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ABSTRACT

Neural networks and neural ODEs tend to be vulnerable to adversarial attacks,
rendering robust optimizers critical to curb the success of such attacks. In this
regard, the key insight of this work is to interpret Neural ODE optimization as a
min-max optimal control problem. More particularly, we present Game Theoretic
Second-Order Neural Optimizer (GTSONO), a robust game theoretic optimizer
based on the principles of min-max Differential Dynamic Programming. The
proposed method exhibits significant computational benefits due to efficient ma-
trix decompositions and provides convergence guarantees to local saddle points.
Empirically, the robustness of the proposed optimizer is demonstrated through
greater robust accuracy compared to benchmark optimizers when trained on clean
images. Additionally, its ability to provide a performance increase when adapted
to an already existing adversarial defense technique is also illustrated. Finally,
the superiority of the proposed update law over its gradient based counterpart
highlights the potential benefits of incorporating robust optimal control paradigms
into adversarial training methods.

1 INTRODUCTION

Despite the remarkable performance achieved by deep learning based models on diverse challenges
from image classification to speech recognition, recent findings indicate that deep neural networks
tend to be fragile to adversarial examples(Liu et al. (2020)). This problem of generating adversarial
examples and conversely training models that are not easily misguided by these samples has gathered
significant attention (Carrara et al. (2019)). However, the development of robust models has been
proven to be more challenging (Tsipras et al. (2018)), rendering adversarial robustness a central
object of study in machine learning (Carlini et al. (2019)). This study has led to significant advance
in understanding the generalization and interpretability behind the learning capacity of these models
(Huang et al. (2022)). Traditionally, the most widely used approach to building adversarially robust
models has been adversarial training in which the classifier is trained on both adversarial and clean
samples aiming to generalize well in both instances(Madry et al. (2017); Wong & Kolter (2018);
Raghunathan et al. (2018); Goodfellow et al. (2014)). The goal of adversarial training is to find the
saddle point that solves the following optimization problem

min
θ

E
[
max
δ∈S
L(x+ δ,y; θ)

]
(1)

where x ∈ Rm is the state vector and u ∈ Rn is the control, the perturbation term δ is bounded by
sup ||δ||2 ≤ β2 and belongs to set S, which is the set of admissible perturbations, and L(x+ δ, θ) is
the definition of the loss function. Although adversarial training is effective, there are some drawbacks
such as the considerable increase in the training time.

In the work by Poznyak et al. (2023), it was suggested that a min-max robust control can be viewed
as a neural dynamic programming approach using continuous differential neural networks. In this
work, the peturbations δ were recasted, yielding the same Hamilton Jacobi Bellman equation as in the
case of the game theoretic Differential Dynamic Programming (DDP) (Jacobson & Mayne (1970);
Sun et al. (2018)).

In the realm of Optimal Control (OC), it has been demonstrated that game-theoretic formulation
enables the model handling uncertainties and external disturbances Sun et al. (2015). This algorithm
has been successfully tested in real-life robotic applications, coming up up with robust control policies
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for robotic systems operating under unknown external disturbances Sun et al. (2018), Morimoto et al.
(2003). This paves the way to draw connections between adversarial defense methods and robust
optimal control and design principled algorithms that demonstrate the capacity to handle disturbances.

In this work, drawing inspiration by the connection of training Neural Networks and continuous
time OCP Liu et al. (2021a;b), we introduce a novel second order Game Theoretic Neural Optimizer,
by recasting the training of Neural ODEs as trajectory optimization problem through this Min-
Max OCP paradigm. Our approach differs considerably from conventional min-max methods for
adversarial learning. While most min-max adversarial training methods consider the adversary input,
our proposed method instead consider the disturbance being injected through the antagonizing control.
The resulting framework, called GTSONO, is designed based on the continuous time Min-Max DDP
algorithm engendering a innately robust Neural Optimizer. This optimizer is capable of handling
uncertainties and finding a control policy or equivalently a weight configuration that robustifies the
network and enables it to resist adversarial attacks. Our analysis provides theoretic guarantees that
our algorithm converges to a saddle point, and our experiments empirically verify that our algorithm
converges to a saddle point even when trained with clean images, which is translated to an increased
robustness of our model against adversarial attacks, even with natural training. Our contribution can
be summarized in the following points:

• We propose a novel game theoretic optimizer for training robust neural ODEs based on the
principles of min-max , reformulating the input adversary as the antagonizing control to
model system disturbances. An efficient computational framework is presented based on
decomposing matrices into vectors, which can be easily obtain through solving the ODE.

• We illustrate that the proposed optimizer is guaranteed to converge to stable local saddle
points under mild assumptions.

• We empirically showcase that GTSONO increases the robustness and generates more
confident predictions compared to benchmark optimizers on natural training.

• We demonstrate that GTSONO is successfully adapted to already existing adversarial
training methods, enhancing their robustness. The second order convergence nature of
min-max DDP enables our optimizer to converge in fewer epochs, and lower wall-clock
time, which highlights its computational efficiency.

2 RELATED WORKS

In order to view the landscape of the pertinent literature, we review the advancements in both fronts.

Adversarial Attacks. A number of adversarial attack methods have been developed, such as
optimization based (Szegedy et al. (2013)), gradient-based (Moosavi-Dezfooli et al., 2016; Xie et al.,
2019; Dong et al., 2018), and attacks from Generative Networks (Baluja & Fischer, 2017; Zhao
et al., 2017). Traditionally, the most famous gradient based methods are the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014) and the Projected Gradient Descent (PGD) (Madry et al.,
2017). The ℓ∞ PGD attack is used to undermine the estimations and predictions of machine learning
models, by iteratively perturbing input data in the direction of the gradient, while constraining the
perturbations to stay within a predefined projection set determined by parameter ϵ. Conversely, FGSM
is a more efficient gradient based attack, which operates by taking a single step in the direction of
the gradient of the loss function with respect to the input. Therefore, the attack efficiency of FGSM
is higher at the expense of its success rate, compared to the iterative PGD. Compared with other
algorithms, network-generated adversarial examples have been observed to be deceptive, however
their efficiency is deemed low, since they require multiple rounds of iterations for the optimal solution
(Liang et al., 2022). Optimization based attacks i.e. Carlini & Wagner (CW; Carlini & Wagner (2017))
have been found to be more effective to certain defensive schemes, such as defensive distillation
(Liang et al., 2022) and masking (Huang et al., 2022).

Adversarial Defense. In order to deal with the threat of adversarial attacks, on the one hand,
researchers try to improve the model’s resistance to these attacks, developing numerous defense
methods, so that the model can make correct predictions on adversarial samples (Wang et al.,
2022). Examples of such defense methods are defensive distillation (Papernot et al., 2016), gradient
regularization (Papernot et al., 2017; Ross & Doshi-Velez, 2018), and adversarial training (Tramèr
et al., 2017; Zhang et al., 2019a; Zheng et al., 2020), which is traditionally the most successful.
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Most notably, this technique attempts to improve the robustness of a neural network by training it
with adversarial samples, i.e., generated by FGSM or PGD. However, the issue with this defense
mechanism is the computational overhead. To speed up and solve this problem, Adversarial Training
for Free (FreeAT) (Shafahi et al., 2019) was proposed.

Recently more methods have been developed such as masking and denoising. In fact, many attack
methods rely on the gradient information of the victim model. In gradient masking/obfuscation
defense methods try to defend by hiding the gradient information (Naseer et al., 2019). Moreover,
Huang et al. claimed that adaptive stepsize numerical ODE solver, such as DOPRI5, has a gradient
masking effect that fails the PGD attacks which are dependent on gradient information. This implies
that continuous neural models possess innate robustness compared to discrete neural networks.
However, this method cannot fool gradient-free attacks such as CW and SPSA. On the other hand,
since the generation of adversarial examples takes place by adding specific noise; image denoising is
another technique to enable the models to resist adversarial attacks. Ordinary denoisers suffer from
low performance due to error amplification effect. In this regard, Liao et al. proposed a high-level
representation guided denoiser (HGD) suppressing the amplification of errors.

3 METHODOLOGY

3.1 TRAINING NEURAL ODES USING GAME THEORETIC OPTIMAL CONTROL THEORY

First, Neural ODEs (Chen et al. (2018)) generally concern the following optimization over an
objective function: L:

min
θ
L(x(tf )), where

dx
dt

= F (t,x(t), θ), x(t0) = x0 (2)

where x(t) ∈ Rm, and F (·, ·, θ) is a deep neural network parameterized by θ ∈ Rn. In the proposed
methodology, Eq. (2) is recasted as a trajectory optimization problem, through the perspective of
Min-Max OC, by introducing a second set of antagonizing controls (e.g. weights in DNN) that
attempt the maximization of the loss function. This second set of parameters aims to represent the
existence of disturbances providing the robustness of our model. Finally, for this problem, we obtain:

min
u

max
v

[
Φ(xtf ) +

∫ tf

t0

ℓ(t,x,u,v)dt

]
, s.t.


dx
dt = F (t,x,u,v), x(t0) = x0
du
dt = 0, u(t0) = θ
dv
dt = 0, v(t0) = η

(3)

Figure 1: Node Level and Layer Level
Architecture of Game Theoretic Layer

where x ≡ x(t) ∈ Rm, u ≡ u(t) ∈ Rn, and v ≡ v(t) ∈
Rn, and F (·, ·,u,v) characterizes the vector field and is
parameterized by DNN with the conflicting sets of weights
(u,v). Moreover, it is clear that (3) describes (2) wlog
by taking (Φ, ℓ) = (L, 0). The functions Φ, and ℓ are
known as the terminal and running cost in the context of
OCP, whereas in the DNN setting, they are equivalent to
the loss function and the weight decay, respectively. Note
that for this problem we consider symmetric layer-wise
dynamics with respect to u,v. More explicitly, if a layer
has a maximization counterpart, it has the same number of
u and v parameters, as illustrated in the Node Level view
of Figure 1.
Assumption 3.1. The running cost ℓ is assumed to be quadratic with respect to the controls, more
specifically: ℓ ≡ ℓ(u,v), with ℓuu = RuIn, ℓvv = −RvIn and ℓuv = 0, where In ∈ Rn×n is the
identity matrix, Rv and Ru are scalars, with |Rv| > |Ru|.

