail the settings of the
toy experiment using synthetic data and exact Bayesian linear regression in Figure 1. We also show
extra results of the gradients of Gibbs loss and Bayes loss w.r.t to � approximated by samples. In
Appendix C.2, we introduce the settings of the Bayesian CNN (LeCun et al., 1998) experiments on
MNIST (LeCun and Cortes, 2010), as well as extra results of the Bayesian CNN on Fashion-MNIST
(Xiao et al., 2017), and Bayesian ResNets (He et al., 2016) on CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). Particularly, stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011) is used
for inference. At the end, we also show extra results of mean-field variational inference (MFVI) (Blei
et al., 2017) on MNIST.

C.1 BAYESIAN LINEAR REGRESSION ON SYNTHETIC DATA WITH EXACT INFERENCE

To begin, we will outline the data-generating process for the synthetic data used in the experiment. We
sample x uniformly from the [�1, 1] interval and pass it through a Fourier transformation to construct
the input of the data. That is, for a sampled x, the input x is constructed by a 10-dimensional Fourier
basis function �(x) = [g1(x), ..., gK(x)]T for K = 10, where the basis functions are defined as

follows: g1(x) =
1p
2⇡

, and for other odd values of k, gk(x) =
1p
⇡
sin (kx), whereas for even

values of k, gk(x) =
1p
⇡
cos (kx). The distribution of the output y 2 R given an input x, denoted

as ⌫(y|x), follows a Normal distribution with mean 1Tx and variance 1.0, where 1 is an all-ones
vector. That is, ⌫(y|x) = N (1Tx, 1.0).

In our experiment, the likelihood model and the prior model are defined differently for the four
settings in Figure 1. To enable exact inference, both the likelihood and the prior are Gaussian, which
gives a closed-form solution for the posterior predictive. This choice also provides convenience when
studying the CPE: different values of � on the likelihood term can be naturally absorbed into the
Gaussian densities by adjusting the variance (dividing by �) without hindering the exact inference
step. We describe them in detail in the following.

14

1. No misspecification: likelihood p(y|x,✓) = N (✓Tx, 1.0), prior p(✓) = N (0, 2). This is
the baseline for comparison.

2. Misspecified likelihood I: likelihood p(y|x,✓) = N (✓Tx, 0.15) (the order of Fourier
transformation is K = 20, however note that it still contains the K = 5 data-generating
process in its solution space), prior p(✓) = N (0, 2). In this case, the model is misspecified
in a way that it has a smaller variance than the data-generating process.

3. Misspecified likelihood II: likelihood p(y|x,✓) = N (✓Tx, 3.0), prior p(✓) = N (0, 2.0).
In this case, the model is misspecified in a way that it has a larger variance than the data-
generating process. This is similar to one of the scenarios where CPE was found: the curated
data has a lower aleatoric uncertainty than the model (Aitchison, 2021).

4. Misspecified prior: likelihood p(y|x,✓) = N (✓Tx, 1.0), prior p(✓) = N (0, 0.5). The
prior is poorly specified in a way that it is tightly centered at 0 while the best ✓ should be 1.

In all the experiments, every training set consists of only 5 samples. Since there are more parameters
than the number of training data points, our setting falls within the “overparameterized” regime where
CPE has been observed in Bayesian deep learning (Wenzel et al., 2020).

Continuing from Figure 1, where we show the Gibbs loss Ĝ(⇢, D) (training) and the Bayes loss B(p�)
(testing) with respect to �, we now show their derivatives r�Ĝ(⇢, D) (Eq. (5)) and r�B(p�) (Eq.
(16)) respectively in Figure 4. Here the losses are included for a clearer depiction of the derivatives.
To approximate the Bayes loss for generating the plot, we use 10000 data points sampled from the
data-generating distribution. Also, the derivatives are approximated using 10000 samples from the
exact posteriors. From Figure 4, we could clearly see that the derivatives perfectly characterize the
losses in all four settings.

(a) No misspecification (b) Misspecified likelihood I (c) Misspecified likelihood II (d) Misspecified prior

Figure 4: The derivatives r�Ĝ(⇢, D) (Eq. (5)) and r�B(p�) (Eq. (16)) characterize the Gibbs loss
Ĝ(⇢, D) and the Bayes loss B(p�) perfectly.

C.2 BAYESIAN NEURAL NETWORKS ON IMAGE DATA WITH APPROXIMATE INFERENCE

Briefly speaking, our experiments are divided into 4 groups:

1. Bayesian CNNs (large and small) on MNIST (in the main text)
2. Bayesian CNNs (large and small) on Fashion-MNIST
3. Bayesian ResNets (18 and 50) on CIFAR-10
4. Bayesian ResNets (18 and 50) on CIFAR-100

where each group compares a larger model and a smaller model to evaluate the effect of underfitting.
Most of the results use stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011) for
inference, but we also provide additional results with mean-field variational inference (MFVI) (Blei

15

et al., 2017) later in Appendix C.2.2. We observe that the results of MFVI align with the ones with
SGLD.

