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ABSTRACT

With the rise of medical foundation models and the growing availability of imag-
ing data, scalable pretraining techniques offer a promising way to identify imaging
biomarkers predictive of future disease risk. While current self-supervised meth-
ods for 3D medical imaging models capture local structural features like organ
morphology, they fail to link pixel biomarkers with long-term health outcomes
due to a missing context problem. Current approaches lack the temporal context
necessary to identify biomarkers correlated with disease progression, as they rely
on supervision derived only from images and concurrent text descriptions. To
address this, we introduce time-to-event pretraining, a pretraining framework for
3D medical imaging models that leverages large-scale temporal supervision from
paired, longitudinal electronic health records (EHRs). Using a dataset of 18,945
CT scans (4.2 million 2D images) and time-to-event distributions across thousands
of EHR-derived tasks, our method improves outcome prediction, achieving an av-
erage AUROC increase of 23.7% and a 29.4% gain in Harrell’s C-index across 8
benchmark tasks. Importantly, these gains are achieved without sacrificing diag-
nostic classification performance. This study lays the foundation for integrating
longitudinal EHR and 3D imaging data to advance clinical risk prediction.

1 INTRODUCTION

Foundation models for medical imaging have the potential to transform healthcare by assisting doc-
tors in complex clinical decision making (Saab et al., 2024; Sox et al., 2024) and identifying novel
pixel biomarkers predictive of future disease risk (Pai et al., 2024; Sriram et al., 2021). Such models
rely on self-supervised learning (SSL) for obtaining supervision at the scale required to train on
growing collections of 3D data (e.g., CT scans, MRIs). SSL captures local structural features by
leveraging pretraining signal directly from images or cross-modal pairs (e.g., images and their text
descriptions) (Zhang et al., 2022). While excelling at segmentation tasks and diagnostic classifi-
cation of pathologies (Pinto-Coelho, 2023), SSL fails to learn prognostic biomarkers because the
current pretraining regimens suffer from a missing context problem (see Figure 1). This issue arises
when supervision sources are restricted to narrow time windows around the image, thus excluding

∗Authors contributed equally. A detailed contribution breakdown is in Appendix C.
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long-term temporal patterns that are correlated with disease progression, which limits a model’s
ability to identify prognostic biomarkers.

These long-term temporal patterns, which we refer to as longitudinal context, are readily available
in a patient’s electronic health record (EHR) which is routinely used by clinicians to guide the
interpretation of images and inform treatment planning (Leslie et al., 2000; Holste et al., 2024).
Longitudinal EHRs contain temporal information about the progression of disease, as well as years
of patients’ health outcomes. However, the full breadth of these outcome data, in terms of temporal
structure and task diversity, is rarely used as a source of supervision when training image foundation
models. Current approaches for training 3D imaging models typically restrict labels to diagnosis
codes sourced from the same or nearby temporal context as the image and its textual description
(Blankemeier et al., 2024). Because EHR data is readily available, it offers an untapped resource for
large-scale pretraining of medical image models in a manner that uses long-term temporal context.
More generally, image foundation models must reflect the settings in which they will be used, which
is to assist in prognosis in the clinic (Negro-Calduch et al., 2021; Yala & Hughes, 2023).

However, performing effective risk estimation using imaging models involves navigating several
challenges. Developing such models requires capturing correlations between pixels and outcomes
spanning years, which is difficult with current SSL methods. Direct approaches to identifying pixel-
level biomarkers, such as sequential image capturing (Lu et al., 2021; Bera et al., 2022), are difficult
to scale for collecting large, high-quality datasets. Moreover, conducting risk estimation requires
addressing right censoring, where the outcome of interest remains unobserved by the study’s end.
Naively excluding censored patients introduces bias and reduces available training data.

In medicine, time-to-event (TTE) modeling (also known as survival modeling) is commonly used
to estimate future risk of an outcome at a specific time point conditioned on feature representations.
Although TTE models offer many theoretical advantages, including the ability to estimate instanta-
neous risk at any given time point (Collett, 2023) and naturally handling right censoring (Kleinbaum
& Klein, 1996), their use in image pretraining remains underexplored. Prior deep learning studies
exploring TTE modeling in medical imaging have been restricted to small-scale, single-task appli-
cations, typically using 2D, end-to-end models (Zhu et al., 2016; Shu et al., 2021; Lu et al., 2021).
3D medical imaging data remains an underutilized resource, offering a wealth of biomarkers that
could enhance clinical decision tools, particularly for the opportunistic detection of underdiagnosed
conditions (Aali et al., 2024). However, large-scale TTE pretraining for 3D imaging has not yet been
investigated, likely because multimodal medical datasets linking 3D images with longitudinal EHR
data have only recently become available (Huang et al., 2024).

In this work, we propose time-to-event pretraining for medical imaging models as a way to address
the missing context problem. Our central claim is that temporal supervision, defined by TTE distri-
butions sourced from longitudinal EHRs, provides a readily available, scalable source of contextual
information for pretraining that better captures prognostic pixel biomarkers. Moreover, by naturally
handling right-censorship, TTE-based methods improve data efficiency and mitigate censorship bias.
Our contributions are as follows:

• We present the first large-scale evaluation of time-to-event pretraining for 3D medical imaging
encoders. We use a public dataset of 18,945 chest CT scans (equivalent to 4.2 million 2D images)
linked to longitudinal EHR data containing 225M clinical events with a median follow-up time of
5 years.

• Our approach converts longitudinal EHR data into a source of time-to-event supervision, thus
predicting not only if a clinical event will occur but also when. This richer pretraining signal goes
beyond diagnostic classification explored in prior work and enables generating many pretrain-
ing tasks (8,192 in this work) that capture the temporal event structure available in longitudinal
EHR data. This choice also increase per-image label density by an average of 3 times over prior
approaches.

• Our approach substantially improves performance in predicting future medical outcomes, achiev-
ing on average a 23.7% increase in AUROC and a 29.4% improvement in Harrell’s C-index over
baseline models for 8 benchmark tasks without negatively impacting diagnostic classification
performance in 8 external tasks. Our approach also improves model calibration, measured by the
Integrated Brier Score, by an average of 54%.
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All our experiments are conducted using public medical datasets to ensure full reproducibility. We
also make all of our experiment code and pretrained model checkpoints available for download 1 2, to
contribute to the community for continued pretraining of imaging foundation models with prognosis
as added benefit.

Sources of Pretraining Supervision 
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Figure 1: The missing context problem in medical imaging. Existing supervision sources (red boxes)
are localized to the image itself (i.e., pixel features and descriptions of those features via text) or
immediate clinical context via diagnosis codes. Doing so misses future information on disease pro-
gression (black boxes), which reduces the ability to learn correlations necessary for identifying
prognostic pixel biomarkers. Time-to-event pretraining provides a principled framework for incor-
porating the vast amount of temporal supervision available in EHR data to estimate future risk in
the presence of right censorship as well as leverage a large, diverse number of clinical tasks, beyond
just diagnoses, for pre-training.

2 RELATED WORK

Time-to-Event Modeling with Medical Images Time-to-event (TTE) modeling, also known as
survival analysis, predicts the distribution of time until a specific event occurs, such as death. TTE
models primarily include accelerated failure time models, which assume various probability distri-
butions, e.g., exponential (Saikia & Barman, 2017), Weibull (Breheny, 2015), and Cox proportional
hazard (Cox-PH) models (Cox, 1972) which is a semi-parametric approach with a constant hazard
ratio assumption. Non-parametric models like random survival forests (Ishwaran et al., 2008) cap-
ture non-linear interactions. In the deep learning era, methods such as DeepSurv (Katzman et al.,
2018) and MOTOR (Steinberg et al., 2024) provide higher level feature learning, making TTE mod-
eling easier to extend to complex inputs such as medical images. Prior TTE methods for imaging
assume 2D and 2.5D model architectures and have focused on end-to-end training for small-scale,
single-task models. DeepConvSurv (Zhu et al., 2016) was the first work to replace the log-partial
hazard (the exponential component of a Cox model) with a CNN, enabling survival prediction di-
rectly from 2D images. Similarly, Shu et al. (2021) and Lu et al. (2021) modeled the log-partial
hazard with a CNN-RNN to encode sequential images.

