
Maximum-Likelihood Inverse Reinforcement Learning
with Finite-Time Guarantees

Siliang Zeng
University of Minnesota, Twin Cities

Minneapolis, MN, USA
zeng0176@umn.edu

Chenliang Li
The Chinese University of Hong Kong,

Shenzhen, China
chenliangli@link.cuhk.edu.cn

Alfredo Garcia
Texas A&M University

College Station, TX, USA
alfredo.garcia@tamu.edu

Mingyi Hong
University of Minnesota, Twin Cities

Minneapolis, MN, USA
mhong@umn.edu

Abstract

Inverse reinforcement learning (IRL) aims to recover the reward function and
the associated optimal policy that best fits observed sequences of states and
actions implemented by an expert. Many algorithms for IRL have an inherently
nested structure: the inner loop finds the optimal policy given parametrized
rewards while the outer loop updates the estimates towards optimizing a measure
of fit. For high dimensional environments such nested-loop structure entails
a significant computational burden. To reduce the computational burden of a
nested loop, novel methods such as SQIL [1] and IQ-Learn [2] emphasize policy
estimation at the expense of reward estimation accuracy. However, without
accurate estimated rewards, it is not possible to do counterfactual analysis such
as predicting the optimal policy under different environment dynamics and/or
learning new tasks. In this paper we develop a novel single-loop algorithm for
IRL that does not compromise reward estimation accuracy. In the proposed
algorithm, each policy improvement step is followed by a stochastic gradient
step for likelihood maximization. We show that the proposed algorithm provably
converges to a stationary solution with a finite-time guarantee. If the reward is
parameterized linearly, we show the identified solution corresponds to the solution
of the maximum entropy IRL problem. Finally, by using robotics control problems
in MuJoCo and their transfer settings, we show that the proposed algorithm achieves
superior performance compared with other IRL and imitation learning benchmarks.

1 Introduction

Given observed trajectories of states and actions implemented by an expert, we consider the problem
of estimating the reinforcement learning environment in which the expert was trained. This problem is
generally referred to as inverse reinforcement learning (IRL) (see [3] for a recent survey). Assuming
the environment dynamics are known (or available online), the IRL problem consists of estimating
the reward function and the expert’s policy (optimizing such rewards) that best fits the data. While
there are limitations on the identifiability of rewards [4], the estimation of rewards based upon expert
trajectories enables important counterfactual analysis such as the estimation of optimal policies under
different environment dynamics and/or reinforcement learning of new tasks.

In the seminal work [5], the authors developed an IRL formulation, in which the model for the expert’s
behavior is the policy that maximizes entropy subject to a constraint requiring that the expected

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

features under such policy match the empirical averages in the expert’s observation dataset. The
algorithms developed for MaxEnt-IRL [5–7] have a nested loop structure, alternating between an
outer loop with a reward update step, and an inner loop that calculates the explicit policy estimates.
The computational burden of this nested structure is manageable in tabular environments, but it
becomes significant in high dimensional settings requiring function approximation.

Towards developing more efficient IRL algorithms, a number of works [8–12] propose to leverage
the idea of adversarial training [13]. These algorithms learn a non-stationary reward function through
training a discriminator, which is then used to guide the policy to match the behavior trajectories
from the expert dataset. However, [14] pointed out that the resulting discriminator (hence the
reward function) typically cannot be used in new learning tasks, since it is highly dependent on the
corresponding policy and current environment dynamics. Moreover, due to the brittle approximation
techniques and sensitive hyperparameter choice in the adversarial training, these IRL algorithms can
be unstable. [15, 16].

More recent works [1, 2] have developed algorithms to alleviate the computational burden of the
nested-loop training procedures. In [1], the authors propose to model the IRL using certain maximum
entropy RL problem with specific reward function (which assigns r = +1 for matching expert
demonstrations and r = 0 for all other behaviors). Then a soft Q imitation learning (SQIL) algorithm
is developed. In [2], the authors propose to transform the standard formulation of IRL (discussed
above) into a single-level problem, through learning a soft Q-function to implicitly represent the
reward function and the policy. An inverse soft-Q learning (IQ-Learn) algorithm is then developed,
which is shown to be effective in estimating the policy for the environment that it is trained on.
Despite being computationally efficient, IQ-Learn sacrifices the accuracy in estimating the rewards
since it indirectly recovers rewards from a soft Q-function approximator which is highly dependent
upon the environment dynamics and does not strictly satisfy the soft-Bellman equation. Therefore it
is not well-suited for counterfactual prediction or transfer learning setting.

Finally, in f -IRL [14] the authors consider an approach for estimating rewards based on the
minimization of several measures of divergence with respect to the expert’s state visitation measure.
The approach is limited to estimating rewards that only depend on state. Moreover, while the results
reported are based upon a single-loop implementation, the paper does not provide a convergence
guarantee to support performance. We refer the readers to Appendix A for other related works.

Our Contributions. The goal of this work is to develop an algorithm for IRL which is capable of
producing high-quality estimates of both rewards and behavior policies with finite-time guarantees.
The major contributions of this work are listed below.

•We consider a formulation of IRL based on maximum likelihood (ML) estimation over optimal
(entropy-regularized) policies, and prove that a strong duality relationship with maximum entropy
IRL holds if rewards are represented by a linear combination of features. 1 The ML formulation is
a bi-level optimization problem, where the upper-level problem maximizes the likelihood function,
while the lower-level finds the optimal policy under the current reward parameterization. Such a
bi-level structure is not only instrumental to the subsequent algorithm design, but is also flexible to
incorporate the use of state-only, as well as the regular reward function (which depends on the state
and action pair). The former is suitable for transfer learning since it is insensitive to the changes of
the environment dynamics, while the latter can be used to efficiently imitate the expert policy.

• Based on the ML-IRL formulation, we develop an efficient algorithm. To avoid the computational
burden of repeatedly solving the lower-level policy optimization problem, the proposed algorithm
has a single-loop structure where the policy improvement step and reward optimization step are
performed alternatingly so that each step can be performed relatively cheaply. Further, we show that
the algorithm has strong theoretical guarantees: to achieve certain ϵ-approximate stationary solution
for a non-linearly parameterized problem, it requires O(ϵ−2) steps of policy and reward updates each.
To our knowledge, it is the first algorithm which has finite-time guarantee for the IRL problem under
nonlinear parameterization of reward functions.

•We conduct extensive experiments to demonstrate that the proposed algorithm outperforms many
state-of-the-art IRL algorithms in both policy estimation and reward recovery. In particular, when

1Heuristic arguments for this duality result are discussed in [5] wherein the distribution of state-action paths is
approximated (see equation (4) in [5]) and the equivalence between maximum entropy estimation and maximum
likelihood (over the class of exponential distributions) [17] is invoked.

2

transferring to a new environment, RL algorithms using rewards recovered by the proposed algorithm
outperform those that use rewards recovered from existing IRL and imitation learning benchmarks.

2 Preliminaries

In this section, we review the fundamentals of the maximum entropy inverse reinforcement learning
(MaxEnt-IRL). We consider an MDP defined by the tuple (S,A,P, η, r, γ); S and A denote the
state space and the action space respectively; P(s′|s, a) : S ×A× S → [0, 1] denotes the transition
probability; η(·) denotes the distribution for the initial state; r(s, a) : S × A → R is the reward
function and γ is a discount factor.

The MaxEnt-IRL formulation [6, 18–20] consists of finding a policy maximizing entropy subject to
the expected features under such policy matching the empirical averages in the expert’s observation
dataset. Specifically, the MaxEnt-IRL formulation is given by:

max
π

H(π) := Eτ∼π

[∞∑
t=0

−γt log π(at|st)
]

(MaxEnt-IRL)

s.t. Eτ∼π

[∞∑
t=0

γtϕ(st, at)

]
= Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]
where τ = {(st, at)}∞t=0 denotes a trajectory, ϕ(s, a) is the feature vector of the state-action pair
(s, a) and πE denotes the expert policy. Let θ denote the dual variable for the linear constraint, then
the Lagrangian of (MaxEnt-IRL) is given by

L(π, θ) := H(π) +

〈
θ,Eτ∼π

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉
. (1)

In [6, 18, 19], the authors proposed a "dual descent" algorithm, which alternates between i) solving
maxπ L(π, θ) for fixed θ, and ii) a gradient descent step to optimize the dual variable θ. It is
shown that the optimizer π∗

θ in step i) can be recursively defined as π∗
θ(at|st) =

Zat|st,θ
Zst,θ

, where

logZat|st,θ = ϕ(st, at)
T θ + γEst+1∼P(·|st,at)

[
logZst+1,θ

]
and logZst,θ = log

(∑
a∈A Za|st,θ

)
.

From a computational perspective, the above algorithm is not efficient: it has a nested-loop structure,
which repeatedly computes the optimal policy π∗

θ under each variable θ. It is known that when the
underlying MDP is of high-dimension, such an algorithm can be computationally prohibitive [9, 10].

Recent work [2] proposed an algorithm called IQ-Learn to improve upon the MaxEnt-IRL by
considering a saddle-point formulation:

min
r

max
π

{
H(π) + Eτ∼π

[∞∑
t=0

γt · r(st, at)
]
− Eτ∼πE

[∞∑
t=0

γt · r(st, at)
]}

(2)

where r(st, at) is the reward associated with state-action pair (st, at). The authors show that this
problem can be transformed into an optimization problem only defined in terms of the soft Q-function,
which implicitly represents both reward and policy. IQ-Learn is shown to be effective in imitating the
expert behavior while only relying on the estimation of the soft Q-function. However, the implicit
reward estimate obtained is not necessarily accurate since its soft Q-function estimate depends on the
environment dynamics and does not strictly satisfy the soft-Bellman equation. Hence, it is difficult to
transfer the recovered reward function to new environments.

3 Problem Formulation

In this section, we consider a ML formulation of the IRL problem and formalize a duality relationship
with maximum entropy-based formulation (MaxEnt-IRL).

Maximum Log-Likelihood IRL (ML-IRL)

A model of the expert’s behavior is a randomized policy πθ(·|s), where πθ is a specific policy
corresponding to the reward parameter θ. With the state dynamics P(st+1|st, at), the discounted

3

log-likelihood of observing the expert trajectory τ under model πθ can be written follows:

Eτ∼πE

[
log
∏
t≥0

(P(st+1|st, at)πθ(at|st))γ
t]

= Eτ∼πE

[∑
t≥0

γt log πθ(at|st)
]

+ Eτ∼πE

[∑
t≥0

γt logP(st+1|st, at)
]
.