This assumption will enable us to write the Hessian in a form easily factorizable using Kronecker
properties. The intuition for selecting |Rv| > |Ru| is that we wish to penalize the disturbance more
severely and prevent instability. The time-invariant ODEs imposed for ut, and vt makes the ODE of
xt equivalent to (2), while also prompts us to interpret Problem (3) as the search for an optimal initial
condition for time-invariant controls ut, and vt. Next, we define the accumulated loss Q(t,x,u,v):

Q(t,x,u,v) = Φ(x(tf )) +

∫ tf

t

ℓ(τ,x(τ),u(τ),v(τ))dτ (4)
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which implies that 0 = ℓ(t,x,u,v) + dQ(t,x,u,v)
dt . At this point our goal is to compute higher-order

derivatives with respect to u,v. Note that the first order derivative of L wrt to θ, or η under our
OCP formulation is equivalent to ∂Q

∂ut0
or ∂Q

∂vt0
respectively, as Q(t0,xt0 ,ut0 ,vt0) is practically the

accumulation of error on [t0, tf ]. This explains our previous remark that in essence we search an
optimal initial condition for u, and v. Now, we frame the equation above along a nominal path to
derive the ODEs that will help us to compute the second order derivatives at t0.
Theorem 3.2. Consider Assumption 3.1, and a nominal trajectory (x̄, ū, v̄), that satisfies the ODEs
in the constraints of (3) . Then, the second order derivatives of Q expanded locally around the
nominal trajectory obey the following backward ODEs:

−dQxx

dt
= FxQxx+QxxF

⊺
x , −dQxu

dt
= FxQxu+QxxF

⊺
u , −dQuu

dt
= ℓuu+FuQxu+QuxF

⊺
u ,

−dQuv

dt
= FuQxv +QuxF

⊺
v , −

dQvv

dt
= ℓvv + FvQxv +QvxF

⊺
v , −

dQxv

dt
= FxQxv +QxxF

⊺
v

−dQu

dt
= FuQx + ℓu, −

dQv

dt
= FvQx + ℓv

(5)

The terminal conditions are given by: Qx(tf ) = Φx, Qxx(tf ) = Φxx, and Qu(tf ) =
0n×1, Qv(tf ) = Quu(tf ) = Qvv(tf ) = Quv(tf ) = 0n×n, Qxu(tf ) = Qxv(tf ) = 0n×m.
Remark 3.3. The proof for this Theorem is postponed for Appendix A.1 and it follows the standard
derivation of continuous-time DDP, considering linearized ODE dynamics along the nominal trajec-
tory path. This theorem implies that the proposed framework is based on min-max DDP, which has
the favorable property of second order convergence and can obtain first and second order derivatives
with a single pass of an ODE solver, without any recursive computations. This contributes to avoiding
accumulating integration errors, and increased runtimes.

3.2 SECOND-ORDER MATRIX FACTORIZATION

The second order nature of our optimizer renders the efficient manipulation of second order terms a
critical component of our study, as the amount of parameters in neural networks and neural ODEs
grows easily to an unfavorable number.
Theorem 3.4. We assume the matrix Qxx(tf ) to be a symmetric matrix of rank R ≤ m, which may
be represented as: Qxx =

∑R
i=1 yiy

⊺
i , where yi ∈ Rm ∀t ∈ [t0, tf ]. Then let the second order

matrices in (5) that contain derivative with respect to the state can be decomposed as follows:

Qxx(t) =

R∑
i=1

qi(t)qi(t)
⊺, Qxu(t) =

R∑
i=1

qi(t)pi(t)
⊺, Qxv(t) =

R∑
i=1

qi(t)si(t)
⊺ (6)

Then the vectors qi ∈ Rm, and pi(t), and si(t) ∈ Rn obey the following backward ODEs:

−dqi(t)

dt
= Fxqi(t), −dpi(t)

dt
= Fuqi(t), −dsi(t)

dt
= Fvqi(t) (7)

with the terminal condition given by (qi(tf ),pi(tf ), si(tf )) = (yi, 0, 0). Additionally, the second
order matrices Quu, Quv, and Qvv can be represented as

Quu(t) = r(t) +

R∑
i=1

pi(t)pi(t)
⊺, Qvv(t) = m(t) +

R∑
i=1

si(t)si(t)
⊺, Quv(t) =

R∑
i=1

pi(t)si(t)
⊺,

(8)

where r(t) ≡ ℓuu(tf − t) and m(t) ≡ ℓvv(tf − t).

This theorem suggests that the coupled matrices back propagated through (5) can be decomposed
into a set of vectors. For this reason, lower rank matrices observed in many Neural ODE applications
alleviate the computational load and provide great memory efficiency (Chen et al., 2018). Substituting
the ODEs from Eq. (7), into the expression in Eq. (8) yields:

Quu(t) = RuI(tf − t) +

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

(9)
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Similar expressions for the other matrices are left in the Appendix A.2. To avoid dimensionality
issues and tensor representations, the integrations in Eq. (9) are separated into each layer j of the
network. We denote uj , and vj the parameters of layer j, and consider the preactivation vector
hj(t), as an affine combination of the weights with the input to the jth layer. Recall that we have
considered symmetric dynamics layer-wise, implying that Fuj = Fvj , and in turn hj

u = hj
v = zj ,

and hj
x = (u+ v). This implies that Fujqi = zj ⊗ ( ∂F

∂hj
qi) for feed-forward layers, and Fujqi =

zj ∗̂(
∂Fuj

∂hj
qi) for convolution layers. where ⊗ denotes the Kronecker product, and ∗̂ denotes the

de-convolution operator. Finally, assuming that z(t)j , and ∂F
∂hj

are: i) uncorrelated across time, ii)
and pair-wise independent, we can express the layer-wise precondition matrix Qujuj

, at time t = t0

Qujuj (t0) ≈ RuI(t0 − tf ) +

∫ t0

tf

(
zjz

⊺
j

)
dt︸ ︷︷ ︸

Aj(t0)

⊗
∫ t0

tf

R∑
i=1

(( ∂F
∂hj

qi

)(( ∂F
∂hj

qi

))⊺
dt︸ ︷︷ ︸

Bj(t0)

.
(10)

Similarly for the other matrices: Qvjvj
(t0) = Aj(t0)⊗Bj(t0)−RvI(t0 − tf ) , and Qujvj

(t0) =

Aj(t0)⊗Bj(t0). Note that for the rest of this paper, we will drop the subscript relating to the jth layer,
our analysis will still concern individual layer, but can be easily extended to the entire architecture.
The detailed derivation along with a discussion over these assumptions takes place in Appendix A.4.

3.3 EFFICIENT DECOMPOSITION OF UPDATE LAWS

Update Law from Min-Max DDP Recall that Neural ODE analysis and OCP principles are deeply
intertwined. That motivates us to view the optimization process of the Neural ODEs as a trajectory
optimization task. Consider the closed loop Min-Max DDP update law[

δut

δvt

]
=

[
lu
lv

]
+

[
Ku

Kv

]
δxt, (11)

where the feed-forward gains lu, along with lv, and the feedback gains Ku, Kv are given by

lu = Q̃−1
uu(QuvQ

−1
vvQv −Qu), and Ku = Q̃−1

uu(Qux −QuvQ
−1
vvQvx)

lv = Q̃−1
vv (QuvQ

−1
uuQu −Qv), and Kv = Q̃−1

vv (Qvx −QuvQ
−1
vvQvx)

(12)

with Q̃uu = (Quu −QuvQ
−1
vvQvu), and Q̃vv = (Qvv −QvuQ

−1
uuQuv). A detailed derivation of

this update law is given in Appendix B.2. Setting δxt = 0 yields the open loop update scheme for the
Min-Max DDP, which will be our focal point for this study. Notice that our method yields Gradient
Descent Ascent (GDA; (Jin et al., 2020; Lin et al., 2020)) with Hessian Preconditioning for Quv = 0,
implying that open loop min-max DDP is essentially a generalization of GDA. In Appendix A.6, we
also provide tractable expressions for the terms in the closed loop update rule.
Remark 3.5. To generate tractable expressions for the terms in Eq. (11), we leverage two basic
properties of Kronecker products: 1. (A⊗B+λI)−1 = (UA⊗UB)(ΣA⊗ΣB +λ)−1(UA⊗UB)

⊺,
2. (A⊗B)vec(X) = vec(BXA⊺).

Proposition 3.6. From the eigenvalue decomposition of the Kronecker products of every matrix term
in Q̃uu, Q̃vv, we derive these equivalent expression for their eigenvalue decomposition.

Q̃−1
uu = (UA ⊗ UB)(Su − SuvS

−1
v Suv)

−1(UA ⊗ UB)
⊺

Q̃−1
vv = (UA ⊗ UB)(Sv − SuvS

−1
v Suv)

−1(UA ⊗ UB)
⊺

(13)

where Su, Su, Suv are the matrices containing the singular values of the matrix terms in Q̃uu, Q̃vv.

Proposition 3.7. Following Property 3.6 and leveraging the second property mentioned in Remark
3.5 we can rewrite the feed forward gains in 43 more compactly

lu = vec(UBGuvU
⊺
A)− vec(UBGuuU

⊺
A), lv = vec(UBGvuU

⊺
A)− vec(UBGvvU

⊺
A) (14)

where Guv, Guv, Guv, Guv are matrix terms defined in the Appendix A.6.
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Detailed proofs for Propositions 3.6, and 3.7 are left in the Appendix A.5, and A.6 respectively.
Algorithm 1 summarizes our Game Theoretic optimizer.

Algorithm 1 GTSONO

1: Input: dataset D, parameterized vector field F (·, ·,u,v),
integration time [t0, tf ], ODESolver: ’ODESolve’, learn-
ing rate η, time step ∆t, Tikhonov regularization constants
Ru, Rv

2: repeat
3: x(tf ) = ODESolve(x(t0), t0, tf , F ), where x(t0) ∼ D
4: Initialize Optimizer
5: for ti in {tf , tf +∆t, . . . , t0 +∆t, t0}
6: [x(ti−1, Qu(ti−1), Qv(ti−1),qi(ti−1)] =

ODESolve([x(ti), Qu(ti), Qv(ti),qi(ti)],
ti−1, ti, F̄ )

7: For layer j evaluate Aj(ti), and Bj(ti)
8: end for
9: Aj(t0) =

∑
ti
Aj(ti)∆t, Bj(t0) =

∑
ti
Bj(ti)∆t

10: Compute ℓu, ℓv from Eq. 14
11: Update controls: u← u+ ηℓu, v← v + ηℓv
12: until converges

Figure 2: GTSONO overview, where F:
forward dynamics F, and F̄ : backward
dynamics

4 CONVERGENCE

In sequential two-player zero sum games, a global minimax point always exists even if f is nonconvex-
nonconcave, due to the extreme-value theorem (Jin et al. (2020)). Conversely, granted the updates
of the proposed algorithm take place simultaneously, and due to the non-convexity of problem (3)
finding a global saddle point is NP-hard, thus we settle for local saddle points. However, even that
task is not straightforward, as in the simultaneous min-max setting, GDA methods may display some
undesirable behaviours, such as convergence to a non-critical point (Daskalakis & Panageas, 2018),
or to an unstable local saddle point (Wang et al., 2019). In this regard, we provide local convergence
guarantees for our optimizer to a locally stable saddle point.

For convenience on handling the variables we further define the vector z = [u;v] ∈ R2n, along with
the function G : R2n → R2n, as G(z) = [∇uQ(u,v); −∇vQ(u,v)]. Accordingly the Jacobian

of G is given by: JG(z) =

[
Quu Quv

−Qvu −Qvv

]
∈ R2n×2n. Notice that after computing the inverse

of JG(z) using the Schur complement (Liu et al., 2021b), the preconditioned update rule can be
rewritten as zk+1 = zk − ηJG−1(zk)G(zk) yielding the update rule for the open loop Min-Max
DDP shown in Eq. 11, for δxt = 0. Let us start with the definition and sufficient conditions of a local
saddle point.

Definition 4.1. Let Kγ = {z | ∥z− z⋆∥ ≤ γ}, be a neighborhood around fixed point z⋆ = [u⋆;v⋆].
Then, z⋆ is a local saddle point, if f(u⋆,v) ≤ f(u⋆,v⋆) ≤ f(u,v⋆), ∀u,v ∈ Kγ .

Assumption 4.2. Let z⋆ = [u⋆;v⋆] be a stationary point. Recall that we have Quu = A⊗B+RuI ,
and Qvv = A ⊗ B − RvI , for Ru, Rv > 0. Assuming that wlog λmin(A ⊗ B) ≥ −m, and
λmax(A⊗B) ≤M , for m,M > 0, then there exist appropriate Ru > 0 and Rv > 0 large enough
such that λmin(Quu) > 0, and λmax(Qvv) < 0, ensuring that z⋆ is a local saddle point.