Pretraining for 3D Medical Image Models Although early work in medical imaging relied on
supervised pretraining using general-domain datasets such as ImageNet (Xie & Richmond, 2018; Ke
et al., 2021), self-supervised learning (SSL) is now the predominate approach to scaling pretraining
in medical imaging models. Popular approaches include reconstruction or de-noising objectives via
masked autoencoders (MAE) (He et al., 2022), contrastive losses defined over paired samples (Chen
et al., 2020; Sowrirajan et al., 2021) or leveraging multimodal pairs, such as medical images and their
aligned text descriptions (Radford et al., 2021; Zhang et al., 2022) or unpaired medical images and
text (Wang et al., 2022). SSL methods face added challenges when extended to 3D imaging, where
instances (e.g., CT scans) contain over 100 times more pixel data than 2D counterparts like radio-
graphs. Tang et al. (2022) combined unimodal contrastive learning, masked volume in-painting, and

1https://github.com/som-shahlab/tte-pretraining
2https://huggingface.co/StanfordShahLab
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Figure 2: Overview of the proposed time-to-event pretraining pipeline. Patients’ longitudinal EHR
timelines are transformed into large-scale, time-to-event (TTE) pretraining tasks. These tasks, which
reflect informative temporal patterns for medical outcome prediction, are then used for continued
pretraining (full fine-tuning) of a 3D vision encoder. The resulting encoder is then frozen and
adapted to downstream tasks via different task heads for classification or TTE estimation.

image rotation prediction to learn 3D structural information. Chen et al. (2023) explored 3D masked
image modeling, demonstrating faster convergence compared to simple contrastive methods (Sim-
CLR and MAE). Valanarasu et al. (2023) used a reconstruction loss to restore 3D CT volumes from
tokens corrupted by noise, downsampling, and local masking. Finally, Blankemeier et al. (2024)
introduced Merlin, a dual-objective framework that leverages EHR data by first using contrastive
learning to align radiology reports with CT volumes, followed by training on disease phenotype
classification using labels derived from diagnostic codes recorded during contemporaneous hospital
visits.

Current SSL approaches excel at capturing structural features in medical images, such as organ
morphology for image segmentation. However, these learned features are static and largely fail to
identify dynamic patterns and biomarkers that are predictive of future health risks. Our contributions
help bridge this gap in several key ways by leveraging future medical events to guide pretraining,
resulting in a more powerful image encoder for outcome prediction tasks. First, we employ a TTE
objective to capture future patient health dynamics while accounting for right censoring, leverag-
ing longitudinal EHR data to greatly expand the scale, diversity, and temporal scope of pretraining
supervision. Second, we evaluate pretraining using native 3D imaging architectures which are un-
derexplored in prior TTE work. Finally, we evaluate the impact of TTE modeling in imaging at a
larger scale than prior work, utilizing 18,945 CT scans—equivalent to 4.2 million 2D images—and
8,192 unique TTE tasks derived from longitudinal EHRs.

3 PRELIMINARIES

Time-to-Event Modeling. The objective of time-to-event modeling is to estimate the distribution
of times T until an event of interest occurs. Observable data is denoted as O =

{
(T̃i,∆i, X

T
i ) :

i = 1, ..., n
}

, where Xi are the features of observation i and ∆i = I(Ti ≤ Ci) is an event indicator
function whose value is 1 when the actual event time is observed. One complexity is that medical
data is often right-censored, where the survival time T is not observed due to a loss of followup.
With right-censoring, we do not observe T and instead observe time T̃ = min(T,C), where the C
is the censoring time. When ∆i = 0, we do not know the true survival time, but we know that it
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is greater than T̃i. The mixture of known survival times and censored survival times necessitates
methods that can estimate T in an unbiased manner despite the censorship.

Different time-to-event models use different definitions to model the instantaneous hazard λ(t),
where t represents the continuous time at which the hazard rate is evaluated. We use a piecewise
exponential function (Kitchin et al., 1983) that splits the timeline into P distinct intervals, or pieces,
each with a constant hazard rate λ(t). Each piece p(t) has λip(t) = Cip, where C depends on the
patient’s CT image i and the specific interval p.

Piecewise Exponential Neural Network. To make use of deep learning models, we use a neural
network to define Cip. Using a piecewise exponential neural network (PEANN) (Fornili et al., 2014)
greatly simplifies large-scale pretraining compared to Cox PH-based methods, which require creat-
ing batches where samples are paired with at least one uncensored patient (Harrell Jr et al., 1996).
We first use a neural network to derive a CT image representation Mip for image i’s information
at time piece p. We then apply a linear layer followed by an exponential function to define hazard
λip = Cip = exp(A ∗Mip + b) where A and b are learned parameters. With the hazard calculated,
we can then input it into the survival function:

Si(t) =

P∏
p=1

exp [−λip(min(t, Ep)− Sp)I(t ≥ Sp)] (1)

where each time piece p has a starting point Sp and end point Ep and I(·) is an indicator function.
The standard survival likelihood loss function for image i is then:

Li = [Si(t)]
1−∆i [fi(t)]

∆i (2)

where ∆i is event indicator whose value is 1 when the actual future event is observed for image i
and fi is the probability density function fi = −∂Si

∂t .

A full derivation of the loss function, including calculating the derivative and plugging in the survival
function, can be found in Appendix M.

4 TIME-TO-EVENT PRETRAINING

In this work, we are interested in training a 3D image encoder to learn representations optimized
for estimating the distribution of event times for future clinical outcomes. Using years of follow-
up EHR data after image capture, we generate time-to-event pretraining tasks that provide large-
scale training signal for estimating this distribution. We outline our approach for time-to-event
pretraining in Figure 2. Given the computational costs of pretraining 3D image architectures from
scratch, we evaluate the benefits of TTE supervision via continued pretraining of an existing neural
network fθ, where θ represents the parameters of the pretrained backbone.

Creating TTE Pretraining Tasks EHR data captures a vast amount of structured information on
patient demographics, diagnoses, procedures, medications, medical devices, social determinants of
health, and other aspects of medical care. These data are encoded as timestamped, standardized
identifiers called medical codes that map to ontologies (e.g., ICD10, RxNorm, CPT). These ontolo-
gies collectively represent a knowledge graph in the form of a directed acyclic graph (DAG). By
treating each code as a separate task and organizing EHR data chronologically, we generate ex-
tensive training signals to model longitudinal health trajectories. This approach enables tasks such
as predicting when a patient might develop lung cancer or be prescribed warfarin (a blood thinner
used to prevent and treat blood clots), represented as time-to-event distributions conditioned on im-
age features. However, naively treating each medical code as a task leads to millions of candidate
pretraining tasks (4.3 million in our dataset). Many of these tasks are low-frequency or otherwise re-
dundant given an ontology structure. To select pretraining tasks, we follow Steinberg et al. (2024)’s
conditional Shannon entropy selection measure, which treats ontology-aware task selection as a ver-
tex cover problem (West et al., 2001). We select a set of medical codes that maximizes conditional
entropy given a task budget, ontology DAG, and frequency distribution of observed medical codes.