Then we consider the following maximum log-likelihood IRL formulation:

max
θ

L(θ) := Eτ∼πE

[∞∑
t=0

γt log πθ(at|st)
]

(ML-IRL)

s.t πθ := argmax
π

Eτ∼π

[∞∑
t=0

γt

(
r(st, at; θ) +H(π(·|st))

)]
, (3a)

where r(s, a; θ) is the reward function andH(π(·|s)) := −
∑

a∈A π(a|s) log π(a|s).
We now make some remarks about ML-IRL. First, the problem takes the form of a bi-level
optimization problem, where the upper-level problem (ML-IRL) optimizes the reward parameter
θ, while the lower-level problem describes the corresponding policy πθ as the solution to an
entropy-regularized MDP ([21, 22]). In what follows we will leverage recently developed (stochastic)
algorithms for bi-level optimization [23–25], that avoid the high complexity resulted from nested
loop algorithms. Second, it is reasonable to use the ML function as the loss, because it searches
for a reward function which generates a behavior policy that can best fit the expert demonstrations.
While the ML function has been considered in [26, 27], they rely on heuristic algorithms with
nested-loop computations to solve their IRL formulations, and the theoretical properties are not
studied. Finally, the lower-level problem has been well-studied in the literature [21, 22, 28–30]. The
entropy regularization in (3a) ensures the uniqueness of the optimal policy πθ under the fixed reward
function r(s, a; θ) [21, 28]. Even when the underlying MDP is high-dimensional and/or complex, the
optimal policy could still be obtained; see recent developments in [21, 22]. We close this section by
formally establishing a connection between (MaxEnt-IRL) and (ML-IRL).
Theorem 1. (Strong Duality) Suppose that the reward function is given as: r(s, a; θ) := ϕ(s, a)T θ,
for all s ∈ S and a ∈ A. Then (ML-IRL) is the Lagrangian dual of (MaxEnt-IRL). Furthermore,
strong duality holds, that is: L(θ∗) = H(π∗), where θ∗ and π∗ are the global optimal solutions for
problems (ML-IRL) and (MaxEnt-IRL), respectively.

The proof of Theorem 1 is relegated to Appendix G. To our knowledge this result which specifically
addresses the (MaxEnt-IRL) formulation is novel. Under finite horizon, a duality between ML
estimation and maximum causal entropy is obtained in [18, Theorem 3]. However, the problem
considered in that paper is not in RL nor IRL setting, therefore they cannot be directly used in the
context of the present paper.

The above duality result reveals a strong connection between the two formulations under linear reward
parameterization. Due to the duality result, we know that (ML-IRL) is a concave problem under
linear reward parameterization. In this case, any stationary solution to (ML-IRL) is a global optimal
estimator of the reward parameter.

4 The Proposed Algorithm

In this section, we design algorithms for (ML-IRL). Recall that one major drawback of algorithms
for (MaxEnt-IRL) is that, they repeatedly solve certain policy optimization problem in the inner loop.
Even though the recently proposed algorithm IQ-Learn [2] tries to improve the computational
efficiency through implicitly representing the reward function and the policy by a Q-function
approximator, it has sacrificed the estimation accuracy of the recovered reward. Therefore, one
important goal of our design is to find provably efficient algorithms that can avoid high-complexity
operations and accurately recover the reward function. Specifically, it is desirable that the resulting
algorithm only uses a finite number of reward and policy updates to reach certain high-quality
solutions.

To proceed, we will leverage the special bi-level structure of the ML-IRL problem. The idea is to
alternate between one step of policy update to improve the solution of the lower-level problem, and

4

Algorithm 1 Maximum Likelihood Inverse Reinforcement Learning (ML-IRL)
Input: Initialize reward parameter θ0 and policy π0. Set the reward parameter’s stepsize as α.
for k = 0, 1, . . . ,K − 1 do

Policy Evaluation: Compute Qsoft
rθk ,πk

(·, ·) under reward function r(·, ·; θk)
Policy Improvement: πk+1(·|s) ∝ exp(Qsoft

rθk ,πk
(s, ·)),∀s ∈ S.

Data Sampling I: Sampling an expert trajectory τEk := {st, at}t≥0

Data Sampling II: Sampling a trajectory τAk := {st, at}t≥0 from the current policy πk+1

Estimating Gradient: gk := h(θk; τ
E
k)− h(θk; τ

A
k) where h(θ; τ) :=

∑
t≥0 γ

t∇θr(st, at; θ)
Reward Parameter Update: θk+1 := θk + αgk

end for

one step of the parameter update which improves the upper-level loss function. At each iteration k,
given the current policy πk and the reward parameter θk, a new policy πk+1 is generated from the
policy improvement step, and θk+1 is generated by the reward optimization step.

This kind of alternating update is efficient, because there is no need to completely solve the policy
optimization subproblem, before updating the reward parameters. It has been used in many other
RL related settings as well. For example, the well-known actor-critic (AC) algorithm for policy
optimization [31, 32, 23] alternates between one step of policy update, and one step of critic parameter
update. Below we present the details of our algorithm at a given iteration k.

Policy Improvement Step. Let us consider optimizing the lower-level problem, when the reward
parameter θk is held fixed. Towards this end, define the so-called soft Q and soft value functions for a
given policy πk and a reward parameter θk:

V soft
rk,πk

(s) = Eπk

[∞∑
t=0

γt

(
r(st, at; θk) +H(πk(·|st))

)∣∣∣∣s0 = s

]
(4a)

Qsoft
rk,πk

(s, a) = r(s, a; θk) + γEs′∼P(·|s,a)
[
V soft
rk,πk

(s)
]

(4b)

We will adopt the well-known soft policy iteration [21] to optimize the lower-level problem (3a).
Under the current reward parameter θk and the policy πk, the soft policy iteration generates a new
policy πk+1 as follows

πk+1(a|s) ∝ exp
(
Qsoft

rθk ,πk
(s, a)

)
, ∀s ∈ S, a ∈ A. (5)

Under a fixed reward function, it can be shown that the new policy πk+1 monotonically improves πk,
and it converges linearly to the optimal policy; see [21, Theorem 4] and [28, Thoerem 1].

Note that in practice, we usually do not have direct access to the exact soft Q-function in (4b). In
order to perform the policy improvement, a few stochastic update steps in soft Q-learning [21] or
soft Actor-Critic (SAC) [22] could be used to replace the one-step soft policy iteration (5). In the
appendix, we present Alg. 2 to demonstrate such practical implementation of our proposed algorithm.

Reward Optimization Step. We propose to use a stochastic gradient-type algorithm to optimize θ.
Towards this end, let us first derive the exact gradient∇L(θ). See Appendix D for detailed proof.
Lemma 1. The gradient of the likelihood function L(θ) can be expressed as follows:

∇L(θ) = Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ)

]
− Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

]
. (6)

To obtain stochastic estimators of the exact gradient∇L(θk), we take two approximation steps: 1)
approximate the optimal policy πθk by πk+1 in (5), since the optimal policy πθk is not available
throughout the algorithm; 2) sample one expert trajectory τEk which is already generated by the expert
policy πE; 3) sample one trajectory τAk from the current policy πk+1.

Following the approximation steps mentioned above, we construct a stochastic estimator gk to
approximate the exact gradient∇L(θk) in (6) as follows:

gk := h(θk; τ
E
k)− h(θk; τ

A
k), where h(θ; τ) :=

∑
t≥0

γt∇θr(st, at; θ). (7)

5

With the stochastic gradient estimator gk, the reward parameter θk is updated as:

θk+1 = θk + αgk. (8)

where α is the stepsize in updating the reward parameter.

In summary, the proposed algorithm for solving the ML-IRL problem (ML-IRL) is given in Alg. 1.

5 Theoretical Analysis

In this section, we present finite-time guarantees for the proposed algorithm.

To begin with, first recall that in Sec. 3, we have mentioned that (ML-IRL) is a bi-level problem,
where the upper level (resp. the lower level) problem optimizes the reward parameter (resp. the
policy). In order to solve (ML-IRL), our algorithm 1 has a singe-loop structure, which alternates
between one step of policy update and one step of the reward parameter update. Such a single-loop
structure indeed has computational benefit, but it also leads to potential unstableness, since the lower
level problem can stay far away from its true solutions. Specifically, at each iteration k, the potential
unstableness is induced by the distribution mismatch between the policy πk+1 and πθk , when we use
estimator gk (7) to approximate the exact gradient∇L(θk) (6) in updating the reward parameter θk.

Towards stabilizing the algorithm, we adopt the so-called two-timescale stochastic approximation
(TTSA) approach [33, 23], where the lower-level problem updates in a faster time-scale (i.e.,
converges faster) compared with its upper-level counterpart. Intuitively, the TTSA enables the
πk+1 tracks the optimal πθk , leading to a stable algorithm. In the proposed Algorithm 1, the policy
(lower-level variable) is continuously updated by the soft policy iteration (5), and it is ‘fast’ because it
converges linearly to the optimal policy under a fixed reward function [28, Theorem 1]. On the other
hand, the reward parameter update (8) does not have such linear convergence property, therefore it
works in a ‘slow’ timescale. To begin our analysis, let us first present a few technical assumptions.
Assumption 1 (Ergodicity). For any policy π, assume the Markov chain with transition kernel P is
irreducible and aperiodic under policy π. Then there exist constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S
∥P(st ∈ ·|s0 = s, π)− µπ(·)∥TV ≤ κρt, ∀ t ≥ 0

where ∥ · ∥TV is the total variation (TV) norm; µπ is the stationary state distribution under π.

Assumption 1 assumes the Markov chain mixes at a geometric rate. It is a common assumption in the
iterature of RL [34, 35, 32], which holds for any time-homogeneous Markov chain with finite-state
space or any uniformly ergodic Markov chain with general state space.
Assumption 2. For any s ∈ S, a ∈ A and any reward parameter θ, the following holds:∥∥∇θr(s, a; θ)

∥∥ ≤ Lr, (9a)∥∥∇θr(s, a; θ1)−∇θr(s, a; θ2)
∥∥ ≤ Lg∥θ1 − θ2∥ (9b)

where Lr and Lg are positive constants.

Assumption 2 assumes that the parameterized reward function has bounded gradient and is Lipschitz
smooth. Such assumption in Lipschitz property are common in the literature of min-max / bi-level
optimization [36, 23, 37, 25, 38].

Based on Assumptions 1 - 2, we next provide the following Lipschitz properties:
Lemma 2. Suppose Assumptions 1 - 2 hold. For any reward parameter θ1 and θ2, the following
results hold:

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ Lq∥θ1 − θ2∥, ∀s ∈ S, a ∈ A (10a)

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥ (10b)

where Qsoft
rθ,πθ

(·, ·) denotes the soft Q-function under the reward function r(·, ·; θ) and the policy πθ.
The positive constants Lq and Lc are defined in Appendix E.

The Lipschitz properties identified in Lemma 2 are vital for the convergence analysis. Then we
present the main results, which show the convergence speed of the policy {πk}k≥0 and the reward
parameter {θk}k≥0 in the Alg. 1. Please see Appendix E for the detailed proof.

6

Theorem 2. Suppose Assumptions 1 - 2 hold. Selecting stepsize α := α0

Kσ for the reward update step
(8) where α0 > 0 and σ ∈ (0, 1) are some fixed constants, and K is the total number of iterations to
be run by the algorithm. Then the following result holds:

1

K

K−1∑
k=0

E
[∥∥ log πk+1 − log πθk

∥∥
∞

]
= O(K−1) +O(K−σ) (11a)

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
= O(K−σ) +O(K−1+σ) +O(K−1) (11b)

where we denote ∥ log πk+1 − log πθk∥∞ := maxs∈S,a∈A
∣∣ log πk+1(a|s) − log πθk(a|s)

∣∣. In
particular, setting σ = 1/2, then both quantities in (11a) and (11b) converge with the rateO(K−1/2).

In Theorem 2, we present the finite-time guarantee for the convergence of the Alg.1. Moreover,
as a special case, when the reward is parameterized as a linear function, we know that (ML-IRL)
is concave and Theorem 2 provides a stronger guarantee which identify the global optimal reward
estimator in finite time.