Our next step is to prove local convergence guarantees to a local saddle point z⋆.

Theorem 4.3. Suppose z0 ∈ Kγ . Then for L-Lipschitz function Q(z), with also L′-Lipschitz
Jacobian of G(z), the accumulative difference between iterates and fixed point z⋆, as well as the total
error from Q(z⋆) can be bounded by a constant

K∑
k=0

∥zk − z⋆∥ ≤ O(1),

K∑
k=0

|Q(zk)−Q(z⋆)| ≤ O(1). (15)
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This implies that the iterates converge and the total error goes to 0, as K →∞. The proof of Theorem
4.3 can be found in Appendix C.1. Finally, we proceed to show that our algorithm converges to a
strictly stable fixed pointed, implying local convergence (Wang et al. (2019)).
Lemma 4.4 (Proposition 1.4 (Daskalakis & Panageas, 2018)). Assume fixed point z⋆ = (u⋆,v⋆),
for which it holds∇f(z⋆) = 0 is locally stable if the Jacobian of the update rule satisfies ρ(J) ≤ 1,
where ρ(·) is the spectral norm.

To leverage the Lemma above, we begin with the Jacobian of our update rule
J = I − η(JG(zk)

−1JG(zk) +∇zk
(JG−1(zk))G(zk)) (16)

Proposition 4.5. Considering linearized ODE dynamics, we can deduce that for the derivatives Quu

and Qvv, with respect to zk = [uk,vk]: ∂
∂zk

Quu = ∂
∂zk

Qvv = 0, implying ∇(JG−1(zk)) = 0.

From this proposition, we can easily infer for Eq. (16) that ||J || < 1, ∀η ∈ (0, 1). Therefore, our
optimizer convergenges to stable saddle points, implying stability. The proof of Proposition 4.5 has
been postponed for Appendix C.2.

5 EXPERIMENTS

We validate the efficacy of our algorithm in comparison to other state-of-the-art optimizers widely
used in Neural ODE applications, and we highlight the ability of GTSONO to be successfully adapted
to adversarial training methods. All experiments are conducted on a TITAN RTX.

Datasets We carry out our experiments on two image datasets: CIFAR and SVHN. Both datasets
have been standardized and consist of 3×32×32 colour images, and 10 label classes.

Networks The benchmark optimizers were applied on identical network structures, for every
experiment round. GTSONO was also evaluated on the same formation with two identical sets of
antagonizing weights, implying double parameters compared to the benchmark models. Furthermore,
to reduce the number of trainable parameters, we also consider a framework containing the antago-
nizing set of controls only in the convolution layers. We will refer to this architecture as c-GTSONO.
More information regarding the network architectures are provided in the Appendix D.

Attacks In this study, we focus on the white box ℓ∞-norm PGD, FGSM attacks and gray/ black-
box attack CW attack to assess the robustness of our models. Every disturbance mentioned in our
experiments below is applied on the standardized dataset. Details about the update rules of the attacks
are left for Appendix D. We denote each model’s accuracy to the clean test set (i.e. natural accuracy)
with Anat; PGDϵ

s the PGD attack with a perturbation distance ϵ that takes s steps in the direction
of the gradient; and FGSMα the FGSM attack whose single step in the direction of the gradient is
multiplied with constant α. The CW is denoted simply as CW∞ as the ℓ∞ norm was considered and
for every experiment the pertubation distance was set to ϵ = 0.03, and max-iterations K = 100.

5.1 RESULTS

Optimizer Comparison For this round of experimens we compare GTSONO with Adam SGD
with momentum as first order benchmark optimizers, and SNOpt (Liu et al., 2021a) as a second order
baseline, on the two aforementioned datasets. The training for all optimizers was carried out using
only non-perturbed images, with a batch size of 500 images on every dataset. The networks trained
on both datasets was trained for 15 epochs. More details about the structure the network of each
optimizer are provided in the Appendix D.

As shown from Tables 1 and 2, GTSONO outperforms the benchmark optimizers in both datasets with
natural training, and that the performance gap increases as the degree of perturbation also increases.
Additionally, it is also shown that GTSONO provides more robust predictions on average, as well as
more confident as the standard deviation is smaller compared to the benchmark optimizers. Finally,
we observe that the C-GTSONO version of our algorithm is the most efficient and best performing
providing more accurate predictions in less training time. More details about the training times and
memory consumption of each optimizer are left in the Appendix D.

GTSONO on Adversarial Training Methods In this round of experiments, we highlight the
applicability of GTSONO to be efficiently adapted to other adversarial training methods and enhance
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their performance. More specifically, we consider the Free Adversarial Training (FreeAT) scheme
(Shafahi et al., 2019)) and TRADES (Zhang et al., 2019b), with SGD as their optimizer, and evaluate
how these adversarial training methods benefit from employing C-GTSONO as their optimizer,
instead of SGD. We perform two ablation studies by experimenting with the number of examined
internal iterations for FreeAT are m = 4, 8, while in TRADES we fix the number of internal iterations
to generate adversarial examples to 5 and evaluated for 1/λ = 6, 10. More details about each
adversarial training method and the selection of their hyperparameters are left in Appendix D.

Table 1: Average ± standard deviation of test set accuracy (%) on the CIFAR10 for each optimizer.
Anat denotes the natural accuracy. PGDϵ

s denotes the accuracy under PGD attack, taking s steps
in the direction of the gradient with a perturbation distance ϵ. FGSMα describes the accuracy
under FGSM attack where the single gradient step is multiplied with constant α. CW∞ denotes the
accuracy under the CW attack.

Optimizer Anat FGSM0.03 FGSM0.05 PGD20
0.03 PGD20

0.05 CW∞

Adam 78.7 ± 1.1 48.2 ± 0.7 30.8 ± 0.5 45.1 ± 1.2 29.1 ± 0.3 15.4 ± 0.6
SGD 77.5 ± 0.6 47.3 ± 1.3 33.8 ± 1.3 45.8 ± 1.5 29.3 ± 1.4 18.3 ± 1.6
SNOpt 79.1 ± 0.4 48.7 ± 1.0 35.7 ± 1.0 46.8 ± 1.4 32.1 ± 1.4 7.5± 1.0

GTSONO 74.7 ± 0.6 51.7 ± 0.3 37.9 ± 0.4 49.9 ± 0.5 34.9 + 1.1 18.0 ± 1.5
C-GTSONO 74.7 ± 0.7 51.8 ± 0.4 38.0 ± 0.2 50.6 ± 0.3 35.0 + 0.2 36.3 ± 2.2

Table 2: Average ± standard deviation of test set accuracy (%) on the SVHN for each optimizer.

Optimizer Anat FGSM0.03 FGSM0.05 PGD20
0.03 PGD20

0.05 CW∞

Adam 98.9 ± 0.3 73.8 ± 0.4 55.9 ± 0.8 71.8 ± 0.1 48.4 ± 1.0 20.3 ± 0.2
SGD 98.4 ± 0.0 74.4 ± 0.4 56.1 ± 0.5 72.4 ± 0.7 50.4 ± 1.1 23.4 ± 0.9
SNOpt 99.1 ± 0.1 73.5 ± 2.2 54.4 ± 2.3 71.9 ± 2.7 48.7 ± 3.3 22.4 ± 0.9
GTSONO 99.6 ± 0.0 78.0 ± 0.4 58.9 ± 0.4 76.7 ± 0.8 54.3 ± 0.8 31.6 ± 2.2
C-GTSONO 97.3 ± 0.2 80.8 ± 0.2 65.2 ± 0.3 80.3 ± 0.4 62.3 ± 0.3 50.5 ± 0.8

Table 3: Comparison between GTSONO and SGD applied on FreeAT, for m = 4, 8.

Optimizer Anat PGD0.03
20 PGD0.03

40 CW∞
SGD (m=4) 76.8 48.8 48.1 6.5
C-GTSONO (m=4) 75.7 50.5 50.2 17.4
SGD (m=8) 76.2 54.8 54.2 9.5
C-GTSONO (m=8) 74.4 56.5 56.4 18.9

To avoid robust overfitting, we evaluate the robustness of each optimizer, after convergence is
observed. Although GTSONO presents a slower per-iteration training time, from Figure 3 we observe
that in both methods our optimizer converges to a local saddle point in considerable fewer iterations,
due to the higher order convergence rate inherited by min-max DDP. In both defense schemes,
GTSONO was found to converge approximately after 10 or less epochs, whereas the benchmark
models required approximately double epochs to converge. This results in less training time overall,
which is critical in adversarial training methods which generally take longer to train due to the
internal iterations required to generate adversarial samples. Table 5 present a comparison between
the training time required by GTSONO and the baseline model in FreeAT for m = 8, demonstrating
the faster wall clock adversarial training time of GTSONO. The remaining comparisons about the
required resources are left in the Appendix D. Finally, Tables 3 and 4 indicate that the adaptation
of our optimizer increases the robust accuracy in both defense methods. More specifically, FreeAT
benefited by the adaptation of GTSONO by a performance increase of approximately 2% in PGD
attacks, whereas in TRADES we obtained a performance increase of more than 4% for both tested
values of λ. Interestingly, the benchmark models were found to perform better under CW∞.

Update Laws Recall, that in this study our focal point was the open-loop Min-Max DDP, however
as mentioned in in Section 3, setting the cross-terms: Qvu = 0, we readily obtain GDA with Hessian
Preconditioning. We investigate the difference in the performance offered by the open loop update rule
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Table 4: Comparison between GTSONO and SGD used with TRADES, for λ−1 = 6, 10.

Method Anat PGD0.03
20 PGD0.03

40 CW∞
TRADES(λ−1=6) 73.2 54.5 54.3 22.8
C-GTSONO(λ−1=6) 75.8 58.9 58.8 20.4
TRADES(λ−1=10) 69.4 57.2 56.9 25.2
C-GTSONO(λ−1=10) 72.6 61.2 61.0 20.7

Figure 3: Convergence comparison between GTSONO and SGD in Left : FreeAT, Right : TRADES

(DDP-GTSONO), and by the GDA update (GDA-GTSONO), under the FGSM, PGD for increasing
perturbation. In Figure 4 we observe that on the SVHN dataset, DDP-GTSONO outperforms its
counterpart, for every examined disturbance. Additionally on the CIFAR 10 dataset, GDA-GTSONO
is more accurate for small perturbations, however for increasing disturbance, it is observed that
DDP-GTSONO achieves better robust accuracy against both attacks, demonstrating the superiority of
our DDP based algorithm.

Figure 4: Comparison of DDP and GDA GTSONO

Table 5: Training time per iterations and
epochs trained for FreeAT, m = 4 (min:sec)

Optimizer
Time per

iteration (sec) Epochs

SGD 0.63 40

C-GTSONO 1.4 5

Limitations The achieved robustness of our optimizer comes at the price of a slower per itera-
tion training time and higher memory consumption, mainly due to the required computation of
Quu, Quv, Qvv. However, as shown in Appendix D, it is suggested that GTSONO is still affordable
for current GPUs. Additionally, we observed that the continuous models considered for this study
were found to be prone to robust overfitting, in some instances not only in our algorithm but also in
the benchmark optimizers as well.