We then define our TTE pretraining procedure by predicting the time until the first occurrence (if
there are multiple recurring ones) of a medical code as defined above, as shown in Appendix B.
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The survival function in each time piece is modeled from the time piece’s starting time, where the
first time piece’s starting time is the index time (here the time of the CT scan exam). When there
is no event in a time piece the loss will be 0. Each TTE task (n=8,192) is modeled independently
(Appendix O). We also apply censorship at patient death, which is the only competing risk. Given
TTE labels for input image Xi, we use the loss described in Eq. 2 for full fine-tuning of fθ.

Task Adaptation. Once TTE pretraining is complete, we use the frozen encoder fθ to generate
feature embeddings for each input image Xi, such that Zi = fθ(Xi). These embeddings are then
passed to a task-specific head hθ̂, which can either be a classification head or a time-to-event head,
depending on the task. We found that a CoxPH task head (DeepSurv), which directly optimizes for
Harrell’s C-index, performed better in practice than fine-tuning a PEANN task head, thus we used
CoxPH for all TTE task adaption. The classification head outputs prediction probabilities pi(ŷ|Zi)
for discriminative tasks, while the survival head produces a time-dependent hazard score Hi(t|Zi)
for time-to-event (TTE) tasks. The model’s outputs are evaluated using task-appropriate metrics,
e.g., AUROC for classification or Harrell’s C-index and time-dependent C-statistics for TTE tasks.

5 EXPERIMENTS

Hypotheses. Our experiments measure the impact of TTE pretraining on an image encoder’s abil-
ity to generate representations useful for medical prognosis. We explore the following hypotheses:

1. TTE supervision improves data efficiency by utilizing temporal information from future EHRs
and censored patients, increasing available task labels per-pretraining instance.

2. Existing supervised and SSL pretraining methods struggle to learn strong pixel biomarkers
for disease risk due to missing temporal connections with pathologies that will be detected in
the future. TTE supervision, in contrast, provides a simple approach to leveraging complex
temporal information found in longitudinal EHRs for purposes of learning prognostic pixel
biomarkers.

3. TTE supervision, when conducted as post hoc, continued pretraining, does not negatively im-
pact performance on standard categorical classification tasks as used for diagnostic image la-
beling.

INSPECT RSPECT

# Patients 19,402 7,279
# Train 18,945 5,823
# Valid 1,089 364
# Test 3,214 1,092

Imaging ✓ ✓
EHR ✓ ✗

TTE Tasks ✓ ✗
Diag. Tasks ✓ ✓

Scan Type Chest CT Chest CT

Table 1: Dataset summary statistics.

Setup. All image and EHR preprocessing details
are outlined in Appendix A. For our PEANN, we use
8 piecewise time bins and 8,192 pretraining tasks (see
Appendices O,P) per the best-performing hyperpa-
rameters from Steinberg et al. (2024). Each time bin
is created by uniformly dividing the range between
the cohort’s earliest and latest timestamps. We uti-
lized two compute nodes from an on-premise cluster,
each with 24 Intel Xeon 2.7GHz CPU cores, 200 GB
RAM and 4 Nvidia A100 GPUs or 4 H100 GPUs.

Datasets & Evaluation Tasks. We use two 3D
medical imaging datasets (see Table 1). INSPECT
(Huang et al., 2024) is a multimodal dataset of paired
CT scans and radiology notes where each patient is
linked to their longitudinal EHR 3 4. This provides an average of 5 years follow-up data post-CT
scan and, in aggregate, contains 225 million medical events. RSPECT (Colak et al., 2021) is an
image-only dataset of CT scans annotated by radiologists for imaging biomarkers related to pul-
monary embolism and cardiac function. We evaluate 3 task categories in this work:

• Prognostic TTE: Estimate the distribution of event times for a specific outcome (e.g, mortality).
We predict the first occurrence of an event, as the first occurrence (or only occurrence in cases
such as mortality) is of higher clinical utility than subsequent events.
3https://stanfordaimi.azurewebsites.net/datasets?term=INSPECT
4https://redivis.com/datasets/dzc6-9jyt6gapt
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• Prognostic Classification: Binarized classification formulation of TTE tasks using bucketed time
bins. We use 1, 6, and 12 month bins. Unlike in TTE, censored patients are excluded in this
category.

• Diagnostic Classification: Standard classification using diagnostic image label categories.

INSPECT defines 3 prognostic binary tasks: hospital mortality, hospital readmission, and pulmonary
hypertension (PH); and 1 binary diagnostic classification task (pulmonary embolism). Using the
provided EHR data we define 5 additional prognostic TTE tasks for lung pathologies: ATX (Atelec-
tasis), CMG (Cardiomegaly), CONS (Consolidation) EDM (Edema), and PEFF (Pleural Effusion).
These tasks were selected based on their use in common chest medical imaging datasets (Irvin et al.,
2019). Appendix B details how labels were assigned. RSPECT provides whole-volume labels for 9
diagnostic tasks, but no longitudinal outcome data. RSPECT does not provide a public test set, so
we impose a 80/5/15 split on train (n=7,279) for our experiments.

Architectures. We evaluate three model architectures: SwinUNETR, DenseNet, and ResNet.
SwinUNETR (Tang et al., 2022) was originally designed for medical image segmentation tasks,
combining elements from the Swin Transformer and the UNETR (U-Net Transformer) architec-
tures. Weights are learned using a reconstruction loss on 10,050 3D brain/chest CT and MRI data
(Valanarasu et al., 2023), a much larger pretraining dataset than used by other public 3D models,
e.g., Wasserthal et al. (2023). Following Merlin, we adapt DenseNet-121 (Huang et al., 2016) and
ResNet-152 (He et al., 2015) by inflating their 2D pretrained ImageNet weights (specifically the
filters and pooling kernels) as described in Carreira & Zisserman (2017). Note that ResNet and
DenseNet parameters were initialized using 2D weight inflation, but the architecture is fully 3D,
using 3D convolutions in each Res-block or Dense-block, different from 2.5D methods (Hung et al.,
2024). This process enables us to input 3D CT images into the models for training. We also evaluated
Merlin’s pretrained ResNet-152 backbone, but found it performed similar to our base ResNet-152
(see Appendix E), thus we use the base weight-inflated model for consistency across experiments.

Model Baselines. We evaluate the following continued pretraining approaches on all architectures:

• base: Baseline performance of the 3D pretrained SwinUNETR, DenseNet-121, and ResNet-152
models without continued pretraining on INSPECT. See Appendix H for a summary of the source
pretraining datasets.

• base/MTL: Continued pretraining of the base model via multitask, supervised learning using the 8
INSPECT evaluation task labels. This controls for exposure to our training dataset in a consistent
manner across architectures.

• base/visit: Continued pretraining using the same 8,192 tasks used for TTE supervision, but
restricting label assignment to the same visit as the CT scan. This ablates the TTE component
to learn temporal information and aligns more closely with the EHR-based supervision used by
Merlin.

• base/TTE: Continued pretraining using TTE labels for 8,192 tasks occurring after the CT scan
index timestamp.

750
2458

75th
50th
25th

8 87 82

454 13688

Figure 3: Label density CDF
by pretraining approach.

All models except base use the same INSPECT training set exam-
ples for continued pretraining. Pretraining task labels are assigned
per-CT scan and vary in density based on pretraining approach (Fig-
ure 3). Note that TTE supervision enables leveraging a patient’s en-
tire future EHR, providing 3 times more training labels on average
per CT-scan over per-visit labels. TTE also captures temporal struc-
ture and time-varying disease risk, providing supervision signal that
is absent in predominant SSL methods for imaging.