We provide a proof sketch below to present the key steps. The detailed proof is in Appendix H.

Proof sketch. We outline our main steps in analyzing (11a) and (11b) respectively.

In order to show the convergence of policy estimates in (11a), there are several key steps. First,
we note that both policies πk+1 and πθk are in the softmax parameterization, where πk+1(·|s) ∝
exp

(
Qsoft

rθk ,πk
(s, ·)

)
and πθk(·|s) ∝ exp

(
Qsoft

rθk ,πθk
(s, ·)

)
. Then, we can show a Lipschitz continuity

property between the policy and the soft Q-function:

∥logπk+1 − logπθk∥∞ ≤ 2∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞,

where the infinty norm ∥ · ∥∞ is defined over the state-action space S ×A. Moreover, by analyzing
the contraction property of the soft policy iteration (5), we bound ∥Qsoft

rθk ,πk
−Qsoft

rθk ,πθk
∥∞ as:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥.

To ensure that the error term ∥θk − θk−1∥ is small, we select the stepsize of reward parameters as
α := α0

Kσ , where K is the total number of iterations and σ > 0. Then, by combining previous two
steps, we could further show the convergence rate of the policy estimates in (11a).

To prove the convergence of the reward parameters in (11b), we first leverage the Lipschitz smooth
property of L(θ) in (10b). However, one technical challenge in the convergence analysis is how
to handle the bias between the gradient estimator gk defined in (7) and the exact gradient ∇L(θk).
When we construct the gradient estimator gk in (7), we need to sample trajectories from the current
policy πk+1 and the expert dataset D. However, according to the expression of ∇L(θk) in (6), the
trajectories are sampled from the optimal policy πθk and the dataset D. Hence, there is a distribution
mismatch between πk+1 and πθk . Our key idea is to leverage (11a) to handle this distribution
mismatch error, and thus show that the bias between gk and∇L(θk) could be controlled.

To the best of our knowledge, Theorem 2 is the first non-asymptotic convergence result for IRL with
nonlinear reward parameterization.

6 A Discussion over State-Only Reward

In this section we consider the IRL problems modeled by using rewards that are only a function
of the state. A lower dimensional representation of the agent’s preferences (i.e. in terms only of
states as opposed to states and actions) is more likely to facilitate counterfactual analysis such as
predicting the optimal policy under different environment dynamics and/or learning new tasks. This
is because the estimation of preferences which are only defined in terms of states is less sensitive to
the specific environment dynamics in the expert’s demonstration dataset. Moreover, in application
such as healthcare [39] and autonomous driving [40], where simply imitating the expert policy can
potentially result in poor performance, since the learner and the expert may have different transition
dynamics. Similar points have also been argued in recent works [14, 41–43].

7

Next, let us briefly discuss how we can understand (ML-IRL) and Alg.1, when the reward is
parameterized as a state-only function. First, it turns out that there is an equivalent formulation of
(ML-IRL), when the expert trajectories only contain the visited states.
Lemma 3. Suppose the expert trajectories τ is sampled from a policy πE, and the reward is
parameterized as a state-only function r(s; θ). Then ML-IRL is equivalent to the following:

min
θ

Es0∼η(·)
[
V soft
rθ,πθ

(s0)
]
− Es0∼η(·)

[
V soft
rθ,πE (s0)

]
(12a)

s.t. πθ := argmax
π

Eπ

[∞∑
t=0

γt

(
r(st; θ) +H(π(·|st))

)]
. (12b)

Please see Appendix F for the detailed derivation. Intuitively, the above lemma says that, when
dealing with the state-only IRL, (ML-IRL) minimizes the gap between the soft value functions of the
optimal policy πθ and that of the expert policy πE. Moreover, Alg.1 can also be easily implemented
with the state-only reward. In fact, the entire algorithm essentially stays the same, and the only
change is that r(s, a; θ) will be replaced by r(s; θ). In this way, by only using the visited states in the
trajectories, one can still compute the stochastic gradient estimator in (7). Therefore, even under the
state-only IRL setting where the expert dataset only contains visited states, our formulation and the
proposed algorithm still work if we parameterize the reward as a state-only function.

7 Numerical Results

In this section, we test the performance of our algorithm on a diverse collection of RL tasks and
environments. In each experiment set, we train algorithms until convergence and average the scores
of the trajectories over multiple random seeds. The hyperparameter settings and simulation details
are provided in Appendix B.

MuJoCo Tasks For Inverse Reinforcement Learning. In this experiment set, we test the
performance of our algorithm on imitating the expert behavior. We consider several high-dimensional
robotics control tasks in MuJoCo [44]. Two class of existing algorithms are considered as the
comparison baselines: 1) imitation learning algorithms that only learn the policy to imitate the
expert, including Behavior Cloning (BC) [45] and Generative Adversarial Imitation Learning (GAIL)
[10]; 2) IRL algorithms which learn a reward function and a policy simultaneously, including
Adversarial Inverse Reinforcement Learning (AIRL) [11], f -IRL [14] and IQ-Learn [2]. To ensure
fair comparison, all imitation learning / IRL algorithms use soft Actor-Critic [22] as the base RL
algorithm. For the expert dataset, we use the data provided in the official implementation2 of f -IRL.

In this experiment, we implement two versions of our proposed algorithm: ML-IRL(State-Action)
where the reward is parameterized as a function of state and action; ML-IRL(State-Only) which
utilizes the state-only reward function. In Table 1, we present the simulation results under a limited
data regime where the expert dataset only contains a single expert trajectory. The scores (cumulative
rewards) reported in the table is averaged over 6 random seeds. In each random seed, we train
algorithm from initialization and collect 20 trajectories to average their cumulative rewards after the
algorithms converge. The results reported in Table 1 show that our proposed algorithms outperform
the baselines. The numerical results with confidence intervals are in Table 3 (See Appendix).

We observe that BC fails to imitate the expert’s behavior. It is due to the fact that BC is based on
supervised learning and thus could not learn a good policy under such a limited data regime. Moreover,
we notice the training of IQ-Learn is unstable, which may be due to its inaccurate approximation to
the soft Q-function. Therefore, in the MuJoCo tasks where IQ-Learn does not perform well, so that
we cannot match the results presented in the original paper [2], we directly report results from there
(and mark them by ∗ in Table 1). The results of AIRL are not presented in Table 1 since it performs
poorly even after spending significant efforts in parameter tuning (similar observations have been
made in in [46, 14]).

Transfer Learning Across Changing Dynamics. We further evaluate IRL algorithms on the transfer
learning setting. We follows the environment setup in [11], where two environments with different
dynamics are considered: Custom-Ant vs Disabled-Ant. We compare ML-IRL(State-Only) with
several existing IRL methods: 1) AIRL [11], 2) f -IRL [14]; 3) IQ-Learn [2].

2https://github.com/twni2016/f-IRL

8

https://github.com/twni2016/f-IRL

Task BC GAIL IQ-Learn f -IRL ML-IRL ML-IRL Expert
(State-Only) (State-Action)

Hopper 20.49 2815.59 2981.01 3074.55 3089.79 3121.68 3592.63
Half-Cheetah -1.87 3301.52 4175.88 4375.88 4472.85 4086.92 5098.3

Walker -14.01 1112.79 3961.42 4464.20 4380.17 4504.88 5344.21
Ant 760.46 1154.27 4362.90∗ 4571.71 4675.34 4984.34 5926.18

Humanoid 78.48 3016.40 5227.10∗ 5243.90 5390.31 5240.57 5351.08

Table 1: MuJoCo Results. The performance of benchmark algorithms under a single expert trajectory.

We consider two transfer learning settings: 1) data transfer; 2) reward transfer. For both settings, the
expert dataset / trajectories are generated in Custom-Ant. In the data transfer setting, we train IRL
agents in Disabled-Ant by using the expert trajectories, which are generated in Custom-Ant. In
the reward transfer setting, we first use IRL algorithms to infer the reward functions in Custom-Ant,
and then transfer these recovered reward functions to Disabled-Ant for further evaluation. In both
settings, we also train SAC with the ground-truth reward in Disabled-Ant and report the scores.

The numerical results are reoprted in Table 2. the proposed ML-IRL(State-Only) achieves superior
performance compared with the existing IRL benchmarks in both settings. We notice that IQ-Learn
fails in both settings since it indirectly recovers the reward function from a soft Q-function
approximator, which could be inaccurate and is highly dependent upon the environment dynamics.
Therefore, the reward function recovered by IQ-Learn can not be disentangled from the expert actions
and environment dynamics, which leads to its failures in the transfer learning tasks.

Setting IQ-Learn AIRL f -IRL ML-IRL(State-Only) Groud-Truth
Data Transfer -11.78 -5.39 188.85 221.51 320.15

Reward Transfer -1.04 130.3 156.45 187.69 320.15
Table 2: Transfer Learning. The performance of benchmark algorithms under a single expert trajectory. The
scores in the table are obtained similarly as in Table 1.

8 Conclusion

In this paper, we present a maximum likelihood IRL formulation and propose a provably efficient
algorithm with a single-loop structure. To our knowledge, we provide the first non-asymptotic
analysis for IRL algorithm under nonlinear reward parameterization. As a by-product, when we
parameterize the reward as a state-only function, our algorithm could work in state-only IRL setting
and enable reward transfer to new environments with different dynamics. Our algorithm outperforms
existing IRL methods on high-dimensional robotics control tasks and corresponding transfer learning
settings. A limitation of our method is the requirement for online training, so one future direction of
this work is to further extend our algorithm and the theoretical analysis to the offline IRL setting.

Potential Negative Social Impacts

Since IRL methods aim to recover the reward function and the associated optimal policy from the
observed expert dataset, potential negative social impacts may occur if there are bad demonstrations
included in the expert dataset. Thus, for sensitive applications such as autonomous driving and
clinical decision support, additional care should be taken to avoid negative biases from the expert
demonstrations and ensure safe adaptation.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. M. Hong and S. Zeng are partially
supported by NSF grants CIF-1910385, CMMI-1727757, and AFOSR grant 19RT0424. A. Garcia
would like to acknowledge partial support from grant FA9550-19-1-00347 by AFOSR.

9

References
[1] S. Reddy, A. D. Dragan, and S. Levine, “SQIL: Imitation learning via reinforcement learning

with sparse rewards,” in International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=S1xKd24twB

[2] D. Garg, S. Chakraborty, C. Cundy, J. Song, and S. Ermon, “Iq-learn: Inverse soft-q learning
for imitation,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[3] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters, An Algorithmic
Perspective on Imitation Learning, ser. Foundations and Trends in Robotics, 2018, vol. 7.

[4] K. Kim, S. Garg, K. Shiragur, and S. Ermon, “Reward identification in inverse reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2021, pp. 5496–5505.

[5] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum entropy inverse
reinforcement learning.” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[6] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction via the principle of maximum
causal entropy,” in International Conference on Machine Learning, 2010.

[7] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse reinforcement
learning,” arXiv preprint arXiv:1507.04888, 2015.

[8] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models,” arXiv preprint
arXiv:1611.03852, 2016.

[9] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control via
policy optimization,” in International Conference on Machine Learning. PMLR, 2016, pp.
49–58.

[10] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in Neural Information
Processing Systems, vol. 29, 2016.