6 CONCLUSIONS

We present an efficient game theoretic optimizer for training robust neural ODEs, with provable
convergence guarantees to local saddle points. Based on the principles of min-max DDP, our
framework leverages the second order convergence of this OC paradigm by employing Kronecker
factorization to decompose matrices into vectors which can be easily obtained through solving the
ODE. This allows us to derive tractable expressions for the terms in the update of open loop min-max
DDP. Empirically, GTSONO increased the robustness and generated more accurate and confident
predictions on attacked images compared to benchmark optimizers under natural training. We also
demonstrated that GTSONO is successfully adapted to already existing adversarial training methods,
enhancing their robustness. In future work, we wish to extend the applicability of our optimizer
to a larger variety of network architectures (e.g. ResNets, Transformers), and explore appropriate
regularization techniques, to further improve the performance of our algorithm. Finally, we wish to
investigate recasting the proposed optimizer through distributed DDP schemes, as in (Saravanos et al.,
2023). In summary, our work paves new ways for robust optimal control methodologies to be applied
in deep continuous models to enhance their robustness.
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A MISSING DERIVATIONS FROM SECTION 3

We recall the formulation of the objective of the Neural ODE framework expressd in a fashion easily
interpretable through the prism of game theoretic OCP.

min
u

max
v

[
Φ(xtf ) +

∫ tf

t0

ℓ(t,x,u,v)dt

]
, subjected to


dx
dt = F (t,x,u,v), x(t0) = x0
du
dt = 0, u(t0) = θ
dv
dt = 0, v(t0) = η

(17)
where x ≡ x(t) ∈ Rm, u ≡ u(t) ∈ Rn, and v ≡ v(t) ∈ Rn. It is clear that (17) describes (2)
without loss of generality by taking (Φ, ℓ) = (ℓ, 0). The function F (t,x,u,v) characterizes the
vector field and is parameterized by a Deep Neural Network (DNN). We consider that the dynamics
of the system are symetric with respect to the two sets of weights (u,v). The functions Φ, and ℓ
are known as the terminal and running cost in the context of OCP. This problem is understood as
particular type of OCP that searches for the optimal initial condition of the time-invariant controls
ut,vt. In the DNN setting, the terminal cost is equivalent to the loss function, for instance Categorical
Cross Entropy for multi-label classification, and the running cost is equivalent to the weight decay, or
some other regularization techniques that acts on the weights of the intermediate hidden layers. Next,
the accumulated loss Q(t,x,u,v) is defined as follows:

Q(t,x,u,v) = Φ(x(tf )) +

∫ tf

t

ℓ(τ,x(τ),u(τ),v(τ))dτ (18)

From this definition of the accumulated loss implies that Q we can readily obtain:

0 = ℓ(t,x,u,v) +
dQ(t,x,u,v)

dt
(19)

A.1 PROOF OF THEOREM 3.2

Considering the nominal trajectory (x̄, ū, v̄), that satisfies the ODEs in the constraints of (3), we take
the Taylor expansion of the terms in Eq.19 keeping up to second order terms:

ℓ(x,u,v) = ℓ(x̄, ū, v̄) + ℓxδxt + ℓuδu+ ℓvδv +
1

2

[
δxt

δut

δvt

]⊺ [
ℓxx ℓxu ℓxv
ℓux ℓuu ℓuv
ℓvx ℓvu ℓvv

][
δxt

δut

δvt

]
(20a)

Q(x,u,v) = Q(x̄, ū, v̄) +Qxδxt +Quδu+Qvδv +
1

2

[
δxt

δut

δvt

]⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt

δut

δvt

]
(20b)

We differentiate 20b, in order to utilize Eq. 19, and taking into account that dδu
dt = δv

dt = 0, we
obtain:

dQ

dt
≈ dQ(x̄, ū, v̄)

dt
+ (

dQx

dt
δxt +Qx

dδx

dt
) + (

dQu

dt
δu+Qu

dδu

dt
) + (

dQv

dt
δv +Qv

dδv

dt
)+

+
1

2

[
δxt

δut

δvt

]⊺  dQxx

dt
dQxu

dt
Qxv

dt
dQux

dt
Quu

dt
Quv

dt
dQvx

dt
Qvu

dt
Qvv

dt

[δxt

δut

δvt

]
+

1

2

 δxt

dt
0
0

⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt

δut

δvt

]

+
1

2

[
δxt

δut

δvt

]⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

] δxt

dt
0
0


(21)

Next, we need to compute the term δx
dt :

dδx

dt
=

dx

dt
− x̄

dt
= Fxδx+ Fuδu+ Fvδv (22)

The second equation comes from the fact that the time derivative evaluated for fixed x̄ yields the
dynamics F (x̄, ū, v̄), whereas for the first time derivative we take the Taylor expansion around the
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nominal trajectory. Finally, substituting Eq. 22 into Eq. 21, and back into 19, we obtain the following
ODE for Q and its derivatives

−dQx

dt
= FxQx + ℓx, −dQxx

dt
= ℓxx + FxQxx +QxxF

⊺
x , −dQxu

dt
= ℓxu + FxQxu +QxxF

⊺
u

(23a)

−dQu

dt
= FuQx + ℓu, −dQuu

dt
= ℓuu + FuQxu +QuxF

⊺
u , −dQuv

dt
= ℓuv + FuQxv +QuxF

⊺
v

(23b)

−dQv

dt
= FvQx + ℓv, −dQvv

dt
= ℓvv + FvQxv +QvxF

⊺
v − dQxv

dt
= ℓxv + FxQxv +QxxF

⊺
v

(23c)
At this point, recall Assumption 3.1, then we easily obtain Eq. 5 for the ODEs of the second order
derivatives.

A.2 PROOF THEOREM 3.4

Proof. We recall 3.4, where it was assumed the matrix Qxx(t1) to be a symmetric matrix of rank
R ≤ m, it may be represented as: Qxx =

∑R
i=1 yiy

⊺
i , where yi ∈ Rm. Additionally, we had

that Quu(tf ) = 0, Qvv(tf ) = 0. Then ∀t ∈ [t0, tf ], the second order matrices in (23) that contain
derivative with respect to the state can be decomposed as follows:

Qxx(t) =

R∑
i=1

qi(t)qi(t)
⊺, Qxu(t) =

R∑
i=1

qi(t)pi(t)
⊺, Qxv(t) =

R∑
i=1

qi(t)si(t)
⊺ (24)

From Eq. 23, we obtain:

−dQxx

dt
= ℓxx + FxQxx +QxxF

⊺
x

= Fx

R∑
i=1

qi(t)qi(t)
⊺ +

R∑
i=1

(
qi(t)qi(t)

⊺
)
F ⊺
x

=

R∑
i=1

(
Fxqi(t)

)
qi(t)

⊺ +

R∑
i=1

qi(t)
(
Fxqi(t)

)⊺
(25)

In the first equality, ℓxx is equal to 0, from Assumption 3.1. Additionally, taking the time derivative
of Qxx in Eq. 24 yields

−dQxx

dt
= − d

dt

( R∑
i=1

qi(t)qi(t)
⊺
)
= −

R∑
i=1

[dqi(t)

dt
qi(t)

⊺ + qi(t)
dqi(t)

dt

⊺]
(26)

Equating Equations 26 and 25 yields: −dqi

dt = Fxqi. We proceed in similar fashion for Qxu, and
Qxv.

−dQxu

dt
= ℓxu + FxQxu +QxxF

⊺
u = FxQxu +QxxF

⊺
u

= Fx

( R∑
i=1

qi(t)pi(t)
⊺)+

( R∑
i=1

qi(t)qi(t)
⊺
)
F ⊺
u

=

R∑
i=1

(
Fxqi(t)

)
pi(t)

⊺ +

R∑
i=1

qi(t)
(
Fuqi(t)

)⊺
(27)

−dQxv

dt
= ℓxv + FxQxv +QxxF

⊺
v = FxQxv +QxxF

⊺
v

= Fx

( R∑
i=1

qi(t)si(t)
⊺)+

( R∑
i=1

qi(t)qi(t)
⊺
)
F ⊺
v

=

R∑
i=1

(
Fxqi(t)

)
si(t)

⊺ +

R∑
i=1

qi(t)
(
Fvqi(t)

)⊺
(28)
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In similar fashion, we also compute the time derivative for Qxu and Qxv.

−dQxu

dt
= − d

dt

( R∑
i=1

qi(t)pi(t)
⊺
)
= −

R∑
i=1

[dqi(t)

dt
pi(t)

⊺ + qi(t)
dpi(t)

dt

⊺]
(29)

−dQxv

dt
= − d

dt

( R∑
i=1

qi(t)si(t)
⊺
)
= −

R∑
i=1

[dqi(t)

dt
si(t)

⊺ + qi(t)
dsi(t)

dt

⊺]
(30)

It follows that
−dpi

dt
= Fuqi, and − dsi

dt
= Fvqi (31)

Based on the results above, we can deduce that the Hessian Quu can be rewritten as follows

−dQuu

dt
= ℓuu + FuQxu +QuxF

⊺
u

= RuI +

R∑
i=1

(
Fuqi(t)

)
pi(t)

⊺ +
R∑
i=1

pi(t)
(
Fuqi(t)

)⊺ (32)

Integrating the equation above for t ∈ [t, tf ] yields∫ tf

t

−dQuu

dt
dt =

∫ tf

t

RuIdt+

∫ tf

t

(
R∑
i=1

(
Fuqi(t)

)
pi(t)

⊺ +

R∑
i=1

pi(t)
(
Fuqi(t)

)⊺)
(33)

Recall the terminal condition Quu(tf ) = 0, and using Eq. 31, we obtain

Quu(t) = RuI(tf − t)−
R∑
i=1

∫ tf

t

dpi

dt
p⊺
i + pi

(
dpi

dt

)⊺

dt

= RuI(tf − t) +

R∑
i=1

∫ t

tf

d

dt
(pip

⊺
i )dt

= RuI(tf − t) +

R∑
i=1

pi(t)p
⊺
i (t)

(34)

Therefore second order matrices can be rewritten as follows:

Quu(t) = RuI(tf − t) +

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

(35a)

Qvv(t) = RvI(tf − t) +

R∑
i=1

(∫ t

tf

Fvqidt
)(∫ t

tf

Fvqidt
)⊺

(35b)

Quv(t) =

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fvqidt
)⊺

(35c)

Qux(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fuqidt
)⊺

, Qvx(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fvqidt
)⊺

(35d)

A.3 LAYER WISE PARTIONING

To avoid dimensionality issues and tensor representations, the integrations in Eq. (35) are separated
into each layer j of the network. We denote aj , hj , uj , and vj as the activation, pre-activation
(linear combination), and the parameters of layer j, respectively. Furthermore, we consider the the
preactivation vector hj(t), as an affine combination of the weights with the input to the jth layer.
We recall that we have symmetric layer-wise dynamics with respect to u, and v, resulting in the
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partial derivatives of the preactivation vector at the jth layer with respect to the control variables:
hj
u = hj

v = aj , and hj
x = (u+ v). This implies that:

Fxj
qi = (u+ v)⊺(

∂F

∂hj
qi) for Feed Forward layers (36a)

Fuj
qi ==

∂F

∂hj
(aj ⊗ I)qi = aj ⊗ (

∂F

∂hj
qi) for Feed Forward layers (36b)

Fxjqi = (u+ v)∗̂( ∂F
∂hj

qi) for the Convolution layers (36c)

Fuj
qi = aj ∗̂(

∂Fuj

∂hj
qi) for the Convolution layers (36d)

where ⊗ denotes the Kronecker product, and ∗̂ denotes the de-convolution operator. The layer-wise
notation used above was adopted as a manner to circumvent dimensionality and tensor representations
issues. In this vein, the integrations in equations (35) are broken down into each layer j of the network
structure, where using the expression from 36, we obtain∫ t0

tf

(
Fxqi

)
dt =

[
. . . ,

∫ t0

tf

(
Fxnqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
(u+ v)⊺(

∂F

∂hj
qi)

)
dt, . . .