The large CNN we use has a similar architecture to LeNet-5, but with a much larger number of
parameters. These are the details of the architecture:

1. Convolutional layer with 6 output channels, kernel size of 5 and ReLU activation.
2. MaxPooling layer of kernel size 2 and stride 2.
3. Convolutional layer with 16 output channels, kernel size of 5 and ReLU activation.
4. MaxPooling layer of kernel size 2 and stride 2.
5. Convolutional layer with 120 output channels, kernel size of 5 and ReLU activation.
6. Dense layer with output dimension of 84 and ReLU activation.
7. Dense layer with output dimension of 10 (the number of classes).

In all the convolutional layers, no stride = 1 and padding is set to same. This model uses a total
of 545546 parameters. The small CNN has a similar architecture with a total number of 107786
parameters. In the meanwhile, we do not show the architectures of ResNet-18 and ResNet-50 as they
are very common. They have around 11 million and 23 million parameters.

C.2.1 STOCHASTIC GRADIENT LANGEVIN DYNAMICS (SGLD)

We use PyTorch (Paszke et al., 2019) for the experiments with SGLD. We train the model using
cyclical learning rate SGLD (cSGLD) (Zhang et al., 2019) for 1000 epochs. We set the learning rate
to 1e-6 with a momentum term of 0.99. We run cSGLD for 10 trials and collect 10 samples for each
trial, respectively. Experiments were performed on NVIDIA A100 GPU, where 1 trial took around
30 hours.

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 5: Experimental illustrations for the arguments in Sections 4 and 5 using small CNN via SGLD on
Fashion-MNIST. Figures 5a to 5c illustrate the arguments in Section 4, while Figures 5c to 5e illustrate the
arguments in Section 5. Figure 5c uses the standard prior (� = 1) and the standard softmax (� = 1) for the
likelihood without applying DA. Figure 5a follows a similar setup except for using a narrow prior. Figure 5b uses
a narrow prior as in Figure 5a but with a tempered softmax that results in a lower aleatoric uncertainty. Figure
5d follows the setup as in Figure 5c but with standard DA methods applied, while Figure 5e uses fabricated DA.
We report the training loss Ĝ(p�, D) and the testing losses B(p�) and G(p�) from 10 samples of the small
Convolutional neural network (CNN) via Stochastic Gradient Langevin Dynamics (SGLD). We show the mean
and standard deviation across three different seeds. For additional experimental details, refer to Appendix C.

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 6: Experimental illustrations for the arguments in Sections 4 and 5 using large CNN via SGLD on
Fashion-MNIST. The experiment setup is similar to the setups in Figure 5 but with a large CNN. Please refer to
Appendix C for further details on the model.

16

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 7: Experimental illustrations for the arguments in Sections 4 and 5 using ResNet-18 via SGLD on
CIFAR-10. Figures 7a to 7c illustrate the arguments in Section 4, while Figures 7c to 7e illustrate the arguments
in Section 5. Figure 7c uses the standard prior (� = 1) and the standard softmax (� = 1) for the likelihood
without applying DA. Figure 7a follows a similar setup except for using a narrow prior. Figure 7b uses a narrow
prior as in Figure 7a but with a tempered softmax that results in a lower aleatoric uncertainty. Figure 7d follows
the setup as in Figure 7c but with standard DA methods applied, while Figure 7e uses fabricated DA. We report
the training loss Ĝ(p�, D) and the testing losses B(p�) and G(p�) from 10 samples of ResNet-18 via Stochastic
Gradient Langevin Dynamics (SGLD). We show the mean and standard deviation across three different seeds.

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 8: Experimental illustrations for the arguments in Sections 4 and 5 using ResNet-50 via SGLD on
CIFAR-10. The experiment setup is similar to the setups in Figure 7 but with ResNet-50.

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 9: Experimental illustrations for the arguments in Sections 4 and 5 using ResNet-18 via SGLD
on CIFAR-100. Figures 9a to 9c illustrate the arguments in Section 4, while Figures 9c to 9e illustrate the
arguments in Section 5. Figure 9c uses the standard prior (� = 1) and the standard softmax (� = 1) for the
likelihood without applying DA. Figure 9a follows a similar setup except for using a narrow prior. Figure 9b uses
a narrow prior as in Figure 9a but with a tempered softmax that results in a lower aleatoric uncertainty. Figure
9d follows the setup as in Figure 9c but with standard DA methods applied, while Figure 9e uses fabricated DA.
We report the training loss Ĝ(p�, D) and the testing losses B(p�) and G(p�) from 10 samples of ResNet-18
via Stochastic Gradient Langevin Dynamics (SGLD). We show the mean and standard deviation across three
different seeds. For additional experimental details, please refer to Appendix C.