[11] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial inverse reinforcement
learning,” arXiv preprint arXiv:1710.11248, 2017.

[12] M. Chen, Y. Wang, T. Liu, Z. Yang, X. Li, Z. Wang, and T. Zhao, “On computation and
generalization of generative adversarial imitation learning,” arXiv preprint arXiv:2001.02792,
2020.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in Neural Information Processing Systems,
vol. 27, 2014.

[14] T. Ni, H. Sikchi, Y. Wang, T. Gupta, L. Lee, and B. Eysenbach, “f-irl: Inverse reinforcement
learning via state marginal matching,” arXiv preprint arXiv:2011.04709, 2020.

[15] K. Kurach, M. Lucic, X. Zhai, M. Michalski, and S. Gelly, “The gan landscape: Losses,
architectures, regularization, and normalization,” 2018.

[16] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson, “Discriminator-actor-critic:
Addressing sample inefficiency and reward bias in adversarial imitation learning,”
in International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=Hk4fpoA5Km

[17] E. T. Jaynes, “Information theory and statistical mechanics,” Physical review, vol. 106, no. 4, p.
620, 1957.

[18] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “The principle of maximum causal entropy for
estimating interacting processes,” IEEE Transactions on Information Theory, vol. 59, no. 4, pp.
1966–1980, 2013.

10

https://openreview.net/forum?id=S1xKd24twB
https://openreview.net/forum?id=Hk4fpoA5Km

[19] M. Bloem and N. Bambos, “Infinite time horizon maximum causal entropy inverse reinforcement
learning,” in 53rd IEEE conference on decision and control. IEEE, 2014, pp. 4911–4916.

[20] Z. Zhou, M. Bloem, and N. Bambos, “Infinite time horizon maximum causal entropy inverse
reinforcement learning,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 2787–2802,
2017.

[21] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep energy-based
policies,” in International Conference on Machine Learning. PMLR, 2017, pp. 1352–1361.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1861–1870.

[23] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework for
bilevel optimization: Complexity analysis and application to actor-critic,” arXiv preprint
arXiv:2007.05170, 2020.

[24] K. Ji, J. Yang, and Y. Liang, “Bilevel optimization: Convergence analysis and enhanced design,”
in International Conference on Machine Learning. PMLR, 2021, pp. 4882–4892.

[25] P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A near-optimal algorithm
for stochastic bilevel optimization via double-momentum,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[26] V. Jain, P. Doshi, and B. Banerjee, “Model-free irl using maximum likelihood estimation,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
3951–3958.

[27] N. Sanghvi, S. Usami, M. Sharma, J. Groeger, and K. Kitani, “Inverse reinforcement learning
with explicit policy estimates,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 11, 2021, pp. 9472–9480.

[28] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence of natural policy
gradient methods with entropy regularization,” Operations Research, 2021.

[29] S. Cayci, N. He, and R. Srikant, “Linear convergence of entropy-regularized natural policy
gradient with linear function approximation,” arXiv preprint arXiv:2106.04096, 2021.

[30] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap between value and
policy based reinforcement learning,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[31] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in Neural Information Processing
Systems, vol. 12, 1999.

[32] Y. F. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite-time analysis of two time-scale actor-critic
methods,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 617–17 628,
2020.

[33] V. S. Borkar, “Stochastic approximation with two time scales,” Systems & Control Letters,
vol. 29, no. 5, pp. 291–294, 1997.

[34] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal difference learning
with linear function approximation,” in Conference on learning theory. PMLR, 2018, pp.
1691–1692.

[35] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with linear function
approximation,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[36] C. Jin, P. Netrapalli, and M. Jordan, “What is local optimality in nonconvex-nonconcave
minimax optimization?” in International Conference on Machine Learning. PMLR, 2020, pp.
4880–4889.

11

[37] Z. Guan, T. Xu, and Y. Liang, “When will generative adversarial imitation learning algorithms
attain global convergence,” in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 1117–1125.

[38] T. Chen, Y. Sun, and W. Yin, “Closing the gap: Tighter analysis of alternating stochastic gradient
methods for bilevel problems,” Advances in Neural Information Processing Systems, vol. 34, pp.
25 294–25 307, 2021.

[39] C. Yu, J. Liu, S. Nemati, and G. Yin, “Reinforcement learning in healthcare: A survey,” ACM
Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–36, 2021.

[40] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep
reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[41] T. Gangwani and J. Peng, “State-only imitation with transition dynamics mismatch,”
in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HJgLLyrYwB

[42] L. Viano, Y.-T. Huang, P. Kamalaruban, A. Weller, and V. Cevher, “Robust inverse reinforcement
learning under transition dynamics mismatch,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[43] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation from observation,” arXiv
preprint arXiv:1807.06158, 2018.

[44] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2012, pp.
5026–5033.

[45] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural network,” Advances in
Neural Information Processing Systems, vol. 1, 1988.

[46] F. Liu, Z. Ling, T. Mu, and H. Su, “State alignment-based imitation learning,”
in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rylrdxHFDr

[47] A. Kamoutsi, G. Banjac, and J. Lygeros, “Efficient performance bounds for primal-dual
reinforcement learning from demonstrations,” in International Conference on Machine Learning.
PMLR, 2021, pp. 5257–5268.

[48] H. Cao, S. Cohen, and L. Szpruch, “Identifiability in inverse reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

[49] R. Wang, C. Ciliberto, P. V. Amadori, and Y. Demiris, “Random expert distillation: Imitation
learning via expert policy support estimation,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6536–6544.

[50] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator imitation learning via
automatically-ranked demonstrations,” in Conference on robot learning. PMLR, 2020, pp.
330–359.

[51] P. Barde, J. Roy, W. Jeon, J. Pineau, C. Pal, and D. Nowrouzezahrai, “Adversarial soft advantage
fitting: Imitation learning without policy optimization,” Advances in Neural Information
Processing Systems, vol. 33, pp. 12 334–12 344, 2020.

[52] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot
navigation via inverse reinforcement learning,” The International Journal of Robotics Research,
vol. 35, no. 11, pp. 1289–1307, 2016.

[53] C. Xia and A. El Kamel, “Neural inverse reinforcement learning in autonomous navigation,”
Robotics and Autonomous Systems, vol. 84, pp. 1–14, 2016.

[54] J. Rust and C. Phelan, “How social security and medicare affect retirement behavior in a world
of incomplete markets,” Econometrica: Journal of the Econometric Society, pp. 781–831, 1997.

12

https://openreview.net/forum?id=HJgLLyrYwB
https://openreview.net/forum?id=rylrdxHFDr

[55] Z. Eckstein and K. I. Wolpin, “Why youths drop out of high school: The impact of preferences,
opportunities, and abilities,” Econometrica, vol. 67, no. 6, pp. 1295–1339, 1999.

[56] E. Duflo, R. Hanna, and S. P. Ryan, “Incentives work: Getting teachers to come to school,”
American Economic Review, vol. 102, no. 4, pp. 1241–78, 2012.

[57] H. Fang and Y. Wang, “Estimating dynamic discrete choice models with hyperbolic discounting,
with an application to mammography decisions,” International Economic Review, vol. 56, no. 2,
pp. 565–596, 2015.

[58] L. Caliendo, M. Dvorkin, and F. Parro, “Trade and labor market dynamics: General equilibrium
analysis of the china trade shock,” Econometrica, vol. 87, no. 3, pp. 741–835, 2019.

[59] C. Cirillo, R. Xu, and F. Bastin, “A dynamic formulation for car ownership modeling,”
Transportation Science, vol. 50, no. 1, pp. 322–335, 2016.

[60] T. Xu, Z. Wang, and Y. Liang, “Improving sample complexity bounds for (natural) actor-critic
algorithms,” Advances in Neural Information Processing Systems, vol. 33, pp. 4358–4369, 2020.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

13

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendix

A Related Works

Under the maximum entropy framework, IRL algorithms [7, 9] are proposed to learn the nonlinear
structure of reward function. In general, these works [5, 7, 9] recover the reward function through
minimizing forward KL divergence in trajectory space. There is one branch of IRL methods which
train a generative adversial netowrk (GAN) [13] to learn the reward function through designing a
specific structure in the discriminator network. In [8], the authors reveal a connection between GAN
and guided cost learning (GCL) [9]. Observing the Lagrangian function of the MaxEnt-IRL [5, 18, 20]
is a min-max problem with convex-nonconcave structure, [12, 37] first swap the optimization order
of the reward parameter and the policy parameter and further regularize the reward parameter for
analyzing the convergence of such constructed nonconcave strongly-convex optimization problem.
In [47], in order to provide a non-asymptotic analysis of the IRL problem, the authors introduce a
bilinear saddlepoint framework through using Lagrangian duality.

Under the MaxEnt-IRL framework, there is a line of works focusing on disentangling the reward
function from the environment dynamics, so that the recovered reward functions could be transferred
across environments with different dynamics. In [11], the authors propose an algorithm called
adversarial inverse reinforcement learning (AIRL). Constructing the estimated reward as a function
which depends on the current state and next state, AIRL enables the agent to learn policies in a
new environment through leveraging the estimated reward function recovered from the training
environment. In [4], the authors prove necessary and sufficient conditions for reward identifiability in
deterministic MDP models with the maximum entropy reinforcement learning objective. In [48], the
authors present a theoretical analysis to show the necessary and sufficient condition to identify an
action-independent time-homogeneous reward function under MaxEnt-IRL.

A recent line of works consider a more challenging setting, where the learner has no access to the
expert environment, and there is a transition dynamics mismatch between the expert and the learner.
In [46], the authors propose a state alignment based imitation learning method so that the imitator
could follow the state sequences in expert demonstrations as much as possible. Arguing that the
expert actions are not efficient demonstrations under transition dynamics mismatch, [41] further
develops a state-only imitation learning method. In [42], the authors revisit the Maximum Causal
Entropy IRL when there is a transition dynamics mismatch between the expert and the learner. A
theoretical analysis is further provided in [42] to show the upper bound on the learner’s performance
degradation, which is measured in terms of the ℓ1-distance between the transition dynamics of the
expert and the learner.

We would like to further introduce several interesting works which seek to make imitating expert
policy more tractable. In [49], the authors utilize random network distillation and propose a new
general framework of imitation learning via expert policy support estimation. In [50], a ranking-based
imitation learning method is proposed and the authors show that such imitation learning method
could outperform the demonstrator. Witnessing the instability of adversarial training, [51] proposes
an imitation learning method without performing any policy optimization steps.

In the end, we introduce the wide applications of inverse reinforcement learning. The problem
of inverse reinforcement learning IRL has been widely in studied by the robotics and artificial
intelligence research communities [52, 53]. It has also been applied (under the label of dynamic
discrete choice estimation) in a wide variety of application domains including modeling of employee
retirement decisions [54], occupational choices and career decisions of young professionals [55],
incentives to get teachers to work [56], adult women’s mammography decisions [57], trade and labor
markets [58], car ownership [59]. The techniques developed in the present paper will enable new
applications to settings with high dimensional state space.

B Experiment Details

B.1 MuJoCo Tasks For Inverse Reinforcement Learning.