]
(37a)∫ t0

tf

(
Fuqi

)
dt =

[
. . . ,

∫ t0

tf

(
Funqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
aj ⊗ (

∂F

∂hj
qi)

)
dt, . . .

]
(37b)∫ t0

tf

(
Fvqi

)
dt =

[
. . . ,

∫ t0

tf

(
Fvnqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
aj ⊗ (

∂F

∂hj
qi)

)
dt, . . .

]
(37c)

A.4 DERIVATION OF EQUATION 10

Following the layer-wise representation, We recall that to derive 10 these expressions, we first use the
Kronecker product property: (A⊗B)(C ⊗D) = AC ⊗BD. Additionally, during the process of
this derivation some approximations are necessary. The following assumptions are necessary in order
to derive

Assumption A.1. Suppose:

• a(t)j , and g(t)j are uncorrelated across time

• aj(t), gj(t) are pair-wise independent (Liu et al. 2021 NIPS)

For the sake of brevity we demonstrate the analytic proof only for the Hessian Quu, the others follow
similarly.

Qujuj
(t0) = RuI(t0 − tf ) +

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

= RuI(t0 − tf ) +

R∑
i=1

(∫ t

tf

aj ⊗ (
∂F

∂hj
qi)dt

)(∫ t

tf

aj ⊗ (
∂F

∂hj
qi)dt

)⊺
≈ RuI(t0 − tf ) +

R∑
i=1

∫ t

tf

(
aj ⊗ (

∂F

∂hj
qi)
)(

aj ⊗ (
∂F

∂hj
qi)dt

)⊺
= RuI(t0 − tf ) +

R∑
i=1

∫ t

tf

(
aja

⊺
j⊗
( ∂F
∂hj

qi

)( ∂F
∂hj

qi

)⊺)
dt

≈ RuI(t0 − tf ) +

∫ t0

tf

(
aja

⊺
j

)
dt︸ ︷︷ ︸

Aj(t)

⊗
∫ t0

tf

R∑
i=1

(( ∂F
∂hj

qi

)( ∂F
∂hj

qi

)⊺)
︸ ︷︷ ︸

Bj(t)

(38)
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Remark A.2. We begin by underlining that both assumptions are widely adopted (Martens & Grosse
(2015)). The first assumption admits that aj(t)⊗gj(t) are temporally uncorrelated. This is necessary
to yield tractable Kronecker matrices for second-order optimization. Although, it may be a strong
assumption, in some cases, it has been empirically observed that the uncorrelated temporal assumption
may yield better performance Laurent et al. (2018)). The second assumption admits that aj(t) and
gj(t) are pair-wise independents, which has been verified empirically in Wu et al. (2020).

A.5 PROOF OF PROPOSITION 3.6

Proof. We begin by trying to simplifying the expressions for Quu, and Qvv. Setting: (ΣA ⊗ ΣB) =
Suv , (ΣA ⊗ ΣB + λu) = Su, and (ΣA ⊗ ΣB + λv) = Sv , we obtain:

Q̃uu = (Quu −QuvQ
−1
vvQvu)

= (UA ⊗ UB)Su(UA ⊗ UB)
⊺ − (UA ⊗ UB)Suv(UA ⊗ UB)

⊺

(UA ⊗ UB)S
−1
v (UA ⊗ UB)

⊺(UA ⊗ UB)Suv(UA ⊗ UB)
⊺

= (UA ⊗ UB)Su(UA ⊗ UB)
⊺ − (UA ⊗ UB)(SuvS

−1
v Suv)(UA ⊗ UB)

⊺

= (UA ⊗ UB)(Su − SuvS
−1
v Suv)(UA ⊗ UB)

⊺

(39)

Similarly, for Q̃vv = (UA ⊗UB)(Sv −SuvS
−1
u Suv)(UA ⊗UB)

⊺. At this point, using the following
properties of the Kronecker product, based on the eigenvalue decomposition:

(A⊗B + λI) = (UA ⊗ UB)(ΣA ⊗ ΣB + λ)(UA ⊗ UB)
⊺ (40)

(A⊗B + λI)−1 = (UA ⊗ UB)(ΣA ⊗ ΣB + λ)−1(UA ⊗ UB)
⊺ (41)

we can easily obtain the inverse of the matrices in 39 as follows:

Q̃−1
uu = (UA ⊗ UB)(Su − SuvS

−1
v Suv)

−1(UA ⊗ UB)
⊺,

Q̃−1
vv = (UA ⊗ UB)(Sv − SuvS

−1
u Suv)

−1(UA ⊗ UB)
⊺.

A.6 PROOF OF PROPOSITION 3.7

Proof. We begin by considerin the closed loop Min-Max DDP update law[
δut

δvt

]
=

[
lu
lv

]
+

[
Ku

Kv

]
δxt, (42)

where the feed-forward gains lu, along with lv, and the feedback gains Ku, Kv are given by

lu = Q̃−1
uu(QuvQ

−1
vvQv −Qu), and Ku = Q̃−1

uu(Qux −QuvQ
−1
vvQvx)

lv = Q̃−1
vv (QuvQ

−1
uuQu −Qv), and Kv = Q̃−1

vv (Qvx −QuvQ
−1
vvQvx)

(43)

with Q̃uu = (Quu −QuvQ
−1
vvQvu), and Q̃vv = (Qvv −QvuQ

−1
uuQuv).

At this point, we will leverage the following property of the Kronecker products: (A ⊗ B)r =
vec(BRA⊺), where R = vec−1(r) denotes the inverse vectorization of r , to express ℓu, and ℓv in a
compact manner.

Setting for brevity: Quxδxt = δqu, Qvxδxt = δqv, and substituting into 42 the expression for 13,
the feed-forward and feedback gains in (43) can be compactly rewritten as follows
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lu =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )vec(U⊺

BQ̄vUA)︸ ︷︷ ︸
guv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1vec(U⊺
BQ̄uUA)︸ ︷︷ ︸

guu

= vec(UBGuvU
⊺
A)− vec(UBGuuU

⊺
A)

(44a)

lv =(UA ⊗ UB) (Sv − SuvS
−1
u Suv)

−1(SuvS
−1
u )vec(U⊺

BQ̄uUA)︸ ︷︷ ︸
gvu

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1vec(U⊺
BQ̄vUA)︸ ︷︷ ︸

gvv

= vec(UBGvuU
⊺
A)− vec(UBGvvU

⊺
A)

(44b)

Ku =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )δqv︸ ︷︷ ︸

yvv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1δqu︸ ︷︷ ︸
yvv

= vec(UBYuvU
⊺
A)− vec(UBYuuU

⊺
A)

(44c)

Kv =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )δqu︸ ︷︷ ︸

yvv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1δqv︸ ︷︷ ︸
yvv

= vec(UBYvuU
⊺
A)− vec(UBYvvU

⊺
A)

(44d)

where vec−1(Qi) = Q̄i, vec−1(gij) = Gij , and vec−1(yij) = Yij for i = {u,v} denote the
inverse of the vectorization operation of the corresponding vectors. The only required inversions are
of the diagonal S matrices which are computationally inexpensive, rendering the computation of the
terms in 44 tractable to compute.

B DIFFERENTIAL DYNAMIC PROGRAMMING IN CONTINUOUS TIME

B.1 PROBLEM FORMULATION

Consider a min-max game problem, with dynamics described the following ODE:

dx(t)

dt
= F (x(t),u(t),v(t), t), x(t0) = x0 (45)

where x(t) ∈ X is the state of the dynamic system at t ∈ [t0, tf ], and u(t,u(t)) ∈ U1 ⊂ U and
v(t,x(t)) ∈ U2 ⊂ V denote conflicting controls, with U1 and U2 are convex sets containing all
admissible controls of u and v respectively. For the sake of brevity, we will denote u(t,x(t)) ≡ u,
and similarly v(t,x(t)) = v. The goal of this OCP scheme is to find non-anticipating strategies for
both players. Additionally, we define the cost function as follows:

J(u,v) = ϕ(tf ,xtf ) +

∫ tf

t0

ℓ(x,u,v, t)dτ (46)

where ϕ : [t0, tf ]×X → R+ is the terminal cost, and ℓ : X ×U × V × [t0, tf ]→ R+ is the running
cost incorporating the state and the control cost for both players. The conflict between the two players
enters in our problem formulation as one tries through control u to minimize the above cost function,
whereas the other one tries to maximize it through control v. We proceed to define the value function
for our problem as the function expressing the minmax value of the cost function at time t = t0 and
x = x0.

V (t0, x0) = min
u

max
v

{
ϕ(tf ,xtf ) +

∫ tf

t0

ℓ(x,u,v, t)dτ

}
(47)
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Using the Bellman principle, we write (47), as follows:

V (t, x(t)) = min
u(t→tf )

max
v(t→tf )

{
ϕ(tf ,xtf ) +

∫ t+dt

t

ℓ(x,u,v, t)dτ +

∫ tf

t+dt

ℓ(x,u,v, t)dτ

}

= min
u(t→t+dt)

max
v(t→t+dt)

{
min

u(t+dt→tf )
max

v(t+dt→tf )

{
ϕ(tf ,xtf ) +

∫ tf

t+dt

ℓ(x,u,v, t)dτ
}

+

∫ t+dt

t

ℓ(x,u,v, t)dτ

}

= min
u(t→t+dt)

max
v(t→t+dt)

{∫ t+dt

t

ℓ(x,u,v, t)dτ + V (t+ dt,xt+dt)

}
(48)

Then we can readily obtain:

0 = min
u

max
v

[
ℓ(x,u,v, t) +

dV

dt

]
(49)

We can express dV as follows:

dV ≈ ∂V

∂t
dt+

∂V

∂xt

⊺

dxt =
∂V

∂t
dt+

∂V

∂xt

⊺

Fdt (50)

This form enables us to obtain the min-max Hamilton Jacobi Bellman through substitution to (49):

0 = min
u

max
v

[
ℓ(x,u,v, t) +

∂V

∂t
+

∂V

∂xt

⊺

F
]
=>

−∂V

∂t
= min

u
max
v

[
ℓ(x(t),u,v, t) +

∂V

∂xt

⊺

F
] (51)

with its terminal condition being: V (tf ,xtf ) = ϕ(tf ,xtf ).