For evaluating our pretrained encoder, we use the frozen encoder
and lightweight task head strategy outlined in Section 4. For clas-
sification tasks, we use logistic regression as the classification head
(linear probe) and for TTE tasks, we employ DeepSurv (Katzman
et al., 2018) as the survival head. All model search hyperparameters
for pretraining and adaptation are in Appendix F.
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Metrics. We evaluate discrimination performance using AUROC
for time-thresholded binary classification tasks and Harrell’s C-index (Harrell et al., 1982) for TTE
tasks. Harrell’s C-index is a type of C statistic that summarizes the ability of a predictive model
to rank patients. Harrell’s C-index requires the predictive model to output a single risk per patient,
as opposed to risk over time, thus suitable for our DeepSurv head evaluation. We use the standard
formulation for Harrell’s C-index, where it first finds all possible pairs P and one patient is known
to have the event before another, then splits that set into Pcorrect (the higher predicted risk patient has
the event first), Ptied (both patients are tied for the predicted risk), and Pincorrect (lower predicted risk
patient actually has the event first): CH = Pcorrect+0.5×Ptied

Pcorrect+Ptied+Pincorrect
. Appendix D contains additional TTE

evaluation metrics for time-dependent C-statistics and the integrated Brier score.

All performance results and 95% confidence intervals are reported using a test set bootstrap of
n = 1000 replicates. Statistical significance was computed using a two-tailed Z-test (p-value at 0.05
for rejecting the null hypothesis that the difference between two sample means is zero). A complete
set of statistical tests are in Appendix K.

Additional Experiments. See the appendix for further experimental ablations including: sub-
group performance (Appendix R), task head capacity (Appendix L), and full fine-tuning vs. frozen
backbone adaptation (Appendix J).

6 RESULTS

Evaluating Prognostic Performance. Table 2 reports performance for the prognostic binary clas-
sification formulations of outcome prediction for the original INSPECT tasks. This provides a
simplified view of high and low-risk patients across time. We find that TTE pretrained models
outperform all baselines across all architectures in our experiments. Here TTE pretraining pro-
vides an average of 22.6% performance over the base pretrained model and 15.4% average in-
crease over base/visit. The base/MTL baseline also outperforms the base model, but underper-
forms TTE, highlighting the benefits of increasing pretraining tasks. Comparing base/TTE versus
base/visit is more informative, as both approaches use the same number of pretraining tasks
(8,192) but base/TTE substantially improves the density of the label per image during pretraining
(Figure 3). Table 3 reports performance of all original INSPECT tasks and our five new outcomes
using Harrell’s C-index. Here TTE pretraining largely outperforms all of our baselines across all
architectures.

Model Mortality Readmission PH

1M 6M 12M 1M 6M 12M 12M

SwinUNETR base 0.693 0.684 0.685 0.507 0.538 0.569 0.597
SwinUNETR base/MTL 0.676 0.700 0.697 0.502 0.543 0.551 0.606
SwinUNETR base/visit 0.693 0.716 0.670 0.560 0.554 0.528 0.560
SwinUNETR base/TTE 0.827 0.808 0.788 0.582 0.612 0.607 0.672

DenseNet-121 base 0.616 0.568 0.575 0.512 0.532 0.524 0.506
DenseNet-121 base/MTL 0.665 0.596 0.602 0.533 0.557 0.547 0.577
DenseNet-121 base/visit 0.649 0.698 0.692 0.504 0.538 0.567 0.599
DenseNet-121 base/TTE 0.770 0.730 0.725 0.629 0.643 0.637 0.689

ResNet-152 base 0.583 0.557 0.554 0.536 0.537 0.509 0.537
ResNet-152 base/MTL 0.726 0.715 0.647 0.563 0.564 0.566 0.570
ResNet-152 base/visit 0.691 0.636 0.643 0.562 0.564 0.566 0.567
ResNet-152 base/TTE 0.804 0.798 0.792 0.602 0.649 0.657 0.718

Table 2: Prognostic binary classification performance for INSPECT tasks on Logistic Regression
(1, 6, 12 month time horizon bins) reported as the mean AUROC of a test set bootstrap (n=1000).
Bold indicates the best performer. Underlined indicates no statistically significant difference versus
the ∗base/TTE models.
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Model Harrell’s C-Index ↑
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base 0.717 0.653 0.696 0.558 0.662 0.549 0.697 0.641
SwinUNETR base/MTL 0.672 0.671 0.665 0.681 0.677 0.668 0.715 0.668
SwinUNETR base/visit 0.671 0.716 0.697 0.719 0.717 0.718 0.717 0.714
SwinUNETR base/TTE 0.738 0.723 0.724 0.739 0.739 0.738 0.738 0.738

DenseNet-121 base 0.505 0.505 0.541 0.505 0.505 0.506 0.505 0.536
DenseNet-121 base/MTL 0.589 0.590 0.591 0.593 0.589 0.586 0.587 0.590
DenseNet-121 base/visit 0.675 0.675 0.699 0.675 0.662 0.676 0.676 0.675
DenseNet-121 base/TTE 0.732 0.723 0.726 0.720 0.711 0.712 0.725 0.723

ResNet-152 base 0.505 0.560 0.505 0.577 0.505 0.559 0.505 0.536
ResNet-152 base/MTL 0.701 0.686 0.656 0.663 0.562 0.656 0.660 0.572
ResNet-152 base/visit 0.656 0.702 0.643 0.703 0.705 0.703 0.700 0.716
ResNet-152 base/TTE 0.732 0.739 0.735 0.728 0.727 0.727 0.737 0.737

Table 3: Prognostic TTE performance for INSPECT, measured by Harrell’s C-Index. Bold indi-
cates the best performance. Underlined indicates no statistically significant difference versus the
∗base/TTE models.

Evaluating Diagnostic Performance. We are also interested in assessing how TTE continued
pretraining may impact standard image classification tasks, corresponding to diagnostic labeling of
medical imaging for current disease biomarkers. Table 4 outlines 8 image biomarker tasks. Here,
performance of all 3D model architectures is poor, especially base models. For almost all diagnos-
tic tasks, TTE pretraining performs the same (i.e., statistically indistinguishable, detailed numbers
shown in Table 17) as all other tested pretraining approaches. This aligns with the intuition that
visit-level labels reflect current clinical events, should encode the same level of diagnostic informa-
tion as TTE pretraining. This also aligns with the small performance gains reported in prior work
when tasks derived from EHR codes to supervise image models (Blankemeier et al., 2024). Note
that while these tasks reflect observable pixel biomarkers present in images, there is also overlap
with pixel biomarkers indicative of future risk. For example, a RV/LV ratio ≥ 1, defined as the ratio
of the right ventricular (RV) diameter to the left ventricular (LV) diameter, is indicative of increased
risk of mortality (Lu et al., 2012). Here TTE pretraining yields statistically significant performance
improvements across all architectures and pretraining methods.

Model PE RV/LV Ratio

Left Cent. Right Chronic Acute Indet. <1 ≥1

SwinUNETR base 0.573 0.571 0.573 0.507 0.581 0.721 0.525 0.578
SwinUNETR base/MTL 0.583 0.633 0.591 0.504 0.594 0.732 0.517 0.598
SwinUNETR base/visit 0.545 0.664 0.562 0.556 0.595 0.741 0.521 0.546
SwinUNETR base/TTE 0.634 0.651 0.633 0.525 0.716 0.781 0.643 0.636

DenseNet-121 base 0.596 0.615 0.596 0.565 0.676 0.724 0.581 0.607
DenseNet-121 base/MTL 0.612 0.638 0.615 0.504 0.664 0.713 0.594 0.636
DenseNet-121 base/visit 0.595 0.633 0.605 0.571 0.677 0.748 0.573 0.615
DenseNet-121 base/TTE 0.647 0.716 0.644 0.586 0.665 0.762 0.623 0.686

ResNet-152 base 0.654 0.687 0.618 0.507 0.695 0.704 0.593 0.626
ResNet-152 base/MTL 0.658 0.693 0.621 0.506 0.685 0.703 0.587 0.642
ResNet-152 base/visit 0.646 0.665 0.625 0.548 0.743 0.718 0.566 0.665
ResNet-152 base/TTE 0.657 0.687 0.642 0.504 0.588 0.722 0.597 0.708

Table 4: Diagnostic binary classification performance for RSPECT, reported as the mean AUROC of
a test set bootstrap (n=1000). Bold indicates the best performer. Underlined indicates no statistically
significant difference versus the ∗base/TTE models.
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7 DISCUSSION AND CONCLUSION

Medical images hold significant, untapped potential as sources of imaging biomarkers to predict fu-
ture disease risk. However, current SSL approaches for imaging largely fail to capture the temporal
dynamics of long-term disease progression, inherently capturing only static, structural information.
Building on this observation, our work explores a TTE pretraining technique that directly incorpo-
rates future temporal information at scale, yielding several insights.