In all experiments, we test the performance of benchmark algorithms on Hopper, Half-Cheetah,
Walker, Ant, Humanoid environments from OpenAI Gym. To ensure fair comparison, we use

15

Algorithm 2 Practical Implementation of ML-IRL
Input: Initialize reward parameter θ0 and policy π0. Set the reward parameter’s stepsize as α.
Data Preparation: Collect a dataset D which contains multiple expert trajectories
for k = 0, 1, . . . ,K − 1 do

Policy Update: πk+1 ← several SAC steps under reward function r(·, ·; θk) and policy πk.
Data Sampling I: Sampling expert trajectory τEk := {st, at}t≥0 from the dataset D
Data Sampling II: Sampling agent trajectory τAk := {st, at}t≥0 from the policy πk+1

Estimating Gradient: gk := h(θk; τ
E
k)− h(θk; τ

A
k) where h(θ; τ) :=

∑
t≥0 γ

t∇θr(st, at; θ)
Reward Parameter Update: θk+1 := θk + αgk

end for

an open-source implementation3 of SAC as the base RL algorithm for all imitation learning / IRL
methods. Moreover, Adam is used as the optimizer in SAC.

In SAC, both policy network and Q-network are (64, 64) MLPs with ReLU activation function, and
we set their stepsizes as 3× 10−3. Moreover, in our proposed algorithms, we parameterize the reward
function by a (64, 64) MLPs with ReLU activation function. For the reward network, we use Adam
as the optimizer and the stepsize is set to be 1× 10−4.

We present the practical implementation procedure of our proposed algorithm in Table.2. At each
iteration, we first warm-start both policy network and Q-network in SAC by using the trained neural
networks from the previous iteration. Then, we run 10 episodes in the corresponding MuJoCo
environment to train the policy network and Q-network in SAC. After that, we sample 5 agent
trajectories and expert trajectories to construct the reward gradient estimator, and then update the
reward network by a gradient update.

For the imitation learning / IRL benchmark algorithms, we use their open-source implementations
in our experiments. The official implementations of f -IRL is provided in https://github.com/
twni2016/f-IRL. The offical code base for IQ-Learn is provided in https://github.com/
Div99/IQ-Learn. For the remaining benchmarks including BC, GAIL and AIRL, we refer to a
open-source implementation: https://github.com/KamyarGh/rl_swiss.

B.2 Transfer Learning Across Changing Dynamics.

In this experiment, we follow the setup in [11]. A standard ant (Custom-Ant) and an ant with two
disabled legs (Disabled-Ant) are simulated in MuJoCo. For all benchmark algorithms tested in this
experiment, we follow same network structure and hyperparameter settings described in Section B.1.

3https://github.com/openai/spinningup

16

https://github.com/twni2016/f-IRL
https://github.com/twni2016/f-IRL
https://github.com/Div99/IQ-Learn
https://github.com/Div99/IQ-Learn
https://github.com/KamyarGh/rl_swiss
https://github.com/openai/spinningup

Here, we provide a supplementary experiment result to show the performance of benchmark
algorithms under different number of expert trajectory. The performance of AIRL and IQ-Learn is not
presented in Table 3 since we found their training is unstable (as we have mentioned in Sec.7). The
scores in Hopper are recorded after 1× 106 environment steps and the scores in other environments
are recorded after 2 × 106 environment steps. The scores are reported after 6 independent Monte
Carlo (MC) trials for each algorithm.

Task Hopper
Expert Trajectory 1 5 10
Expert Performance 3592.63 3530.63± 2.73 3531.72± 6.41

BC 20.49± 3.24 104.50± 59.12 378.42± 56.08
GAIL 2815.59± 203.80 2840.71± 166.36 2941.82± 128.34
f -IRL 3074.55± 237.03 3118.49± 83.25 3127.05± 103.60

ML-IRL(State-Only) 3089.79± 18.39 3116.55± 49.54 3039.91± 50.61
ML-IRL(State-Action) 3121.68± 286.58 3200.33± 114.28 2943.42± 271.20

Task Half-Cheetah
Expert Trajectory 1 5 10
Expert Performance 5098.30 5072.53± 145.12 5043.02± 104.32

BC −1.87± 0.24 145.72± 78.45 342.64± 154.97
GAIL 3301.52± 243.79 3465± 178.44 3400.05± 115.92
f -IRL 4375.88± 230.41 4438.96± 365.20 4427.91± 426.64

ML-IRL(State-Only) 4472.85± 166.61 4669.85± 483.51 4653.11± 401.04
ML-IRL(State-Action) 4086.92± 195.30 4338.35± 107.07 4416.79± 61.35

Task Walker
Expert Trajectory 1 5 10
Expert Performance 5344.21 5471.58± 13.93 5471.70± 10.59

BC −14.01± 0.24 285.43± 3.24 450.71± 72.08
GAIL 1112.79± 143.81 3523.42± 487.70 3789.40± 61.62
f -IRL 4464.20± 332.49 4507.58± 254.13 4164.77± 648.66

ML-IRL(State-Only) 4380.17± 393.90 4402.41± 491.72 4541.04± 272.54
ML-IRL(State-Action) 4504.88± 120.82 4027.75± 478.39 4114.00± 732.54

Task Ant
Expert Trajectory 1 5 10
Expert Performance 5926.18 5856.84± 79.48 5901.73± 122.40

BC 760.46± 0.59 942.58± 14.87 1032.70± 73.94
GAIL 1154.27± 422.23 3042.55± 403.72 4233.51± 280.51
f -IRL 4571.71± 169.97 4681.54± 221.83 4574.20± 303.49

ML-IRL(State-Only) 4675.34± 26.03 4632.38± 77.90 4498.31± 212.81
ML-IRL(State-Action) 4984.34± 177.97 5190.48± 159.65 5011.67± 252.75

Task Humanoid
Expert Trajectory 1 5 10
Expert Performance 5351.08 5339.12± 22.21 5343.76± 24.19

BC 78.48± 0.34 532.61± 48.74 582.78± 18.82
GAIL 3016.40± 714.26 3030.25± 594.38 3204.10± 358.88
f -IRL 5243.90± 163.64 5338.20± 122.219 5472.72± 117.21

ML-IRL(State-Only) 5390.31± 161.98 5431.23± 244.17 5257.24± 323.61
ML-IRL(State-Action) 5240.57± 72.18 5251.86± 218.98 5342.98± 608.32

Table 3: MuJoCo Results. The performance versus different number of expert trajectory.

17

C Auxiliary Lemmas

Throughout this section, we assume Assumptions 1 - 2 hold true.

Lemma 4. ([60, Lemma 3]) Consider the initialization distribution η(·) and transition kernel
P(·|s, a). Under η(·) and P(·|s, a), denote dw(·, ·) as the state-action visitation distribution of MDP
with the Boltzman policy parameterized by parameter w. Suppose Assumption 1 holds, for all policy
parameter w and w′, we have

∥dw(·, ·)− dw′(·, ·)∥TV ≤ Cd∥w − w′∥ (13)

where Cd is a positive constant.

Lemma 5. ([21, Theorem 4]) Under a reward function r(·, ·), given a policy π, we define a new
policy π̃ as

π̃(·|s) ∝ exp

(
Qsoft

r,π(s, ·)
)
, ∀ s ∈ S.

For any s ∈ S, a ∈ A, it holds that Qsoft
r,π̃(s, a) ≥ Qsoft

r,π(s, a).

Next, in order to facilitate analysis for entropy-regularized MDPs, we introduce a “soft” Bellman
optimality operator T : R|S|×|A| → R|S|×|A| as follows:

T (Q)(s, a) := r(s, a) + γEs′∼P(·|s,a)

[
max
π(·|s)

Ea′∼π(·|s′) [Q(s′, a′)− log π(a′|s′)]
]
. (14)

In the following lemma, the properties of entropy-regularized MDPs are characterized.

Lemma 6. ([28, Lemma 2]) The operator T as defined in (14) satisfies the properties below:

• T has the following closed-form expression:

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

exp
(
Q(s′, a′)

))]
. (15)

• T is a γ-contraction in the ℓ∞ norm, namely, for any Q1, Q2 ∈ R|S|×|A|, it holds that

∥T (Q1)− T (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞. (16)

• Under a given reward function r(·, ·), the corresponding optimal soft Q-function Qsoft
r,π∗ is a

unique fixed point of the operator T , namely,

T (Qsoft
r,π∗) = Qsoft

r,π∗ (17)

Proof. This Lemma is proved in [28, Lemma]. We refine its analysis as below.

We first show that

Ea∼π(·|s)

[
Q(s, a)− log π(a|s)

]
=
∑
a

π(a|s) log
(
exp(Q(s, a))

π(a|s)

)
(i)

≤ log

(∑
a

exp
(
Q(s, a)

))
(18)

where (i) is from Jensen’s inequality. Moreover, the equality between both sides of (i) holds when the
policy π has the expression π(·|s) ∝ exp(Q(s, ·)). Therefore, through applying the inequality (18)
to (14), it obtains that

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

exp
(
Q(s′, a′)

))]
, (19)

which proves the equality (15).

18

We define ∥Q1−Q2∥∞ := maxs∈S,a∈A |Q1(s, a)−Q2(s, a)| and ϵ = ∥Q1−Q2∥∞. Then for any
s ∈ S and a ∈ A, it follows that

log

(∑
a

exp
(
Q1(s, a)

))
≤ log

(∑
a

exp
(
Q2(s, a) + ϵ

))

= log

(
exp(ϵ)

∑
a

exp
(
Q2(s, a)

))

= ϵ+ log

(∑
a

exp
(
Q2(s, a)

))
Similarly, it is easy to obtain that log

(∑
a exp

(
Q1(s, a)

))
≥ −ϵ+log

(∑
a exp

(
Q2(s, a)

))
. Hence,

it leads to the contraction property that

∥T (Q1)− T (Q2)∥∞ ≤ γϵ = γ∥Q1 −Q2∥∞ (20)

which proves the contraction property (16).

Moreover, we have

T (Qsoft
r,π∗)(s, a)

(i)
= r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

exp
(
Qsoft

r,π∗(s′, a′)
))] (ii)

= Qsoft
r,π∗(s, a) (21)

where (i) follows the equality (19). Based on the defition of the soft Q-function Qsoft
r,π∗ , we have

Qsoft
r,π∗(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
Ea′∼π∗(·|s′)[− log π∗(a′|s′) +Qsoft

r,π∗(s′, a′)]
]
. (22)

We prove the equality (ii) in (21) through combining (22) and the fact that the optimal soft policy has
the closed form π∗(·|s) ∝ exp

(
Qsoft

r,π∗(s, ·)
)
. Suppose two different fixed points of the soft Bellman

operator exist, then it contradicts with the contraction property in (20).

Hence, we proved the uniqueness of the optimal soft Q-function Qsoft
r,π∗ . Moreover, the optimal soft

Q-function Qsoft
r,π∗ is a fixed point to the soft Bellman operator T in (17).

Lemma 7. Suppose Assumption 2 holds. Under an arbitrary policy π, for any s ∈ S , a ∈ A and any
reward parameters θ1 and θ2, the following inequality holds:

|Qsoft
rθ1 ,π

(s, a)−Qsoft
rθ2 ,π

(s, a)| ≤ Lq∥θ1 − θ2∥,

where Lq := Lr

1−γ and Lr is the positive constant in Assumption 2.

Proof. Based on the definition of soft-Q function, we have

Qsoft
r,π(s, a) := r(s, a) + Eπ

[∞∑
t=1

γt

(
r(st, at) +H(π(·|st))

)∣∣∣∣(s0, a0) = (s, a)

]
.