(a) Narrow prior and
standard softmax

(b) Narrow prior and
tempered softmax

(c) Standard prior and
standard softmax

(d) Random crop and
horizontal flip

(e) Pixels randomly
shuffled

Figure 10: Experimental illustrations for the arguments in Sections 4 and 5 using ResNet-50 via SGLD on
CIFAR-100. The experiment setup is similar to the setups in Figure 9 but with ResNet-50.

17

C.2.2 MEAN-FIELD VARIATIONAL INFERENCE (MFVI)

Experimental Settings: These experiments were run using Tensorflow (Abadi et al., 2015),
Tensorflow Probability (Dillon et al., 2017) and Keras (Chollet et al., 2015). By default, we use
zero-center Normal distributions, N (0,�), as priors with different standard deviations, i.e., � values.
For the variational approximation, we use fully factorized Normal distributions, where both the mean
and the standard deviation of each of them were the parameters to be learned by the variational
algorithm. Although using an over-simplified family to approximate the true posterior, MFVI seems
to achieve competitive results (Zhang and Nalisnick, 2021) compared to SGLD.

The convolutional neural network used for this experiment is a variational implementation of the
network described above. This variational model uses a total of 1091092 parameters, double the
number of parameters of the original model.

We use an Adam optimizer with a default learning rate 0.001, batch size = 100, and run during 100
epochs, which in our case, is enough to achieve convergence. The Keras global seed was set to 15.
Other seeds were set, but similar results were obtained. Experiments were performed on Google
Colab on a NVIDIA T4 GPU. The computation time was in the order of a few hours.

Prior Misspecification, Likelihood Misspecification and the CPE:
We run a similar experiment to the one reported in Figure 3 but using MFVI (Blei et al., 2017) as
an approximate inference technique. The results of this experiment are reported in Figure 11. The
conclusions are completely similar to the ones already discussed in Section 4.

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
����	���	�
����	���

���	�

(a) Baseline: "narrow" prior + standard soft-
max likelihood

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
����	���	��
����	���

���	�

(b) "Narrow" prior + tempered softmax
likelihood

��
 	�� 	�

��
�
 ��� ��

	

���

��	

��

���

���

��

���

��
�

������
�	�����	�
����	���

���	�

(c) Standard prior + standard softmax likeli-
hood

Figure 11: CPE can be mitigated by a less misspecified model (Figure 11b) or imposing a less regularizing
prior (Figure 11c). We plot the training loss Ĝ(p�, D) and the testing loss B(p�) with different priors and
likelihood models. The parameter � is the standard deviation of the isotropic Gaussian prior centered at zero,
while the parameter � serves as a smoothing parameter on the logits. All metrics are approximated using 10
samples drawn from the MFVI posterior.

Data Augmentation (DA) and the CPE:
As in the previous case, we ran a similar experiment to the one reported in Figure 3 but using MFVI
(Blei et al., 2017) as an approximate inference technique. The results of this experiment are reported
in Figure 12. The conclusions are very similar to the ones already discussed in Section 5.

��� 	�� 	��
��
�� ��� ���
�

����

����

��	�

��	�

��
�

�

��������
�����
�����

(a) No augmentation

��� 	�� 	��
��
�� ��� ���
�

����

����

��	�

��	�

��
�

�

��������
�����
�����

(b) Random crop and horizontal flip

��
 	�� 	�

��
�
 ��� ��

�

�

�

��
�

��������
�����
�����

(c) Pixels randomly shuffled

Figure 12: CPE only occurs with “meaningful” augmentation (Figure 12b). We plot the training loss
Ĝ(p�, D) and the testing losses B(p�) and G(p�) with different augmentation methods. While Figure 11
shows no augmentation, Figure 12b and 12c show standard augmentation and an artificially designed “harmful”
augmentation, where the pixels are shuffled randomly. All metrics are approximated using 10 samples drawn
from the MFVI posterior.

18

	Introduction
	Background
	Notation
	(Generalized) Bayesian Learning

	The presence of the CPE implies underfitting
	Prior Misspecification, Likelihood Misspecification and the CPE
	Data Augmentation (DA) and the CPE
	Data Augmentation and CPE on the Gibbs loss
	Data Augmentation and CPE on the Bayes loss

	Conclusions
	Proofs for Section 3
	Proof of Theorem 2
	Proposition 5
	Proof of Proposition 3 and Theorem 4
	Proof of Proposition 3
	Proof of Theorem 4

	Proofs for Section 5
	Proof of Eq. (9)
	Proof of Eq. (11)

	Experiment Details
	Bayesian Linear Regression on Synthetic Data with Exact Inference
	Bayesian Neural Networks on Image Data with Approximate Inference
	Stochastic Gradient Langevin Dynamics (SGLD)
	Mean-Field Variational Inference (MFVI)