Current Pretraining Struggles to Learn Prognostic Pixel Biomarkers. Existing supervised and
SSL pretraining methods consistently showed lower AUROC across prognostic tasks in our ex-
periments. When compared against base models, TTE pretraining showed an average increase in
AUROC of 0.128 (95% CI: [0.075, 0.158]), Harrell’s C-index 0.166 (95% CI [0.138, 0.490]) over
three architectures on prognostic binary classification and prognostic TTE tasks respectively. This
suggests that off-the-shelf pretraining methods struggle to learn pixel biomarkers associated with fu-
ture disease risk, likely due to missing temporal links to future pathologies. This underscores Huang
et al. (2020)’s findings that predicting disease prognosis with high accuracy and certainty remains a
challenging task. Therefore, incorporating explicit temporal supervision into the pretraining process
may be essential for improving prognostic tasks’ performance.

TTE Pretraining Improves Prognostic Performance. When compared against base/MTL and
base/visit , TTE supervision improves performance on Harrell’s C-index on prognostic TTE task
tasks by 0.093 (95% CI [0.086, 0.554]) and, 0.038 (95% CI [0.017, 0.370]) respectively. Addi-
tionally TTE supervision does not negatively impact diagnostic binary classification for significant
difference between base and TTE across RSPECT tasks, shown in Table 17.

TTE Supervision Improves Training Data Efficiency. By leveraging temporal information from
the future in EHRs and censored patients, TTE pretraining increases label density to boost AU-
ROC for prognostic binary classification tasks by 0.093 (95% CI [0.053, 0.134]) and 0.092 (95%
CI [0.051, 0.135]) when compared against base/MTL and base/visit models respectively. TTE
supervision increases available task labels per-training instance by 3x on average (Figure 3). This
underscores the potential of TTE pretraining as a viable objective for scaling medical imaging AI,
given that expert-level annotation is time-consuming, expensive, and difficult to collect (Dgani et al.,
2018; Tajbakhsh et al., 2021; Aljabri et al., 2022). Increasing the data efficiency of a given training
example also contributes to reducing compute costs.

Limitations. First, our study focuses exclusively on evaluating 3D vision encoders, which de-
mand significant memory and computational resources—80GB memory GPUs for SwinUNETR
and 40GB memory GPUs for DenseNet/ResNet architectures. Second, while our study surpasses
previous work in imaging-based TTE in terms of scale, our pretraining dataset remains relatively
small compared to modern, general-purpose datasets (Schuhmann et al., 2022) and recently released
medical datasets (Xie et al., 2024). Furthermore, we focus exclusively on a single modality, CT
scans. Expanding both the scale and diversity of the pretraining data mixtures (e.g., other imaging
modalities including both 2D and 3D, historical EHR and clinical text) could enhance performance
or lead to a deeper understanding of the trade-offs between different architectures. Finally, since
this work focuses on evaluating encoder quality, we only evaluated frozen encoders with smaller,
lightweight, supervised task heads for adaptation. Alternative adaption methods under different
sample assumptions, e.g., zero/few-shot learning, may reveal different performance trade-offs.

Conclusion. This work presents the first empirical study of using time-to-event pretraining for 3D
medical vision models. By leveraging longitudinal EHRs and defining a time-to-event pretraining
objective (comprising 8,192 tasks), we embed long term outcome information into the image model
during pretraining. Doing so results in an average threefold increase in training labels compared
to limiting just to a patient’s current EHR visit. We observe substantial improvements in prediction
performance for future events, with increases of up to a 31.6% in AUROC and a 40.5% improvement
in Harrell’s C-index, without negatively impacting standard binary classification tasks (e.g., image
labeling for diagnostic tasks). Our results reveal a clear need for pretraining datasets for 3D medical
foundation models to include tasks that capture long-term temporal structure, demonstrated here
through our use of time-to-event supervision. This study on the utility of using longitudinal EHR
records as a supervision source for future-guided pretraining of 3D medical imaging models lays the
groundwork for innovative ways to combine EHR and imaging modalities for clinical risk prediction.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute
of the National Institutes of Health Award R01HL155410, as well as NIH grants R01HL167974,
R01HL169345, P41 EB027060; ARPA-H contract 1AYSAX0000024-01; and NIH contracts
75N92020C00008 and 75N92020C00021. Further support was provided by the Stanford Institute
for Human-Centered Artificial Intelligence (HAI) and the Stanford Center for Artificial Intelligence
in Medicine and Imaging (AIMI) in the form of an HAI Seed Grant and AIMI-HAI Partnership
Grant. We would also like to thank the Clinical Excellence Research Center (CERC) at Stanford for
their support.

REFERENCES

Asad Aali, Andrew Johnston, Louis Blankemeier, Dave Van Veen, Laura T Derry, David Svec, Jason
Hom, Robert D Boutin, and Akshay S Chaudhari. Detecting underdiagnosed medical conditions
with deep learning-based opportunistic ct imaging. arXiv preprint arXiv:2409.11686, 2024.

Manar Aljabri, Manal AlAmir, Manal AlGhamdi, Mohamed Abdel-Mottaleb, and Fernando
Collado-Mesa. Towards a better understanding of annotation tools for medical imaging: a survey.
Multimedia tools and applications, 81(18):25877–25911, 2022.

Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting
Chen, Patricia MacWilliams, S Sara Mahdavi, Ellery Wulczyn, et al. Robust and efficient medical
imaging with self-supervision. arXiv preprint arXiv:2205.09723, 2022.

Kaustav Bera, Nathaniel Braman, Amit Gupta, Vamsidhar Velcheti, and Anant Madabhushi. Pre-
dicting cancer outcomes with radiomics and artificial intelligence in radiology. Nature reviews
Clinical oncology, 19(2):132–146, 2022.

Louis Blankemeier, Joseph Paul Cohen, Ashwin Kumar, Dave Van Veen, Syed Jamal Safdar
Gardezi, Magdalini Paschali, Zhihong Chen, Jean-Benoit Delbrouck, Eduardo Reis, Cesar Truyts,
et al. Merlin: A vision language foundation model for 3d computed tomography. arXiv preprint
arXiv:2406.06512, 2024.

Patrick Breheny. Accelerated failure time models. University Lecture, 2015.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Trenton Chang, Michael W Sjoding, and Jenna Wiens. Disparate censorship & undertesting: A
source of label bias in clinical machine learning. In Machine Learning for Healthcare Conference,
pp. 343–390. PMLR, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Zekai Chen, Devansh Agarwal, Kshitij Aggarwal, Wiem Safta, Mariann Micsinai Balan, and Kevin
Brown. Masked image modeling advances 3d medical image analysis. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1970–1980, 2023.

Errol Colak, Felipe C Kitamura, Stephen B Hobbs, Carol C Wu, Matthew P Lungren, Luciano M
Prevedello, Jayashree Kalpathy-Cramer, Robyn L Ball, George Shih, Anouk Stein, et al. The rsna
pulmonary embolism ct dataset. Radiology: Artificial Intelligence, 3(2):e200254, 2021.

David Collett. Modelling survival data in medical research. Chapman and Hall/CRC, 2023.