Then it holds that

|Qsoft
rθ1 ,π

(s, a)−Qsoft
rθ2 ,π

(s, a)|

=

∣∣∣∣Eπ

[∞∑
t=0

γt

(
r(st, at; θ1)− r(st, at; θ2)

)]∣∣∣∣
(i)

≤ Eπ

[∞∑
t=0

γt

∣∣∣∣r(st, at; θ1)− r(st, at; θ2)

∣∣∣∣]
(ii)

≤ Eπ

[∞∑
t=0

γt

∥∥∥∥max
θ
∇θr(st, at; θ)

∥∥∥∥ · ∥∥∥∥θ1 − θ2

∥∥∥∥]
(iii)

≤ Eπ

[∞∑
t=0

γtLr∥θ1 − θ2∥
]

=
Lr

1− γ
∥θ1 − θ2∥ (23)

19

where (i) follows Jensen’s inequality; (ii) follows the mean value theorem; (iii) follows inequality
(9a) in Assumption 2.

D Proof of Lemma 1

Proof. First, we are able to express the objective function L(θ) in (ML-IRL) as below:

L(θ) := Eτ∼πE

[∞∑
t=0

γt log πθ(at|st)
]

(i)
= Eτ∼πE

[∞∑
t=0

γt log

(
exp

(
Qsoft

rθ,πθ
(st, at)

)∑
a exp

(
Qsoft

rθ,πθ
(st, a)

))]

where (i) is due to the fact that the optimal policy has the closed form πθ(·|s) ∝ exp
(
Qsoft

rθ,πθ
(s, ·)

)
.

Therefore, we could express the objective function in this form:

L(θ) := Eτ∼πE

[∞∑
t=0

γt

(
Qsoft

rθ,πθ
(st, at)− log

(∑
a

exp
(
Qsoft

rθ,πθ
(st, a)

)))]
(i)
= Eτ∼πE

[∞∑
t=0

γt

(
Qsoft

rθ,πθ
(st, at)− V soft

rθ,πθ
(st)

)]

= Eτ∼πE

[∞∑
t=0

γt

(
r(st, at; θ) + γEst+1∼P(·|st,at)

[
V soft
rθ,πθ

(st+1)
]
− V soft

rθ,πθ
(st)

)]

= Eτ∼πE

[∞∑
t=0

γtr(st, at; θ)

]
+ Eτ∼πE

[∞∑
t=1

γtV soft
rθ,πθ

(st)

]
− Eτ∼πE

[∞∑
t=0

γtV soft
rθ,πθ

(st)

]

= Eτ∼πE

[∞∑
t=0

γtr(st, at; θ)

]
− Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]
(24)

(ii)
= Eτ∼πE

[∞∑
t=0

γtr(st, at; θ)

]
− Es0∼η(·)

[
log

(∑
a

exp
(
Qsoft

rθ,πθ
(s0, a)

))]
(25)

where (i) and (ii) follows the fact that the the optimal soft value function could be expressed as
V soft
rθ,πθ

(s) = log
(∑

a exp
(
Qsoft

rθ,πθ
(s, a)

))
.

Based on (25), we calculate the exact gradient of the objective function L(θ) as below:

∇L(θ) := Eτ∼πE

[∞∑
t=0

γt∇θr(st, at; θ)

]
− Es0∼η(·)

[
∇θ log

(∑
a

exp
(
Qsoft

rθ,πθ
(s0, a)

))]

= Eτ∼πE

[∞∑
t=0

γt∇θr(st, at; θ)

]
− Es0∼η(·)

[∑
a

(
exp

(
Qsoft

rθ,πθ
(s0, a)

)∑
ã exp

(
Qsoft

rθ,πθ
(s0, ã)

)∇θQ
soft
rθ,πθ

(s0, a)

)]

= Eτ∼πE

[∞∑
k=0

γt∇θr(st, at; θ)

]
− Es0∼η(·)

[∑
a

πθ(a|s0)∇θQ
soft
rθ,πθ

(s0, a)

]
(26)

20

Then we need to calculate the gradient∇θQ
soft
rθ,πθ

(s0, a0) as follows.

∇θQ
soft
rθ,πθ

(s0, a0)

(i)
= ∇θ

(
r(s0, a0; θ) + γEs1∼P(·|s0,a0)

[
V soft
rθ,πθ

(s1)

])
(ii)
= ∇θr(s0, a0; θ) + γEs1∼P(·|s0,a0)

[
∇θ log

(∑
a

exp
(
Qsoft

rθ,πθ
(s0, a)

))]

= ∇θr(s0, a0; θ) + γEs1∼P(·|s0,a0)

[∑
a

exp(Qsoft
rθ,πθ

(s1, a))∑
ã exp(Q

soft
rθ,πθ

(s1, ã))
∇θQ

soft
rθ,πθ

(s1, a)

]
(iii)
= ∇θr(s0, a0; θ) + γEs1∼P(·|s0,a0)

[∑
a

πθ(a|s1)∇θQ
soft
rθ,πθ

(s1, a)

]
(iv)
= ∇θr(s0, a0; θ) + γEs1∼P(·|s0,a0),a1∼πθ(·|s1)

[
∇θ

(
r(s1, a1; θ) + γEs2∼P(·|s1,a1)

[
V soft
rθ,πθ

(s2)

])]
(v)
= Eτ∼πθ

[∑
t≥0

∇θr(st, at; θ) | s0, a0
]

(27)

where (i) and (iv) follows the definition of the soft Q-function; (ii) follows the fact that V soft
rθ,πθ

(s) =

log(
∑

a exp(Q
soft
rθ,πθ

(s, a))); (iii) follows the fact that πθ(a|s) ∝ exp(Qsoft
rθ,πθ

(s, a)); (v) is shown by
recursively applying (i) - (iv).

Finally, plugging equation (27) into (26), the gradient of the maximum likelihood objective is:

∇L(θ) = Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ)

]
− Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

]
. (28)

E Proof of Lemma 2

To proof Lemma 2, we proof the equality (10a) and the equality (10b) respectively. The constants Lq

and Lc in Lemma 2 has the expression:

Lq :=
Lr

1− γ
, Lc :=

2LqLrCd

√
|S| · |A|

1− γ
+

2Lg

1− γ
.

E.1 Proof of Inequality (10a)

In this subsection, we prove the inequality (10a) in Lemma 2.

Proof. We show that Qsoft
rθ,πθ

has bounded gradient with respect to any reward parameter θ, then the
inequality (10a) holds due to the mean value theorem. According to the equality (27), we have shown
the explicit expression of ∇θQ

soft
rθ,πθ

(s, a) for any s ∈ S and a ∈ A. Using this expression, we have
the following series of relations:

∥∇θQ
soft
rθ,πθ

(s, a)∥ (i)
=

∥∥∥∥Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

∣∣∣∣(s0, a0) = (s, a)

]∥∥∥∥
(ii)

≤ Eτ∼πθ

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ)

∥∥∥∥ ∣∣∣∣(s0, a0) = (s, a)

]
(iii)

≤ Eτ∼πθ

[∑
t≥0

γtLr

∣∣∣∣(s0, a0) = (s, a)

]
=

Lr

1− γ
(29)

21

where (i) is from the equality (27) in the proof of Lemma 1, (ii) follows Jensen’s inequality and (iii)
follows the inequality (9a) in Assumption 2. To complete this proof, we use the mean value theorem
to show that

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ ∥max
θ
∇θQ

soft
rθ,πθ

(s, a)∥ · ∥θ1 − θ2∥ ≤ Lq∥θ1 − θ2∥

where the last inequality follows (29) and we denote Lq := Lr

1−γ . Therefore, we have proved the
Lipschitz continuous inequality in (10a).

E.2 Proof of Inequality (10b)

In this section, we prove the inequality (10b) in Lemma 2.

Proof. According to Lemma 1, the gradient∇L(θ) is expressed as:

∇L(θ) = Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ)

]
− Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

]
. (30)

Using the above relation, we have

∥∇L(θ1)−∇L(θ2)∥
(i)
=

∥∥∥∥(Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

])
−

(
Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

])∥∥∥∥
≤
∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term A

+

∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term B

(31)

where (i) follows the exact gradient expression in equation (30). Then we separately analyze term A
and term B in (31).

For term A, it follows that∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤ Eτ∼πE

[∑
t≥0

γt
∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥]
(ii)

≤ Eτ∼πE

[∑
t≥0

γtLg∥θ1 − θ2∥
]

=
Lg

1− γ
∥θ1 − θ2∥ (32)

where (i) follows Jensen’s inequality and (ii) is from (9b) in Assumption 2.

22

For the term B, it holds that∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤
∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]∥∥∥∥
+

∥∥∥∥Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(ii)

≤ 1

1− γ

∥∥∥∥E(s,a)∼d(·,·;πθ1
)

[
∇θr(st, at; θ1)

]
− E(s,a)∼d(·,·;πθ2

)

[
∇θr(st, at; θ1)

]∥∥∥∥
+ Eτ∼πθ2

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥∥∥]
(iii)

≤ 1

1− γ

∥∥∥∥ ∑
s∈S,a∈A

∇θr(st, at; θ1)

(
d(s, a;πθ1)− d(s, a;πθ2)

)∥∥∥∥+ Eτ∼πθ2

[∑
k≥0

γkLg∥θ1 − θ2∥
]

(iv)

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ1)∥TV +

Lg

1− γ
∥θ1 − θ2∥ (33)

where (i) follows the triangle inequality, (ii) is from Jensen’s inequality and the definition of the
discounted state-action visitation measure d(s, a;π) := (1− γ)π(a|s)

∑
t≥0 γ

tPπ(st = s|s0 ∼ η);
(iii) is from (9b) in Assumption 2;(iv) is from (9a) and the definition of the total variation norm.

Plugging the inequalities (32), (33) to (31), it holds that

∥∇L(θ1)−∇L(θ2)∥

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ2)∥TV +

2Lg

1− γ
∥θ1 − θ2∥

(i)

≤ 2LrCd

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥+ 2Lg

1− γ
∥θ1 − θ2∥

(ii)

≤
2LrCd

√
|S| · |A|

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥∞ +

2Lg

1− γ
∥θ1 − θ2∥

(iii)

≤
(
2LqLrCd

√
|S| · |A|

1− γ
+

2Lg

1− γ

)
∥θ1 − θ2∥. (34)

Given the fact that πθ is a Boltzmann policy parameterized by Qsoft
rθ,πθ

where πθ(a|s) ∝
exp(Qsoft

rθ,πθ
(s, a)), we show the inequality (i) from the inequality (13) in Lemma 4. Moreover,

the inequality (ii) follows the equivalence relation between Frobenius norm and infinity norm and
(iii) is from the inequality (10a) in Lemma 2.

Define the constant Lc :=
2LqLrCd

√
|S|·|A|

1−γ +
2Lg

1−γ , we have the following inequality:

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥.

Therefore, we complete the proof of the inequality (10b) in Lemma 2.

F Proof of Lemma 3

Proof. Suppose the expert trajectories τ in ML-IRL is sampled from an expert policy πE. Moreover,
we parameterize the state-only reward as r(s; θ). Then the objective function L(θ) in ML-IRL could

23

be rewritten as follows.