B.2 BACKWARDS PROPAGATION

First, we consider equation function Q as: Q(x,u,v, t) = ℓ(x,u,v, t) + dV
dt . We expand the terms

inside the minimization in (49) along with function Q up to second order terms, with respect to the
nomimal trajectory (x̄, ū, v̄) and we obtain:

ℓ(x̄+ δxt, ū+ δut, v̄ + δvt) =

ℓ(x̄, ū, v̄, t) + ℓ⊺xδx+ ℓ⊺uδu+ ℓ⊺vδvt +
1

2

[
δxt

δut

δvt

]⊺ [
ℓxx ℓxu ℓxv
ℓux ℓuu ℓuv
ℓvx ℓvu ℓvv

][
δxt

δut

δvt

]
(52)

V (t+ dt, x̄+ δxt) = V (t, x̄) + Vx(t,x)δxt +
1

2
δx⊺

t Vxxδxt (53)

At this point, we take the derivative with respect to time, of the expanded expression of the value
function from (23). We note that V, Vx, Vxx are only functions of time, since they are expanded
with respect to the nominal x̄(t). Additionally, we also notice that from the system dynamics the
infinitesimal perturbation around the nominal trajectory δxt are also a function of time, so the
differentiation of the second and third term below follow the product differentiation rule.

dV

dt
=

dV

dt

∣∣∣x=x̄(t)
u=ū(t)
v=v̄(t)

+
d

dt

(
Vxδxt

)
+

d

dt

(1
2
δx⊺Vxxδxt

)

=
dV

dt
+
(dV
dt

⊺

δxt + V ⊺
x

dδxt

dt

)
+

1

2

(dδx
dt

⊺

Vxxδxt + δx⊺
t

dVxx

dt
δxt + δx⊺

t Vxx
dδxt

dt

) (54)
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Returning to the system dynamics, we can write dδx
dt , as follows:

dδx

dt
=

d

dt

(
x(t)− x̄(t)

)
= F (x,u,v, t)− F (x̄, ū, v̄, t)

= F (x̄, ū, v̄, t) + F̄xδxt + F̄uδut + F̄vδvt − F (x̄, ū, v̄, t)

= F̄xδxt + F̄uδut + F̄vδvt

(55)

where F̄x, F̄u, F̄v stands for Fx(x̄, ū, v̄), Fu(x̄, ū, v̄), Fv(x̄, ū, v̄) respectively. If we substitute (55)
in (54), we obtain:

dV

dt
=

dV

dt

∣∣∣x=x̄(t)
u=ū(t)
v=v̄(t)

+
(dV
dt

⊺

δxt + V ⊺
x (F̄xδxt + F̄uδut + F̄vδvt)

)

+
1

2

(
((F̄xδxt + F̄uδut + F̄vδvt))

⊺Vxxδxt + δx⊺
t

dVxx

dt
δxt + δx⊺

t Vxx((F̄xδxt + F̄uδut + F̄vδvt))
)

(56)

Now, if we substitute (56) and (52) in (49), separate the terms that differentiate with respect to time
the value function or any of its derivatives with respect to the state, we obtain:

− dV

dt
− dVx

dt

⊺

δxt −
1

2
δx⊺

t

dVxx

dt
δxt =

=min
δu

max
δv

[
ℓ(x̄, ū, v̄, t) + ℓ⊺xδx+ ℓ⊺uδu+ ℓ⊺vδv +

1

2

[
δxt

δut

δvt

]⊺ [
ℓxx ℓxu ℓxv
ℓux ℓuu ℓuv
ℓvx ℓvu ℓvv

][
δxt

δut

δvt

]

+ V ⊺
x Fxδxt + V ⊺

x Fuδut + V ⊺
x Fvδvt +

1

2

[
δxt

δut

δvt

]⊺ F̄ ⊺
xVxx + VxxF̄x VxxF̄u VxxF̄v

F̄ ⊺
uVxx 0 0

F̄ ⊺
vVxx 0 0

[δxt

δut

δvt

]]

=min
δu

max
δv

[
ℓ(x̄, ū, v̄) + (ℓ⊺x + V ⊺

x Fx)δxt + (ℓ⊺u + V ⊺
x Fu)δut + (ℓ⊺v + V ⊺

x Fv)δvt

+
1

2

[
δxt

δut

δvt

]⊺ ℓxx + F̄ ⊺
xVxx + VxxF̄x ℓxu + VxxF̄u VxxF̄v

ℓux + F̄ ⊺
uVxx ℓuu ℓuv

ℓvx + F̄ ⊺
vVxx ℓvu ℓvv

[δxt

δut

δvt

]]
(57)

Following the definition of Q and (49), we can expand Q up to second order terms as following:

0 = min
u

max
v

[
Q(x̄, ū, v̄, t) +Q⊺

xδx+Q⊺
uδut +Q⊺

vδvt +
1

2

[
δxt

δut

δvt

]⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt

δut

δvt

]
(58)

Therefore, we can equate the terms from (57) with the terms of the quadratic expansion of (58), and
yield the following:

Q0(t) = ℓ(x̄(t), ū(t), t)

Qx(t) = (ℓ⊺x + V ⊺
x Fx)

⊺ = ℓx + F ⊺
xVx

Qu(t) = (ℓ⊺u + V ⊺
xxFu)

⊺ = ℓu + F ⊺
uVx

Qv(t) = (ℓ⊺v + V ⊺
xxFv)

⊺ = ℓv + F ⊺
v Vx

Qxx(t) = ℓxx + VxxFx + F ⊺
xVxx

Qxu(t) = ℓxu + VxxFu = Q⊺
ux

Qxv(t) = ℓxv + VxxFv = Q⊺
vx

Quu(t) = ℓuu

Qvv(t) = ℓvv

(59)
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Additionally, taking the derivative in (58) with respect to δut and δvt and setting them equal to 0,
yields:

δu∗ = −Q−1
uu(Quxδxt +Quvδv

∗
t +Qu)

δv∗ = −Q−1
vv (Qvxδxt +Qvuδu

∗
t +Qv)

(60)

However, we notice that the optimal control of the opponent is present in the expression of the optimal
control of each player, so we try to eliminate this dependency:

δu∗ = −Q−1
uu(Quxδxt +Quv(−Q−1

vv (Qvxδxt +Quvδu
∗
t +Qv)) +Qu)

⇒(Quu −QuvQ
−1
vvQvu)δu

∗ = −(Qux −QuvQ
−1
vvQvx)δxt +QuvQ

−1
vvQv −Qu

⇒δu∗ = (Quu −QuvQ
−1
vvQvu)

−1(QuvQ
−1
vvQv −Qv − (Qux −QuvQ

−1
vvQvx)δxt)

⇒δu∗ = lu +Kuδxt

(61)

where lu = (Quu − QuvQ
−1
vvQvu)

−1(QuvQ
−1
vvQv − Qu), and Ku = (Quu −

QuvQ
−1
vvQvu)

−1((Qux −QuvQ
−1
vvQvx)δxt).

Similarly we can express δv∗ = lv + Kvδxt, where equivalently the coefficients lv, and
Kv are defined as: lv = (Qvv − QvuQ

−1
uuQuv)

−1(QuvQ
−1
uuQu − Qv), Kv = (Qvv −

QvuQ
−1
uuQuv)

−1((Qvx − QuvQ
−1
vvQvx)). From (57) and (58), the value function and its first

and second order derivatives with respect to x are expressed through the following backward ordinary
differential equations:

− dV

dt
− dVx

dt

⊺

δxt −
1

2
δx⊺

t

dVxx

dt
δxt =

= min
u

max
v

Q(x̄, ū, v̄, tsss) +Q⊺
xδx+Q⊺

uδut +Q⊺
vδvt +

1

2

[
δxt

δut

δvt

]⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt

δut

δvt

]
= Q(x̄, ū, v̄, t) +Q⊺

xδx+Q⊺
u(lu +Kuδxt) +Q⊺

v(lv +Kvδxt)+

+
1

2

[
δxt

(lu +Kuδxt)
(lv +Kvδxt)

]⊺ [
Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

][
δxt

(lu +Kuδxt)
(lv +Kvδxt)

]
(62)

=



−dV
dt = ℓ̄+ l⊺uQu + l⊺vQv +

1
2 l

⊺
uQuulu + 1

2 l
⊺
vQvvlv + l⊺uQuvlv

−dVx

dt = Qx +K⊺
uQu +K⊺

vQv +Q⊺
uxlu +Q⊺

vxlv +K⊺
uQuulu+

+K⊺
uQuvlv +K⊺

vQvulu +K⊺
vQvvlv

−dVxx

dt = Qxx +K⊺
uQux +Q⊺

uxKu +K⊺
vQvx +Q⊺

vxKv +K⊺
vQvuKu+

+K⊺
uQuvKv +K⊺

uQuuKu +KvQvvKv

(63)

under terminal conditions:
V̄ (tf ) = ϕ(x̄(tf ), tf )

V̄x(tf ) = ϕx(x̄(tf ), tf )

V̄xx(tf ) = ϕxx(x̄(tf ), tf )

(64)

C CONVERGENCE

We begin our convergence analysis for GTSONO with the definition of the global saddle point, which
will prompt us to define the local saddle points.
Definition C.1. A point (u⋆,v⋆) ∈ R2n, is a global saddle point of a function Q(·, ·), if we have
f(u⋆,v) ≤ f(u⋆,v⋆) ≤ f(u,v⋆), ∀u ∈ Rn, and v ∈ Rn.

For convenience on handling the variables we further define the vector z = [u;v] ∈ R2n, along

with the function G : R2n → R2n, as G(z) =

[
∇uQ(u,v)
−∇vQ(u,v)

]
. Accordingly the Jacobian of G is
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given by: JG(z) =

[
Quu Quv

−Qvu −Qvv

]
∈ R2n×2n. For the inverse of the Jacobian using the Schur

complement Liu et al. (2021b), we obtain:

JG−1 =

[
Q̃−1

uu Q̃−1
uuQuvQ

−1
vv

−Q̃−1
vvQvuQ

−1
uu −Q̃−1

vv

]
(65)

where Q̃uu = Quu −QuvQ
−1
vvQvu, and similarly Q̃vv = Qvv −QvuQ

−1
uuQuv. At this point we

move to the update rule using the inverse of JG as follows[
uk+1

vk+1

]
=

[
uk

vk

]
− η

[
Q̃−1

uu Q̃−1
uuQuvQ

−1
vv

−Q̃−1
vvQvuQ

−1
uu −Q̃−1

vv

] [
∇uQ(u,v)
−∇vQ(u,v)

]
(66)

which yields the update rule for the open loop Min-Max DDP shown in section 3. Using the definition
z = [u;v], we can write Eq. (66) more compactly as zk+1 ← zk − ηJG−1(zk)G(zk).
Definition C.2. Let Kγ = {z | ∥z− z⋆∥ ≤ γ}, be a neighborhood around fixed point z⋆ = [u⋆;v⋆].
Then, z⋆ is a local saddle point, if f(u⋆,v) ≤ f(u⋆,v⋆) ≤ f(u,v⋆), ∀u,v ∈ Kγ .

Two fundamental assumptions regarding the Lipschitz continuity of Q(u,v) in region Kγ , along
with the Lipschitz continuity of the Jacobian of G(z), i.e., JG(z), will enable us to derive the bounds
for the iterates and function Q.
Assumption C.3. We assume that in this region, Q is a C2 function and that Q, and JG are Lipschitz
continous ∀x,y ∈ Kγ , i.e. we assume the following

||Q(z)−Q(z⋆)|| ≤ L′||z− z⋆|| (67)
||JG(z)− JG(z⋆)|| ≤ L||z− z⋆|| (68)

Additionally, consider constant h, for which it holds that: 1
h ≥ σmax(JG

−1), which is defined as the
greatest singular value of inverse of the Jacobian of G. Now, using constants h and L, let us define
the radius of region Kγ as γ < 2h

3L .

We proceeding by mentioning a Lemma which will be deemed helpful in the derivation of bounds for
consecutive iterations.
Lemma C.4 (Lemma 1 (Lesage-Landry et al. 2020)). If M ∈ Rn×n is invertible, then ∃h > 0, s.t.

||M−1|| ≤ 1

h
⇐⇒ ||My|| ≥ h||y||, ∀y ∈ Rn. (69)

In our analysis, we assumed a fixed point z⋆, and local region Kγ such that ||z − z⋆|| ≤ γ, and
followed the following steps:

1. Provide the sufficient conditions under which it is guaranteed that this fixed point is a local
saddle point in region Kγ .