David R Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B
(Methodological), 34(2):187–202, 1972.

Yair Dgani, Hayit Greenspan, and Jacob Goldberger. Training a neural network based on unreliable
human annotation of medical images. In 2018 IEEE 15th International symposium on biomedical
imaging (ISBI 2018), pp. 39–42. IEEE, 2018.

11



Published as a conference paper at ICLR 2025

Marco Fornili, Federico Ambrogi, Patrizia Boracchi, and Elia Biganzoli. Piecewise exponential
artificial neural networks (peann) for modeling hazard function with right censored data. In
Computation Intelligence Methods for Bioinformatics and Biostatistics, pp. 125–136, 07 2014.
ISBN 978-3-319-09041-2. doi: 10.1007/978-3-319-09042-9_9.

Erika Graf, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher. Assessment and comparison
of prognostic classification schemes for survival data. Statistics in medicine, 18(17-18):2529–
2545, 1999.

Frank E Harrell, Robert M Califf, David B Pryor, Kerry L Lee, and Robert A Rosati. Evaluating the
yield of medical tests. Jama, 247(18):2543–2546, 1982.

Frank E Harrell Jr, Kerry L Lee, and Daniel B Mark. Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
Statistics in medicine, 15(4):361–387, 1996.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arxiv e-prints. arXiv preprint arXiv:1512.03385, 10, 2015.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Patrick J Heagerty and Yingye Zheng. Survival model predictive accuracy and roc curves.
Biometrics, 61(1):92–105, 2005.

Gregory Holste, Mingquan Lin, Ruiwen Zhou, Fei Wang, Lei Liu, Qi Yan, Sarah H Van Tassel, Kyle
Kovacs, Emily Y Chew, Zhiyong Lu, et al. Harnessing the power of longitudinal medical imaging
for eye disease prognosis using transformer-based sequence modeling. NPJ Digital Medicine, 7
(1):216, 2024.

Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely connected convolutional networks.
corr. arXiv preprint arXiv:1608.06993, 2016.

Shigao Huang, Jie Yang, Simon Fong, and Qi Zhao. Artificial intelligence in cancer diagnosis and
prognosis: Opportunities and challenges. Cancer letters, 471:61–71, 2020.

Shih-Cheng Huang, Zepeng Huo, Ethan Steinberg, Chia-Chun Chiang, Curtis Langlotz, Matthew
Lungren, Serena Yeung, Nigam Shah, and Jason Fries. Inspect: A multimodal dataset for pa-
tient outcome prediction of pulmonary embolisms. Advances in Neural Information Processing
Systems, 36, 2024.

Alex Ling Yu Hung, Haoxin Zheng, Kai Zhao, Xiaoxi Du, Kaifeng Pang, Qi Miao, Steven S Raman,
Demetri Terzopoulos, and Kyunghyun Sung. Csam: A 2.5 d cross-slice attention module for
anisotropic volumetric medical image segmentation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 5923–5932, 2024.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Hen-
rik Marklund, Behzad Haghgoo, Robyn L. Ball, Katie S. Shpanskaya, Jayne Seekins, David A.
Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz,
Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. CoRR, abs/1901.07031, 2019. URL
http://arxiv.org/abs/1901.07031.

Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. Random survival
forests. 2008.

Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. Journal
of the American statistical association, 53(282):457–481, 1958.

Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval
Kluger. Deepsurv: personalized treatment recommender system using a cox proportional hazards
deep neural network. BMC medical research methodology, 18:1–12, 2018.

12

http://arxiv.org/abs/1901.07031


Published as a conference paper at ICLR 2025

Alexander Ke, William Ellsworth, Oishi Banerjee, Andrew Y Ng, and Pranav Rajpurkar. Chextrans-
fer: performance and parameter efficiency of imagenet models for chest x-ray interpretation. In
Proceedings of the conference on health, inference, and learning, pp. 116–124, 2021.

John Kitchin, Naftali A Langberg, and Frank Proschan. A new-method for estimating life distribu-
tions from incomplete data. Statistics & Risk Modeling, 1(3):241–256, 1983.

David G Kleinbaum and Mitchel Klein. Survival analysis a self-learning text. Springer, 1996.

Adones Leslie, AJ Jones, and PR Goddard. The influence of clinical information on the reporting of
ct by radiologists. The British journal of radiology, 73(874):1052–1055, 2000.

Lin Lu, Laurent Dercle, Binsheng Zhao, and Lawrence H Schwartz. Deep learning for the prediction
of early on-treatment response in metastatic colorectal cancer from serial medical imaging. Nature
communications, 12(1):6654, 2021.

Michael T Lu, Shadpour Demehri, Tianxi Cai, Layla Parast, Andetta R Hunsaker, Samuel Z Gold-
haber, and Frank J Rybicki. Axial and reformatted four-chamber right ventricle–to–left ventricle
diameter ratios on pulmonary ct angiography as predictors of death after acute pulmonary em-
bolism. American Journal of Roentgenology, 198(6):1353–1360, 2012.

Elsa Negro-Calduch, Natasha Azzopardi-Muscat, Ramesh S Krishnamurthy, and David Novillo-
Ortiz. Technological progress in electronic health record system optimization: Systematic review
of systematic literature reviews. International journal of medical informatics, 152:104507, 2021.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias
in an algorithm used to manage the health of populations. Science, 366(6464):447–453, 2019.

OHDSI. Omop common data model. https://ohdsi.github.io/CommonDataModel/index.html, 2023.
Accessed: 2023-06-07.

Suraj Pai, Dennis Bontempi, Ibrahim Hadzic, Vasco Prudente, Mateo Sokač, Tafadzwa L Chaunzwa,
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ETHICS STATEMENT

Research involving de-identifed publicly available data does not require Institutional Review Board
(IRB) approval. However, to uphold standards and safeguard patient privacy, we follow the health-
care machine learning reproducibility recommendations set by the Medical AI Research Foundations
(Azizi et al., 2022). Below, we outline specific ethical considerations and include references to more
detailed discussions in the appendix.

Data Deidentification: In accordance with applicable privacy laws and institutional guidelines, all
data utilized for model training and evaluation has been de-identified by the original dataset authors.
Both datasets used in this study, INSPECT (Huang et al., 2024) and RSPECT (Colak et al., 2021),
underwent thorough removal of protected health information prior to their public release and were
approved by an Institutional Review Board.

Security, Data Storage, and Compliance: All authors involved in data handling have completed
institutional training on HIPAA and data privacy before engaging with the data. All training data
was stored in a HIPAA-compliant compute environment.

Algorithmic Bias Healthcare machine learning models can be susceptible to algorithmic bias, lead-
ing to unfavorable outcomes for underrepresented subgroups (Obermeyer et al., 2019). Bias mitiga-
tion in medical foundation models remains an ongoing research challenge (Pfohl et al., 2024) and
is not covered in this study. However, we take two steps to mitigate risk. First, all of our contin-
ued pretrained model releases includes a Data Use Agreement (DUA) that explicitly prohibits direct
medical care. Second, in line with the recommendations from Chang et al. (2022), we conduct an
analysis in Appendix R to assess performance across sensitive subgroups, ensuring our pretraining
technique does not unfairly disadvantage any group compared to existing methods. We evaluate per-
formance using the AUROC (bootstrapped, n=1000) on 7 binary prognostic tasks, comparing TTE
against base, showing that TTE pretraining does not reduce performance for sensitive groups and
generally improves risk ranking across all groups.