L(θ) := Eτ∼πE

[∑
t≥0

γt log πθ(at|st)
]

(i)
= Eτ∼πE

[∞∑
t=0

γtr(st; θ)

]
− Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]
(ii)
= Es0∼η(·)

[
V soft
rθ,πE(s0)

]
− Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]
−H(πE) (35)

where (i) follows (24) and the fact that the reward is a state-only function r(s; θ); (ii) follows the
definitions of the soft value function.

Ignoring the constant term H(πE) in (35), the maximum likelihood formulation (ML-IRL) is
equivalent to the following bi-level problem:

min
θ

Es0∼η(·)
[
V soft
rθ,πθ

(s0)
]
− Es0∼η(·)

[
V soft
rθ,πE (s0)

]
s.t. πθ := argmax

π
Eπ

[∞∑
t=0

γt

(
r(st; θ) +H(π(·|st))

)]
.

Therefore, we complete the proof of Lemma 3. As an alternative interpretation to (ML-IRL), the
formulation above aims to minimize the gap between the soft value function of πθ and πE under the
state-only IRL setting.

24

G Proof of Theorem 1

Proof. Calculate the Lagrangian of MaxEnt-IRL, we obtain that

H(π) +

〈
θ,Eτ∼π

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉
+

∑
s∈S,t≥0

Cst=s

(
1−

∑
a∈A

π(a|st)
)

= Eτ∼π

[∞∑
t=0

−γt log π(at|st = s)

]
+

〈
θ,Eτ∼π

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉

+
∑

s∈S,t≥0

Cst=s

(
1−

∑
a∈A

π(a|st = s)

)
(36)

where θ is the dual variable to ensure the feature matching equality, and Cst=s is the dual variable to
ensure that π is a well-defined policy satisfying

∑
a∈A π(a|st = s) = 1.

Then we could calculate the gradient of (36) w.r.t. π(a|st = s), and set it to 0. Then it holds that

0 = Pπ(st = s)

(
− γt

(
log π(a|st = s) + 1

)
+ Eπ

[∞∑
κ=t

−γκ+1 log π(aκ+1|sκ+1) | st = s, at = a

]

+ θTEπ

[∞∑
κ=t

γκϕ(sκ, aκ)|st = s, at = a

])
− Cst=s. (37)

Dividing γtPπ(st = s) on both sides of (37) and further moving log π(a|st = s) to the left side,
then we have the equality as below:

log π(a|st = s) =

(
− Cst=s

γtPπ(st = s)
− 1

)
+ Eπ

[∞∑
κ=t+1

−γκ−t log π(aκ|sκ) | st = s, at = a

]

+ θTEπ

[∞∑
κ=t

γκ−tϕ(sκ, aκ)|st = s, at = a

]
(38)

Given that − Cst=s

γtPπ(st=s) − 1 is independent of action a, we could express the closed form of
π(a|st = s) as below:

π(a|st = s) ∝ exp

(
Eπ

[∞∑
κ=t+1

−γκ−t log π(aκ|sκ) | st = s, at = a

]
+ θTEπ

[∞∑
κ=t

γκ−tϕ(sκ, aκ)|st = s, at = a

])
.

According to the closed form of the policy above, it shows that π(a|st = s) is a stationary policy
being independent of the time index t. Therefore, it holds that π(a|st = s) = π(a|s) for any t ≥ 0.

Denoting a linearly parameterized reward as r(s, a; θ) := θTϕ(s, a), it holds that

π(a|s) ∝ exp

(
θTEπ

[∞∑
κ=0

γκϕ(sκ, aκ) | s0 = s, a0 = a

]
+ Eπ

[∞∑
κ=0

−γκ+1 log π(aκ+1|sκ+1) | s0 = s, a0 = a

])

= exp

(
Eπ

[∞∑
κ=0

γκr(sκ, aκ; θ) | s0 = s, a0 = a

]
+ Eπ

[∞∑
κ=0

−γκ+1 log π(aκ+1|sκ+1) | s0 = s, a0 = a

])
(39)

Here, the optimal π(a|s) is a function of the dual variables (reward parameters) θ. In the maximum
entropy reinforcement learning [21], under a reward function r(·, ·) and policy π, the soft value
function and soft Q-function are defined as below:

V soft
r,π (s) = Eπ

[∞∑
t=0

γt

(
r(st, at) +H(π(·|st))

)∣∣∣∣s0 = s

]
(40a)

Qsoft
r,π(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
V soft
r,π (s)

]
(40b)

25

Based on the definitions in (40a) - (40b), we could further express the closed form of the policy in
(39) as below:

π(a|s) =
exp

(
Qsoft

rθ,π
(s, a)

)∑
a∈A exp

(
Qsoft

rθ,π
(s, a)

) . (41)

According to [21], under a reward function r(·, ·), the optimal soft policy π satisfies π(·|s) ∝
exp(Qsoft

r,π (s, ·)). Hence, we have shown that the policy in (41) is the optimal policy under the reward
function r(·, ·; θ). After denoting the optimal policy under r(·, ·; θ) as πθ, we have the following
relation:

πθ(a|s) =
exp

(
Qsoft

rθ,πθ
(s, a)

)∑
a∈A exp

(
Qsoft

rθ,πθ
(s, a)

) (a)
=

exp
(
Qsoft

rθ,πθ
(s, a)

)
exp

(
V soft
rθ,πθ

(s)
) = exp

(
Qsoft

rθ,πθ
(s, a)− V soft

rθ,πθ
(s)

)
(42)

where (a) is due to the equality shown as below:

V soft
rθ,πθ

(s) = Ea∼πθ(·|s)

[
− log

(
πθ(a|s)

)
+Qsoft

rθ,πθ
(s, a)

]
= Ea∼πθ(·|s)

[
− log

(
exp

(
Qsoft

rθ,πθ
(s, a)

)∑
a∈A exp

(
Qsoft

rθ,πθ
(s, a)

))+Qsoft
rθ,πθ

(s, a)

]
= log

(∑
a∈A

exp
(
Qsoft

rθ,πθ
(s, a)

))
.

Rewriting the equality (37), we are able to show the expression of Cst=s as below:

Cst=s = Pπ(st = s)

(
− γt

(
log πθ(a|st = s) + 1

)
+ Eπθ

[∞∑
κ=t

−γκ+1 log πθ(aκ+1|sκ+1) | st = s, at = a

]

+ θTEπθ

[∞∑
κ=t

γκϕ(sκ, aκ)|st = s, at = a

])

= γtPπθ (st = s)

(
− 1− log πθ(a|s) + Eπθ

[∞∑
κ=0

−γκ+1 log πθ(aκ+1|sκ+1) | s0 = s, a0 = a

]

+ Eπθ

[∞∑
κ=0

γκr(sκ, aκ; θ)|s0 = s, a0 = a

])
(a)
= γtPπ(st = s)

(
− 1− log πθ(a|s) +Qsoft

rθ,πθ
(s, a)

)
(b)
= γtPπ(st = s)

(
V soft
rθ,πθ

(s)− 1

)
(43)

where (a) follows the definition of the soft Q-function in (40b), and (b) follows (42). According to
(43), we are able to show the exact expression of Cst=s.

26

Plugging πθ and Cst=s into (36), we have

Eτ∼πθ

[∞∑
t=0

−γt log πθ(at|st)
]
+

〈
θ,Eτ∼πθ

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉

+
∑

s∈S,t≥0

Cst=s

(
1−

∑
a∈A

πθ(a|st = s)

)
(a)
= Eτ∼πθ

[∞∑
t=0

−γt log πθ(at|st)
]
+

〈
θ,Eτ∼πθ

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉
(b)
= Eτ∼πθ

[∞∑
t=0

−γt

(
Qsoft

rθ,πθ
(s, a)− V soft

rθ,πθ
(s)

)]
+

〈
θ,Eτ∼πθ

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉
(c)
= Eτ∼πθ

[∞∑
t=0

−γt

(
θTϕ(st, at) + γV soft

rθ,πθ
(st+1)− V soft

rθ,πθ
(st)

)]

+

〈
θ,Eτ∼πθ

[∞∑
t=0

γtϕ(st, at)

]
− Eτ∼πE

[∞∑
t=0

γtϕ(st, at)

]〉

= Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]
− θTEτ∼πE

[∞∑
t=0

γtϕ(st, at)

]
(44)

where (a) is due to the fact that
∑

a∈A πθ(a|st = s) = 1 for all a ∈ A and s ∈ S; (b) follows (42);
(c) is due to the definition of the soft Q-function in (40b). Here, we could further show the problem
in (44) is equivalent to ML-IRL as below:

Eτ∼πE

[∞∑
t=0

γt lnπθ(at|st)
]
=

∞∑
t=0

γt · Eτ∼πE

[
r(st, at; θ) + γV soft

rθ,πθ
(st+1)− V soft

rθ,πθ
(st)

]

= Eτ∼πE

[∞∑
t=0

γtr(st, at; θ)

]
+

∞∑
t=0

γt · Eτ∼πE

[
γV soft

rθ,πθ
(st+1)− V soft

rθ,πθ
(st)

]

= Eτ∼πE

[∞∑
t=0

γtr(st, at; θ)

]
− Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]

= θTEτ∼πE

[∞∑
t=0

γtϕ(st, at)

]
− Es0∼η(·)

[
V soft
rθ,πθ

(s0)

]
(45)

Finally, through combining (44) and (45), we are able to know that the maximum likelihood
formulation ML-IRL is the dual form of MaxEnt-IRL.

27

H Proof of Theorem 2

In this section, we prove (11a) and (11b) respectively, to show the convergence of the lower-level
problem and the upper-level problem.

H.1 Proof of (11a)

Proof. In this proof, we first show the convergence of the lower-level variable {πk}k≥0. Recall that
we approximate the optimal policy πθk by πk+1 at each iteration k. We first analyze the approximation
error between πθk and πk+1 as follows. For any s ∈ S and a ∈ A, we have the following relation:∣∣ log (πk+1(a|s)

)
− log

(
πθk(a|s)

)∣∣
(i)
=

∣∣∣∣ log(exp
(
Qsoft

rθk ,πk
(s, a)

)∑
ã exp

(
Qsoft

rθk ,πk
(s, ã)

))− log

(exp
(
Qsoft

rθk ,πθk
(s, a)

)∑
ã exp

(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣
(ii)

≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+ ∣∣∣∣ log(∑
ã

exp
(
Qsoft

rθk ,πk
(s, ã)

))
− log

(∑
ã

exp
(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣
(46)

where (i) follows (5) and the fact that πθ(a|s) ∝ exp(Qsoft
rθ,πθ

(s, a)); (ii) follows the triangle inequality.
We further analyze the second term in (46).

We first denote the operator log(∥ exp(v)∥1) := log(∥
∑

ã∈A exp(vã)∥1), where the vector v ∈ R|A|

and v = [v1, v2, · · · , v|A|]. Then for any v′, v′′ ∈ R|A|, we have the following relation:∣∣ log (∥ exp(v′)∥1)− log
(
∥ exp(v′′)∥1

) (i)
=
〈
v′ − v′′,∇v log

(
∥ exp(v)∥1

)
|v=vc

〉
≤ ∥v′ − v′′∥∞ · ∥∇v log

(
∥ exp(v)∥1

)
|v=vc∥1

(ii)
= ∥v′ − v′′∥∞ (47)

where (i) follows the mean value theorem and vc is a convex combination of v′ and v′′; (ii) follows
the following equalities:

[∇v log
(
∥ exp(v)∥1

)
]i =

exp(vi)∑
1≤a≤|A| exp(va)

, ∥∇v log
(
∥ exp(v)∥1

)
∥1 = 1, ∀v ∈ R|A|.