2. Show that our optimizer indeed converges to this fixed point, granted it is initialized within
Kγ , which under the stipulation that the conditions in 4.2 are met has to be a local saddle
point.

3. Show that our optimizer avoids unstable fixed points.

We start by stating the following Lemma.
Lemma C.5 (Lemma 4, Adolphs et al. (2019)). For a function Q, at least twice differentiable and
not necessarily convex and not necessarily concave, a point (u⋆,v⋆) ∈ Kγ is a local saddle point if
the following conditions are met: Necessary condition: ∇Q(u⋆,v⋆) = 0, and Sufficient condition:
Quu > 0, and Qvv < 0

Intuitively, this Lemma expresses that Q must be locally convex with respect to u and locally concave
w.r.t. v, at least in region Kγ for z⋆ to be a local saddle point. Then following Assumption 4.2, it
holds that for appropriate selection of Ru > 0 and Rv > 0, we can ensure the positive definiteness
of Quu, and the negative definiteness of Qvv. It follows that if this condition is satisfied then it
must also be true that Qu = Qv = 0, equivalently G(z⋆) = 0. Now, we proceed with the following
Lemma from which we will derive useful inequalities that will enable us to bound the iterates and the
accumulative error of Q.
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Lemma C.6. Suppose the following conditions are met

1. The initialization falls within a ball of radius γ from z⋆, namely z0 ∈ Kγ

2. Assumption 4.2 is satisfied, implying that z⋆ is a local saddle, and thus G(z⋆) = 0.

3. [Lemma 1; Lesage-Landry et al. (2020)]: For square and invertible matrix JG, ∃h > 0,
such that ||JG−1(z⋆)|| ≤ 1

h

4. The Jacobian of G(z) is L-Lipschitz: ||JG(z)− JG(z⋆)|| ≤ L||z− z⋆||

Then the following inequalities emerge between two consecutive iterations

||zk+1 − z⋆|| < ||zk − z⋆|| ||zk+1 − z⋆|| < 3L

2h
||zk − z⋆||2 (70)

Proof. We begin the proof with the update rule, and subtract the fixed point z⋆ from both sides.

zk+1 = zk − ηJG−1(zk)G(zk) =⇒
zk+1 − z⋆ = zk − z⋆ − ηJG−1(zk)G(zk)

= zk − z⋆ − ηJG−1(zk)G(zk) + ηJG−1(zk)G(z⋆)

= zk − z⋆ + ηJG−1(zk)(G(z⋆)−G(zk))

(71)

where we used the fact that G(z⋆) = 0. By the fundamental theorem of calculus,

zk+1 − z⋆ = zk − z⋆ + ηJG−1(zk)

∫ 1

0

JG(zk + τ(z⋆ − zk))(z
⋆ − zk)dτ

= JG−1(zk)JG(zk)(zk − z⋆) + JG−1(zk)

∫ 1

0

ηJG(zk + τ(z⋆ − zk))(z
⋆ − zk)dτ

= JG−1(zk)

∫ 1

0

JG(zk)(zk − z⋆)dτ + JG−1(zk)

∫ 1

0

ηJG(zk + τ(z⋆ − zk))(z
⋆ − zk)dτ

= JG−1(zk)

∫ 1

0

(
ηJG

(
zk + τ(z⋆ − zk)

)
− JG(zk)

)
(z⋆ − zk)dτ

(72)

Consider ||ηJG(zk + τ(z⋆− zk))|| ≤ ||JG(zk + τ(z⋆− zk))||, ∀η ∈ (0, 1]. Therefore, one obtains
the following inequality

||zk+1 − z⋆|| ≤ ||JG−1|| ||
∫ 1

0

(JG(zk + τ(zk − z⋆))− JG(zk))(z
⋆ − zk)dτ ||

≤ ||JG−1|| ||
∫ 1

0

τL||zk − z⋆||2dτ ||

≤ ||JG−1||L
2
||zk − z⋆||2

(73)

At this point we use Lemma C.4 to derive an upper bound on the norm of the inverse of the Jacobian
of the operator G. For arbitrary vector y ∈ Rn

||JG(zk)y|| = ||JG(zk)y + JG(z⋆)y − JG(z⋆)y||
≥ ||JG(z⋆)y|| − ||JG(zk)y − JG(z⋆)y||
≥ ||JG(z⋆)y|| − ||JG(zk)− JG(z⋆)|| ||y||
≥ h||y|| − L||zk − z⋆|| ||y||
= (h− L||zk − z⋆||)||y||

(74)

Thus since ∃y ∈ Rn, such that ||JG(zk)y|| ≥ (h − L||zk − z⋆||)||y||, from Lemma C.4 we have
that

||JG−1(zk)|| ≤
1

h− L||zk − z⋆||
(75)
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Substituting Eq. (75) into (73), we obtain

||zk+1 − z⋆|| ≤ L

2(h− L||zk − z⋆||)
||zk − z⋆||2 (76)

By construction, we have that ||zk − z⋆|| < 2h
3L , which enables us to obtain the following two

identities.

||zk+1 − z⋆|| ≤ L||zk − z⋆||
2(h− L||zk − z⋆||)

||zk − z⋆||

<
L 2h

3L

2(h− L 2h
3L )
||zk − z⋆|| = ||zk − z⋆||

(77)

Trivially from Eq. (77), by bounding only the denominator, we obtain

||zk+1 − z⋆|| ≤ L

2(h− L||zk − z⋆||)
||zk − z⋆||2

<
L

2(h− L 2h
3L )
||zk − z⋆||2 =

3L

2h
||zk − z⋆||2

(78)

yielding Eq. (70).

Now, we are in position to prove convergence to fixed point z⋆.

C.1 PROOF OF THEOREM 4.3

For completeness we restate Theorem 4.3.

Theorem C.7. Suppose z0 ∈ Kγ . Then for L-Lipschitz function Q(z), with also L′-Lipschitz
Jacobian of G(z), the accumulative difference between iterates and fixed point z⋆, as well as the total
error from Q(z⋆) can be bounded by a constant

K∑
k=0

||zk − z⋆|| ≤ O(1)
k∑

k=0

|Q(zk)−Q(z⋆)| ≤ O(1) (79)

Proof. Let us first show that
∑K

k=1 ||zt − z⋆|| is bounded. By using the second identity obtained by
the previous lemma we obtain

K∑
k=1

||zk − z⋆|| <
K∑

k=1

||zk−1 − z⋆||2 3L
2h

(80)

We want to make the RHS of the inequality to have the same index as the LHS

K∑
k=1

||zk−1 − z⋆||2 3L
2h

=

K∑
k=1

||zk − z⋆||2 3L
2h

+
3L

2h
(e0 − eK) (81)

where e0 = ||z0 − z⋆||2, and eK = ||zK − z⋆||2 are the individual error term at the initialization
phase and the K th iteration respectively. From this definition, it follows that e0, eK > 0, hence∑K

k=1 ||zk − z⋆||2 3L
2h + 3L

2h (e0 − eK) ≤
∑K

k=1 ||zk − z⋆||2 3L
2h + 3L

2h e0. Moreover, we observe
that in the RHS we have ||zk − z⋆||2, using the assumption that we fall into the region Kγ , where
||z− z⋆|| ≤ γ yields

K∑
k=1

||zk − z⋆|| ≤
K∑

k=1

||zk − z⋆||3Lγ
2h

+
3L

2h
e0 (82)
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Therefore, we have

K∑
k=1

||zk − z⋆|| <
K∑

k=1

||zk − z⋆||3Lγ
2h

+
3L

2h
e0

K∑
k=1

(1− 3Lγ

2h
)||zk − z⋆|| < 3L

2h
e0

K∑
k=1

||zk − z⋆|| < δ

(1− 3Lγ
2h )

(83)

where δ = 3L
2h e0. In the last inequality we can divide with 1 − 3Lγ

2h , since from our assumption
γ < 2h

3L . Therefore, since limK→∞
∑K

k=0 ||zk − z⋆|| < δ
(1− 3Lγ

2h )
is bounded by a constant and

||zk − z⋆|| < ||zk−1 − z⋆||, it shows that ||zk − z⋆|| → 0, for k →∞.
Now, recall that the function Q(z) is also L′-Lipschitz at point z⋆, thus

K∑
k=1

|Q(zk)−Q(z⋆)| ≤
K∑

k=1

L′||zk − z⋆|| (84)

Hence, readily by combining the last two inequalities we obtain

K∑
k=1

|Q(zk)−Q(z⋆)| < L′ δ

(1− 3Lγ
2h )

= O(1) (85)

This implies that the iterates converge and the total error goes to 0, as the number of iterations
increases to infinity. We proceed to show that if our algorithm converges to a strictly stable, implying
local convergence (Wang et al. (2019)). Recall that for fixed point z⋆ = (u⋆,v⋆), for which it holds
∇f(z⋆) = 0 if the Jacobian of the update rule satisfies ρ(J) ≤ 1, then this point is assymptotically
locally stable [Proposition 1.4 (Daskalakis & Panageas (2018))]. The Jacobian of our update rule is
given by

J = I − η([JG]
−1

[JG] +∇(JG−1)F ) (86)

C.2 PROOF OF PROPOSITION 4.5

We restate the Proposition for completeness.

Proposition C.8. Considering linearized ODE dynamics, we can deduce that for the derivatives
Quu and Qvv, with respect to z = [u,v]: ∂

∂zQuu = ∂
∂zQvv = 0. This implies that∇(JG−1) = 0.

Proof. We begin with considering the linear approximation of non-linear dynamics along the nominal
trajectory, an approximation upon which the entire DDP scheme is based Pan & Theodorou (2014).
This enables us to set second order terms with respect to the dynamics equal to zero, namely
Fuu = Fvv = Fuv = Fxu = Fxv = Fxx = 0. Note that this approximation was also held to derive
the ODEs in Eq. (23).

Proposition C.9. Recall the ODE we derived for the decomposing Qxx, qi for i = {1, . . . , R ≤ m}
−dqi(t)

dt = Fxqi(t) with terminal condition qi(tf ) = yi. We can express qi as

qi(t) = yi exp
(∫ tf

t

−Fxdτ
)
∝ exp

(∫ tf

t

−Fxdτ
)

(87)

Using this expression for qi(t), we can calculate its partial derivatives with respect to x,u, and v.

∂qi

∂x
=
(∫ tf

t

−Fxxdτ
)
exp

(∫ tf

t

−Fxdτ
)
= (C1 − C1)qi(t) = 0 (88)

25



Published as a conference paper at ICLR 2024

Similarly for the other derivatives,

∂qi

∂u
=

∫ tf

t

−Fxudτ exp
(∫ tf

t

−Fxdτ
)
= 0

∂qi

∂v
=

∫ tf

t

−Fxvdτ exp
(∫ tf

t

−Fxdτ
)
= 0

(89)

At this point, we can easily move to the expession for the Hessians in Eq. 35, and see that differentation
of these expressions with respect to any set of weights results in 0.

∂Quu

∂u
=

∂

∂u

[( ∫
Fuqi

)( ∫
Fuqi

)⊺]
=
( ∫

Fuuqi + Fuqi,u

)( ∫
Fuqi

)⊺
+
( ∫

Fuqi

)( ∫
Fuuqi + Fuqi,u

)⊺
= 0

(90)

Similarly, it follows for the derivative of every second order matrix with respect to u, or v resulting
in JG−1.

From this proposition, we can easily infer from Eq. (86) that ||J || < 1, ∀η ∈ (0, 1). Therefore, it
holds that the spectral norm of the Jacobian to be less than 1 and ensuring the stability, showing that
our optimizer convergenges to stable saddle points.