REPRODUCIBILITY STATEMENT

The code artifact necessary for reproducing the experiments in this paper can be
found in the supplemental materials as a zip file. The anonymous Github link is
https://anonymous.4open.science/r/future_guided_pretraining-DA6C. Our hyperparameter search
grids can be found in Appendix F. All base pretraining weights are publicly available as detailed
in Table 10. To ensure reproducibility, all experiments use researcher accessible, public medical
datasets.
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APPENDIX

A DATA PREPROCESSING

CT Scans. Each CT scan is preprocessed by extracting pixel data and applying a linear trans-
formation to Hounsfield Units (HU) using the rescale slope and intercept values from the original
DICOM records. To retain fine-grained details, we ensure axial slices have a thickness between 1
mm and 3 mm. Finally, we pad and center crop the images to 224 x 224 pixels.

Electronic Health Records. INSPECT’s EHR data is provided in the Observational Medical Out-
comes Partnership (OMOP) Common Data Model (CDM) schema, a standardized framework that
harmonizes healthcare data from various sources to support large-scale analysis (OHDSI, 2023).
We use the Athena OHDSI Vocabularies Repository (Segert, 2023) (OMOP vocabulary version:
v20240830) as our knowledge graph for generating tasks.

B INSPECT NEW TTE TASK DEFINITIONS

We have selected a set of commonly used pulmonary disease tasks (Irvin et al., 2019), that are
coded in INSPECT dataset’s EHR events. We use these common tasks to benchmark the time-to-
event performance of our proposed TTE formulation. Each patient is assigned time-to-event=True
after CT’s capture for pulmonary hypertension, atelectasis, cardiomegaly, consolidation, edema, and
pleural effusion. These labels indicate either the time until the first occurrence of each condition or
the time until the patient is censored. The description can be found in Figure 4 for diagnostic and
prognostic labels.

 
                       

CPT 99490

CPT 99590

ICD 126.99

CPT 99490

CPT 99590

ICD 126.99

Censoring

Future EventsCurrent Events

Y1              Y2                Y5
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Figure 4: Overview of Label Definitions: Diagnostic tasks use labels derived from the same hospital
visit as the CT scan. Prognostic tasks involve future medical events from patients’ EHR timelines
and are categorized into binary prognostic labels and time-to-event (TTE) prognostic labels. Note
that for TTE tasks, only the time until the first occurrence is labeled.

C CONTRIBUTION TABLE

We wish to ensure that we can accredit contributions to all the authors in a clear and fair manner and
choose to follow the example from here 5.

Figure 5: Overview of author contributions. * denotes equal contribution.

5https://x.com/SteinmetzNeuro/status/1147241128858570752
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D ADDITIONAL TIME-TO-EVENT MODEL METRICS

We calculate additional metrics for time-to-event task modeling: the integrated Brier score (IBS)
Graf et al. (1999), shown in Table 5, and time-dependent C-statistics Heagerty & Zheng (2005),
shown in Table 6. IBS is intended to assess the discrepancy between predicted survival probabili-
ties and observed outcomes. At each time point, the Brier score calculates the squared difference
between the predicted survival probability and the actual event or censoring status. By integrating
over the time range from the start to a specified maximum horizon, it summarizes the model’s pre-
dictive performance over the entire period of interest. For time-dependent C-statistics, we adopt the
incident and dynamic definitions for time-dependent sensitivity and specificity Heagerty & Zheng
(2005) to derive time-dependent receiver operating curve AUC(t). Time-dependent concordance is
calculated as Ctd =

∫
t

AUC(t)w(t)dt∫
t
w(t)dt

, where w(t) = f(t) · S(t) and f(t) is defined as the event rate a
time t and S(t) is the survival probability at time t, both of which are estimated using Kaplan-Meier
estimator Kaplan & Meier (1958). AUC(t) is the integration of ROC curve under a time bin, where
sensitivity and specificity are following the definitions in Heagerty & Zheng (2005). We should note
that the time-dependent C-statistics is a more strict metric, especially for non-piecewise survival
models, because it upweighs the long time horizon examples which are generally harder to predict
for models like traditional CoxPH.

Model Integrated Brier Score ↓
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base 0.071 0.070 0.072 0.071 0.067 0.073 0.074 0.069
SwinUNETR base/MTL 0.081 0.078 0.079 0.081 0.078 0.083 0.081 0.080
SwinUNETR base/visit 0.073 0.068 0.072 0.070 0.066 0.073 0.074 0.070
SwinUNETR base/TTE 0.069 0.067 0.066 0.069 0.067 0.073 0.079 0.069

DenseNet-121 base 0.219 0.803 0.702 0.779 0.217 0.533 0.335 0.822
DenseNet-121 base/MTL 0.071 0.067 0.068 0.060 0.065 0.072 0.083 0.068
DenseNet-121 base/visit 0.063 0.068 0.071 0.071 0.060 0.075 0.075 0.072
DenseNet-121 base/TTE 0.028 0.021 0.022 0.014 0.014 0.029 0.023 0.014

ResNet-152 base 0.335 0.078 0.479 0.174 0.160 0.166 0.140 0.095
ResNet-152 base/MTL 0.076 0.074 0.078 0.075 0.074 0.077 0.078 0.077
ResNet-152 base/visit 0.075 0.077 0.074 0.070 0.067 0.077 0.074 0.075
ResNet-152 base/TTE 0.068 0.069 0.066 0.065 0.064 0.070 0.070 0.066

Table 5: Prognostic TTE performance for INSPECT, measured by Integrated Brier Score. Bold
indicates the best performer. Underlined indicates no statistically significant difference versus the
∗base/TTE models.

18



Published as a conference paper at ICLR 2025

Model Time-dependent C-Statistics ↑
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base 0.649 0.620 0.636 0.602 0.619 0.555 0.637 0.619
SwinUNETR base/MTL 0.621 0.624 0.631 0.619 0.625 0.631 0.649 0.633
SwinUNETR base/visit 0.625 0.645 0.635 0.650 0.648 0.644 0.648 0.638
SwinUNETR base/TTE 0.672 0.657 0.645 0.662 0.660 0.663 0.667 0.667

DenseNet-121 base 0.501 0.504 0.542 0.501 0.502 0.508 0.500 0.531
DenseNet-121 base/MTL 0.568 0.587 0.585 0.584 0.586 0.586 0.581 0.573
DenseNet-121 base/visit 0.632 0.627 0.637 0.624 0.618 0.612 0.624 0.629
DenseNet-121 base/TTE 0.677 0.657 0.658 0.651 0.644 0.651 0.658 0.657

ResNet-152 base 0.503 0.557 0.517 0.580 0.505 0.563 0.501 0.531
ResNet-152 base/MTL 0.632 0.620 0.621 0.615 0.604 0.620 0.618 0.601
ResNet-152 base/visit 0.622 0.636 0.621 0.638 0.631 0.635 0.640 0.641
ResNet-152 base/TTE 0.678 0.656 0.674 0.667 0.662 0.664 0.670 0.669

Table 6: Prognostic TTE performance for INSPECT, measured by time-dependent C-statistics. Bold
indicates the best performer. Underlined indicates no statistically significant difference versus the
∗base/TTE models.
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E MERLIN RESNET-152 RESULTS

For experimental consistency, we selected the ResNet-152 base model as the starting point for our
continued pretraining experiments, however we also conducted an initial study on the Merlin 3D
foundation model (Blankemeier et al., 2024). Merlin employs a dual-objective pretraining strategy:
first, it uses contrastive loss on radiology notes associated with abdominal CT scans, followed by
supervised training where EHR diagnosis codes are used as phenotype classification labels. We
compare their reported best performing backbone, ResNet-152, with our weight-inflated (2D Im-
ageNet weights) baseline ResNet-152 base. Table 7 reports adaption performance for prognostic
classification, prognostic TTE and diagnostic classification tasks, where ResNet-152 base performs
similarly to Merlin. While Merlin performs better in mortality classification (though not in the TTE
formulation), most tasks show no statistically significant differences across the corresponding met-
rics. Note that Merlin’s pretraining data consists solely of abdominal CT scans, which likely limits
its generalizability to a broader CT data distribution, particularly for capturing lung disease features
during pretraining.