Through plugging (47) into (46), it holds that∣∣ log (πk+1(a|s)
)
− log

(
πθk(a|s)

)∣∣
≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+max
ã∈A

∣∣Qsoft
rθk ,πk

(s, ã)−Qsoft
rθk ,πθk

(s, ã)
∣∣ (48)

Taking the infinity norm over R|S|·|A|, the following result holds:

∥ log πk+1 − log πθk∥∞ ≤ 2∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ (49)

where ∥ log πk+1 − log πθk∥∞ = maxs∈S,a∈A | log πk+1(a|s) − log πθk(a|s)| and ∥Qsoft
rθk ,πk

−
Qsoft

rθk ,πθk
∥∞ = maxs∈S,a∈A |Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)|.

Based on the inequality (49), we analyze ∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ to show the convergence of the
policy estimates. It leads to the following analysis:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
= ∥Qsoft

rθk ,πk
−Qsoft

rθk ,πθk
+Qsoft

rθk−1
,πθk−1

−Qsoft
rθk−1

,πθk−1
+Qsoft

rθk−1
,πk
−Qsoft

rθk−1
,πk
∥∞

≤ ∥Qsoft
rθk ,πθk

−Qsoft
rθk−1

,πθk−1
∥∞ + ∥Qsoft

rθk−1
,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + ∥Qsoft
rθk ,πk

−Qsoft
rθk−1

,πk
∥∞

(i)

≤ Lq∥θk − θk−1∥+ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + ∥Qsoft
rθk ,πk

−Qsoft
rθk−1

,πk
∥∞

(ii)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (50)

28

where (i) is from (10a) in Lemma 2; (ii) follows Lemma 7. Based on (50), we further analyze the two
terms in (50) as below.

Recall Lemma 6, we have the “soft” Bellman operator expressed as below:

Tθ(Q)(s, a) = r(s, a; θ) + γEs′∼P (·|s′,a′)

[
log

(∑
a′

exp
(
Q(s′, a′)

))]
(51)

According to the soft Bellman operator, it holds that

Qsoft
rθk ,πk+1

(s, a) = r(s, a; θk) + γEs′∼P(·|s,a)[V
soft
rθk ,πk+1

(s′)]

= r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[− log πk+1(a
′|s′) +Qsoft

rθk ,πk+1
(s′, a′)]

(i)

≥ r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[− log πk+1(a
′|s′) +Qsoft

rθk ,πk
(s′, a′)]

(ii)
= r(s, a; θk) + γEs′∼P(·|s,a)

[
log

(∑
a′

exp
(
Qsoft

rθk ,πk
(s′, a′)

))]
(iii)
= Tθk(Qsoft

rθk ,πk
)(s, a) (52)

where (i) follows the policy improvement result in Lemma 5, (ii) follows the definition πk+1(a|s) :=
exp
(
Qsoft

rθk
,πk

(s,a)
)

∑
ã exp

(
Qsoft

rθk
,πk

(s,ã)
) in (5); (iii) follows the definition of the soft Bellman operator in (51).

For any s ∈ S and a ∈ A, it holds that

0
(i)

≤ Qsoft
rθk ,πθk

(s, a)−Qsoft
rθk ,πk+1

(s, a)
(ii)

≤ Qsoft
rθk ,πθk

(s, a)− Tθk(Qsoft
rθk ,πk

)(s, a) (53)

where (i) is due to the fact that πθk is the optimal policy under reward parameter θk; (ii) is from (52).

Hence, it further leads to

∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk+1

∥∞
(i)

≤ ∥Qsoft
rθk ,πθk

− Tθk(Qsoft
rθk ,πk

)∥∞
(ii)
= ∥Tθk(Qsoft

rθk ,πθk
)− Tθk(Qsoft

rθk ,πk
)∥∞

(iii)

≤ γ∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk

∥∞ (54)

where (i) is from (53); (ii) is from the fixed-point property in (17); (iii) is from the contraction
property in (16). Therefore, we have the following result:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥
(ii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (55)

where (i) is from (50); (ii) is from (54).

To show the convergence of the soft Q-function based on (55), we further analyze the error between
the reward parameters θk and θk−1. Recall in Alg.1, the updates in reward parameters follows (8):

θk = θk−1 + αgk−1

= θk−1 + α
(
h(θk−1, τ

E
k−1)− h(θk−1, τ

A
k−1)

)
where we denote τ = {(st, at)}∞t=0, h(θ, τ) :=

∑
t≥0 γ

t∇θr(st, at; θ) and gk−1 is the stochastic
gradient estimator at iteration k − 1. Here, τEk−1 denotes the trajectory sampled from the expert’s
dataset D at iteration k − 1 and τAk−1 denotes the trajectory sampled from the agent’s policy πk at
time k − 1. Then according to the inequality (9a) in Assumption 2, we could show that

∥gk−1∥ ≤ ∥h(θk−1, τ
E
k−1)∥+ ∥h(θk−1, τ

A
k−1)∥ ≤ 2Lr

∑
t≥0

γt =
2Lr

1− γ
= 2Lq (56)

29

where the last equality follows the fact that we have defined the constant Lq := Lr

1−γ . Then we could
further show that

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥
(ii)
= γ∥Qsoft

rθk−1
,πk−1

−Qsoft
rθk−1

,πθk−1
∥∞ + 2αLq∥gk−1∥

(iii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 4αL2
q (57)

where (i) is from (55); (ii) follows the reward update scheme in (8); (iii) is from (56).

Summing the inequality (57) from k = 1 to k = K, it holds that

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ + 4αKL2
q (58)

Rearranging the inequality (58) and divided (58) by K on both sides, it holds that

1− γ

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤
γ

K

(
∥Qsoft

rθ0 ,π0
−Qsoft

rθ0 ,πθ0
∥∞ − ∥Qsoft

rθK ,πK
−Qsoft

rθK ,πθK
∥∞
)
+ 4αL2

q

(59)

Dividing the constant 1− γ on both sides of (59), it holds that

1

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤
γC0

K(1− γ)
+

4L2
q

1− γ
α

where we denote C0 := ∥Qsoft
rθ0 ,π0

−Qsoft
rθ0 ,πθ0

∥∞. We could also write the inequality above as

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞

≤ γC0

T (1− γ)
+

C0

T
−
∥Qsoft

rθK ,πK
−Qsoft

rθK ,πθK
∥∞

K
+

4L2
q

1− γ
α

≤ C0

T (1− γ)
+

4L2
q

1− γ
α.

Recall the stepsize is defined as α = α0

Tσ where σ > 0. Then we have the following result:

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ). (60)

With the inequality (49), it follows that

1

K

K−1∑
k=0

∥ log πk+1 − log πθk∥∞ ≤
2

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ).

Therefore, we complete the proof of (11a) in Theorem 2.

H.2 Proof of (11b)

Proof. In this part, we prove the convergence of reward parameters {θk}k≥0.

30

We have the following result of the objective function L(θ):

L(θk+1)
(i)

≥ L(θk) + ⟨∇L(θk), θk+1 − θk⟩ −
Lc

2
∥θk+1 − θk∥2

(ii)
= L(θk) + α⟨∇L(θk), gk⟩ −

Lcα
2

2
∥gk∥2

= L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 −
Lcα

2

2
∥gk∥2

(iii)

≥ L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 − 2LcL
2
qα

2 (61)

where (i) is from the Lipschitz smooth property in (10b) of Lemma 2; (ii) follows the update scheme
(8); (iii) is from constant bound in (56).

Taking an expectation over the both sides of (61), it holds that

E [L(θk+1)]

≥ E [L(θk)] + αE
[
⟨∇L(θk), gk −∇L(θk)⟩

]
+ αE

[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2

= E [L(θk)] + αE
[
⟨∇L(θk),E

[
gk −∇L(θk)

∣∣θk]⟩]+ αE
[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2

(i)
= E [L(θk)] + αE

[〈
∇L(θk),Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θt)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θt)

]〉]

+ αE
[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2

(ii)

≥ E [L(θk)]− 2αLq E

∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]∥∥∥∥


︸ ︷︷ ︸
term A

+ αE
[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2 (62)

where (i) follows (6) and (7); (ii) is due to the fact that ∥∇L(θ)∥ ≤ 2Lq .

Then we further analyze the term A as below:

E

∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]∥∥∥∥


(i)
= E

[∥∥∥∥ 1

1− γ
E(s,a)∼d(·,·;πθk

)

[
∇θr(s, a; θk)

]
− 1

1− γ
E(s,a)∼d(·,·;πk+1)

[
∇θr(s, a; θk)

]∥∥∥∥]
(ii)

≤ 2

1− γ
· max
s∈S,a∈A

∥∇θr(s, a; θk)∥ · E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iii)

≤ 2Lr

1− γ
E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iv)

≤ 2LqCdE
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥
]

(v)

≤ 2LqCd

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]

(63)

where (i) follows the definition d(s, a;π) = (1 − γ)π(a|s)
∑

t≥0 γ
tPπ(st = s|s0 ∼ η); (ii) is

due to distribution mismatch between two visitation measures; (iii) follows the inequality (9a) in
Assumption 2; the inequality (iv) follows Lemma 4 and the fact that πθk(·|s) ∝ exp

(
Qsoft

rθk ,πθk
(s, ·)

)
,

πk+1(·|s) ∝ exp
(
Qsoft

rθk ,πk
(s, ·)

)
and the constant Lq := Lr

1−γ ; (v) follows the conversion between

31

Frobenius norm and infinity norm. Through plugging the inequality (63) into (62), it leads to

E [L(θk+1)]

≥ E [L(θk)]− 2αLqE

∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)
]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)
]∥∥

+ αE
[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2

(i)

≥ E [L(θk)]− 4αCdL
2
q

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ αE

[
∥∇L(θk)∥2

]
− 2LcL

2
qα

2

where (i) follows the inequality (63).

Rearranging the inequality above and denote C1 := 4CdL
2
q

√
|S| · |A|, it holds that

αE
[
∥∇L(θk)∥2

]
≤ 2LcL

2
qα

2 + αC1E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θk+1)− L(θk)

]
Summing the inequality above from k = 0 to K − 1 and dividing both sides by αK, it holds that

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
≤ 2LcL

2
qα+

C1

K

K−1∑
k=0

E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θK)− L(θ0)

Kα

]
(64)

Note that the log-likelihood function L(θK) is negative and L(θ0) is a bounded constant. Then we
could plug (60) into (64), it holds that

1

K

K−1∑
K=0

E
[
∥∇L(θK)∥2

]
= O(K−σ) +O(K−1) +O(K−1+σ) (65)

which completes the proof for the inequality (11b).

32

	Introduction
	Preliminaries
	Problem Formulation
	The Proposed Algorithm
	Theoretical Analysis
	A Discussion over State-Only Reward
	Numerical Results
	Conclusion
	Related Works
	Experiment Details
	MuJoCo Tasks For Inverse Reinforcement Learning.
	Transfer Learning Across Changing Dynamics.

	Auxiliary Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Inequality (10a)
	Proof of Inequality (10b)

	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of (11a)
	Proof of (11b)