D EXPERIMENT DETAILS

Networks and ODE Solver The ODE solver we used for every experiment is the standard Runge-
Kutta 4(5) adaptive solver (dopri5; Dormand & Prince (1980)) implemented by the torchdiffeq
package, with the numerical tolerance set to 1e-3, and fixed integration time [0, 1] for all experiments.
All experiments are conducted on the same GPU machine (TITAN RTX) and implemented with
pytorch

Model configuration Here, we specify the model We will adopt the following syntax to describe
the layer configuration.

• Conv(input, output, kernel, stride)
• FC(input, output)

Using this notation, Table 6 presents the architecture of every model.

Table 6: Network Structure

Network

Discrete Convolution Layers: ReLU(Conv(64, 64, 3, 1))→ ReLU(Conv(64, 64, 3, 1))→ Conv(64, 64, 3, 1)
Continuous Convolution Layers: ReLU(Conv(64, 65, 3, 1))
Feed Forward Layers: ReLU(FC(2304, 500))→ FC(500, 10)

Note that for our optimizers, a game theoretic layer would be implemented as ReLU(Layeru +
Layerv). Recall that in GTSONO every layer has a game theoretic counterpart and in c-GTSONO we
have only convolution game theoretic layers.

Dataset Recall that the datasets examined for our experiments are the CIFAR10, and SVHN. Both
image datasets are preprocessed with standardization. CIFAR10 contains 50000 training images and
10000 test images, whereas SVHN contains 73257 digits for training and 26032 for testing. PGD and
FGSM require computation of the loss gradient. For this reason, to facilitate and accelerate testing
against adversarial attacks, we utilized 40% of the samples in the test set of CIFAR10, and 20% of
the test set on SVHN.
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Tuning process For the comparison among the optimizers, the tuning varied for each optimizer.
More specifically, for Adam and SGD only the learning rate was evaluated. For SNOpt, we tuned its
learning rate and its regularization term, while the 2 variations of GTSONO were tuned against its
learning rate, the regularization constant for the two sets of weights. We perform a grid search for the
tuning of the hyper-parameters for every optimizer. The tuning process took place by optimizing the
performance of each optimizer in the clean test set and evaluating its robustness when convergence
was noticed. Robust overfitting was observed when evaluating the robustness of the models many
iterations after convergence, regardless of the optimizer. Table 7 summarizes the hyperparameters
evaluated for each optimizer, along with the examined values.

Table 7: Hyperparameters for each optimizer and their examined values

Optimizer Hyperparameter Value

Adam, SGD Learning rate {1e−4, 2.5e−4, 5e−4, 7.5e−4, 1e−3, 2.5e−3, 5e−3, 7.5e−3, 1e−2}

SNOpt
Learning rate,
Regularization constant

{1e−4, 2.5e−4, 5e−4, 7.5e−4, 1e−3, 2.5e−3, 5e−3, 7.5e−3, 1e−2}
{1e−2, 2.5e−2, 5e−2}

GTSONO
Learning rate,
Regularization constants Ru, Rv

{1e−4, 2.5e−4, 5e−4, 7.5e−4, 1e−3, 2.5e−3, 5e−3, 7.5e−3, 1e−2}
{1e−4, 2.5e−4, 5e−4, 1e−3, 2.5e−3, 5e−3, 1e−2, 2.5e−2, 5e−2}

Attacks Recall that in this study, we focused on the white box ℓ∞-norm Projected Gradient Descent,
Fast Gradient Sign Method attacks and gray/ black-box attack CW attack to assess the robustness of
our models. For ℓ∞ PGD attack, the update rule to generate adversarially attacked examples is given
as follows

x′ ← ΠB∞(x+ η1 sign(∇x′L(F (x′), y)))

, where ΠB∞ is the projection operator on the ℓ∞ norm.

For the FGSM attack, the update rule to generate adversarially attacked examples is given as follows

x′ ← x + η2 sign(∇xL(F (x), y)))

For the update rule to generate adversarially attacked examples through CW, we refer the interested
reader to Carlini & Wagner (2017).

Adversarial Training Methods For the second round of our experiments we explore the versatility
of GTSONO in its ability to be efficiently adapted to other adversarial training methods such as
the Free Adversarial Training(FreeAT) scheme (Shafahi et al. (2019)) and the TRADES objective
function Zhang et al. (2019b). In both of these frameworks, SGD optimizer was employed as the
standard optimizer.

More explicitly, FreeAT proposed the modification of training each minibatch m times providing
strong adversarial examples, while also using the perturbation from the previous minibatch to warm-
start the perturbation for the new minibatch. This is the hyperparameter we performed our ablation
analysis, by setting m equal to 4 and 8. Algorithm 2 summarizes the FreeAT method.

From our results, it was shown that GTSONO was able to outperform the benchmark optimizer in this
adversarial training method, and in less epochs resulting in an overall faster training time, leveraging
the faster convergence of our second order method, thus rendering it a more efficient and effective
method for this adversarial training scheme.

Furthermore, TRADES proposed a new objective function which computes the KL divergence,
between natural and adversarial images, multiplied with a constant 1/λ. This is the hyperparameter
against which the ablated analysis. Algorithm 3 summarizes the TRADES formulation. It was again
demonstrated that GTSONO was able not only to outperform the benchmark optimizer in terms of
raw performance but it was again shown that it is the more efficient option for this adversarial training
method, as it provided superior performance in less epochs, reducing significant the overall training
time.
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Algorithm 2 Free Adv. Training Algorithm

1: Input: Samples X ∼ D, perturbation ϵ, train-
ing steps m, learning rate η

2: Initialize θ, δ = 0
3: for epoch = 1 .. N
4: for minibatch B ⊂ X
5: for i = 1 .. m
6: gθ ← E(x,y)∈B [∇θℓ(x+ δ,y; θ)]
7: gadv ← ∇xℓ(x+ δ,y; θ)
8: Update θ, θ ← θ − ηgθ
9: Calculate δ, δ ← δ + ϵsign(gadv)

10: δ ← clip(δ,−ϵ, ϵ)
11: end for
12: end for
13: end for

Algorithm 3 TRADES Algorithm

1: Input: Step sizes η1, η2, batch size m, number of iter-
ations m in inner optimization, perturbation ϵ, network
with parameters θ

2: repeat
3: Read from minibatch B = {x1, . . . ,xb}
4: for i = 1 .. b
5: xi ← xi + 0.001N(0, I), where N(O, I) is the

Gaussian distribution with 0 mean and identity variance
6: for k = 1 .. m
7: x′

i ← Πxi,ϵ(η1sign(∇x′
i
L(fθ(x

′
i,xi))) + xi)

8: end for
9: end for

10: θ ← η2∇θ[L(fθ(xi),yi) + L(fθ(xi), fθ(x
′
i))/λ]

1
b

11: until converges

For our experiments, we selected the perturbation distance ϵ to be equal to 0.03 in both ablation
studies. The number of internal iteration in FreeAT is the hyperparameter we performed our ablation
analysis, by setting m equal to 4 and 8. In our adaptation of GTSONO in TRADES, we set the iternal
iterations to be equal to 5, and we performed ablation study with respect to constant λ.

Limitations As shown in the Tables above, the achieved robustness of our optimizer comes at the
price of a slower per iteration training time and higher memory consumption. This is attributed to the
decomposition and calculation of the three matrices involved in the open loop min-max DDP update
Quu, Quv, Qvv. Although, memory consumption indicated in Tables 8-12 suggest that GTSONO
is certainly affordable for current state-of-the-art GPUs, its requirements for memory usage and its
greater training-per-iteration times motivate us to experiment with recasting the proposed optimizer
through distributed optimization distributed DDP schemes.

Additionally, another shortcoming noticed not only in our method by in general in every neural
ODE model was the robust overfitting. More specifically, after convergence was observed, even for
stagnant natural accuracy, we observed that their robust accuracy decreased as the number of epochs
increased. This naturally creates future lines of work of experimenting with more network structures
and types, as well as regularization techniques to attempt to reduce this robust overfitting.

Training Time and Memory Consumption At this point we compare the resources required by
each optimizer.

1. Optimizer Comparison: For this round of experiments, we compared optimizers in the
task of image classification, both in the natural test set and recorded their natural accuracy
but also their robust accuracy under various attacks, such as FGSM and PGD for various
degrees of perturbation. Every optimizer was trained with a batch size of 500, and for 15
epochs. Tables 8 and 9 present the time and consummed memory by each optimizer on
CIFAR10 and SVHN respectively.

Table 8: Training time and computational resources for Optimizers on CIFAR10

Optimizer Parameters (106)
Total training

time (min : sec)
Memory

Consumption (GB)

Adam 1.25 2:53 2.13
SGD 1.25 2:37 2.13
SNOpt 1.25 3:01 4.58

GTSONO 2.51 4:01 6.71
C-GTSONO 1.35 3:53 6.71
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Table 9: Training time and computational resources for Optimizers on SVHN

Optimizer Parameters (106)
Total training

time (min : sec)
Memory

Consumption (GB)

Adam 1.25 4:13 2.13
SGD 1.25 4:09 2.13
SNOpt 1.25 4:23 5.50

GTSONO 2.51 6:05 6.71
C-GTSONO 1.35 5:22 6.71

2. Adaptation to adversarial training methods: As mentioned previously, we evaluate the
robustness of each optimizer in each measurement after convergence has been observed.
Figure 3 illustrates the faster convergence of GTSONO compared to SGD in both defense
schemes. More specifically, taking into consideration the graphs in Figure 3, we list the
epochs for which each optimizer was trained.

• FreeAT m = 4: SGD 15 epochs GTSONO 10 epochs
• FreeAT m = 8: SGD 40 epochs GTSONO 5 epochs
• TRADES λ = 1/6: SGD 20 epochs GTSONO 10 epochs
• TRADES λ = 1/10: SGD 20 epochs GTSONO 10 epochs

Table 10: Training time and computational resources for FreeAT, for m = 4

Optimizer Parameters (106)
Training time

per iteration (sec)
Total training
time (min:sec)

Memory
Consumption (GB)

SGD 1.25 0.53 13:15 2.13
C-GTSONO 1.35 0.70 11:39 6.09

Table 11: Training time and computational resources for FreeAT, for m = 8

Optimizer Parameters (106)
Training time

per iteration (sec)
Total training
time (min:sec)

Memory
Consumption (GB)

SGD 1.25 0.63 64:45 2.13
C-GTSONO 1.35 1.1 8:21 6.09

Table 12: Training time and memory resources for TRADES

Optimizer Parameters (106)
Training time

per iteration (sec)
Total training
time (min:sec)

Memory
Consumption (GB)

SGD 1.25 0.92 30:30 3.48
C-GTSONO 1.35 1.39 22:18 7.61

29


	Introduction
	Related Works
	Methodology
	Training Neural ODEs using Game Theoretic Optimal Control Theory
	Second-order Matrix Factorization
	Efficient Decomposition of Update Laws

	Convergence
	Experiments
	Results

	Conclusions
	Missing Derivations from Section 3
	Proof of Theorem 3.2
	Proof Theorem 3.4
	Layer wise partioning
	Derivation of Equation 10
	Proof of Proposition 3.6
	Proof of Proposition 3.7

	Differential Dynamic Programming in Continuous Time
	Problem Formulation
	Backwards Propagation

	Convergence
	Proof of Theorem 4.3
	Proof of Proposition 4.5

	Experiment Details