Task Category Task Metric Merlin ResNet base Best

Prognostic Classification

PE (0M) 0.518 0.573 ResNet base

Mortality (1M) 0.632 0.583 Merlin
Mortality (6M) 0.586 0.557 Merlin
Mortality (12M) AUROC 0.590 0.554 Merlin
Readmission (1M) 0.538 0.536 -
Readmission (6M) 0.513 0.537 ResNet base

Readmission (12M) 0.538 0.509 -
PH (12M) 0.514 0.537 -

Prognostic TTE

Mortality 0.549 0.505 -
Readmission 0.545 0.560 ResNet base

PH 0.615 0.505 -
ATX Harrell’s C-index 0.565 0.577 ResNet base

CMG 0.575 0.505 Merlin
CONS 0.601 0.559 -
EDM 0.601 0.505 Merlin
PEFF 0.549 0.536 -

Diagnostic Classification

PE Left 0.603 0.654 ResNet base

PE Cent. 0.572 0.687 ResNet base

PE Right 0.562 0.618 ResNet base

PE Chronic AUROC 0.550 0.507 -
PE Acute 0.647 0.695 -
PE Indeterminate 0.693 0.704 -
RV/LV <1 0.515 0.593 ResNet base

RV/LV ≥1 0.572 0.626 ResNet base

Table 7: Performance comparison of Merlin and ResNet baseacross various tasks. Each task is eval-
uated using either AUROC for binary classification tasks or Harrell’s C-index for TTE tasks. Bold
indicates the best performer. Underlined indicates no statistically significant difference between
models (i.e., p>0.05). The Best column denotes the model with the highest performance for each
task. Note: Merlin is pretrained on abdominal CTs.
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F MODELING HYPERPARAMETERS

We have detailed our hyperparameter set, both in the image backbones and the probing methods, in
Table 8.

Model Hyperparameters Values

Image backbones

SwinUNETR
learning rate 10−4, 10−5, 10−6

dropout prob 0.1, 0.2, 0.3
patch size 2x2x2
window size 7x7x7, 8x8x8
augmentation strategies Random rotations, flips

DenseNet
learning rate 10−3, 10−4, 10−5, 10−6

depth 121, 169
num. of dense blocks 3,4
dropout prob 0.1, 0.2, 0.3
augmentation strategies Random rotations, flips

ResNet
learning rate 10−3, 10−4, 10−5, 10−6

depth 152
residual block BottleneckBlock
dropout prob 0.1, 0.2, 0.3
augmentation strategies Random rotations, flips

Probing heads

Logistic Regression
penalty L-1, L-2
learning rate 0.01, 0.1, 0.2
solver lbfgs, liblinear
scoring roc_auc, accuracy
software version scikit-learn 1.3.2

DeepSurv
num. nodes per layer 32, 64, 128, 256
depth 2, 3, 4
learning rate 10−4, 10−5, 10−6

dropout prob 0.1, 0.2, 0.3
software version pycox 0.2.3

Table 8: Hyperparameter search grids and software versions of methods under comparison.
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G CLINICAL TASK SUMMARY

Since INSPECT and RSPECT both focus on patients suspected of having pulmonary embolisms, we
focus on pulmonary-related pathologies in our experiments. Table 9 outlines the clinical significance
of these tasks.

Abbr. Name Clinical Meaning
PH Pulmonary

Hypertension
A condition characterized by high blood pressure in the pulmonary arteries, lead-
ing to right heart strain and potentially heart failure. Predicting on long term out-
come is of higher clinical usage.

PE Pulmonary
Embolism

A life-threatening condition where a blood clot blocks the pulmonary arteries,
leading to impaired blood flow to the lungs and acute respiratory symptoms.

ATX Atelectasis A collapse of lung tissue that prevents normal oxygen absorption, often resulting
from obstruction or fluid accumulation.

CMG Cardiomegaly An abnormal enlargement of the heart, typically caused by high blood pressure or
heart valve disease, which can lead to heart failure.

CONS Consolidation A region of lung tissue filled with liquid instead of air, often seen in pneumonia,
causing reduced oxygen exchange.

EDM Edema The abnormal accumulation of fluid in tissues or alveolar spaces, often related to
heart failure or lung injury, causing difficulty in breathing.

PEFF Pleural
Effusion

The buildup of excess fluid between the layers of the pleura surrounding the lungs,
often due to infection, heart failure, or malignancy, leading to difficulty breathing.

Table 9: Clinical definitions of pulmonary conditions used to define TTE tasks in the INSPECT
dataset.

H base PRETRAINING DATASETS

The pretrained image backbone base, i.e. SwinUNETR, DenseNet and ResNet, have their corre-
sponding pretrained dataset before we take them in for continued pretraining. The details are de-
scribed in Table 10.

Architecture Method Loss Dim. Dataset Size
SwinUNETRbase Self-supervised MAE 3D Custom Medical 10,050
DenseNet-121base Supervised BCE 2D ImageNet 1,281,167
ResNet-152base Supervised BCE 2D ImageNet 1,281,167

Table 10: Summary of model architectures, pretraining approaches, and off-the-shelf weights. Cus-
tom Medical includes 3D Chest, Abdomen, and Head/Neck CT and MRI scans (Valanarasu et al.,
2023).

I EXPERIMENT RUNTIME COST

For our experiments, we have trained the models in a PHI-compliant on-premise server that uses
2 compute nodes, each with 24 Intel Xeon 2.7GHz CPU cores, 200 GB RAM and 4 Nvidia A100
GPUs or 4 H100 GPUs. The total estimate cost for our model base/TTE regime pretrianing is shown
in Table 11.

Architecture Number of GPUs Estimated wall-clock time Estimated GPU hours
SwinUNETRbase/TTE 4 H100 (80GB) 15 days 1,440 GPU hours
DenseNet-121base/TTE 4 A100 (40GB) 9 days 864 GPU hours
ResNet-152base/TTE 4 A100 (80GB) 10 days 960 GPU hours

Table 11: Summary of compute cost across architectures
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J FULL PARAMETER FINE-TUNING ANALYSIS

To illustrate the data efficiency of TTE pretraining method, we conduct single task full parameter
fine tuning on both INSPECT and RSPECT dataset, starting from base model checkpoint. This
experiment is to show what is the cost to take off-the-shelf model to evaluate on the same set of
tasks as ours but following traditional machine learning pipeline to conduct full parameter fine-
tuning towards each task. Due to the high number of tasks, i.e. 7 binary classification tasks and
8 TTE tasks from INSPECT data, as well as 8 binary classification tasks from RSPECT data, we
only choose one representative tasks from each data set and conduct the fine-tuning. We train until
the model has early stopping till the plateau on validation set measured by cross entropy loss. The
results are shown in Table 12. We can conclude that single task full parameter fine-tuning does not
scale as well as TTE pretraining, and in general the performance is no better than, if not much worse
than TTE pretraining.

Dataset (fine-tuning task) Architecture Full param fine-tuned
results (AUROC)

Linear probe
results (AUROC) Delta

SwinUNETRbase 0.616 0.597 + 3.18 %
SwinUNETRbase/TTE 0.637 0.672 - 5.20 %

INSPECT (12 month PH) DenseNet-121base 0.553 0.506 + 9.28 %
DenseNet-121base/TTE 0.631 0.689 - 8.41 %

ResNet-152base 0.552 0.537 + 2.79 %
ResNet-152base/TTE 0.649 0.718 - 9.61 %

SwinUNETRbase 0.606 0.578 + 4.84 %
SwinUNETRbase/TTE 0.631 0.636 - 0.79 %

RSPECT (RV/LV ≥ 1) DenseNet-121base 0.643 0.607 + 5.93 %
DenseNet-121base/TTE 0.611 0.686 - 10.93 %

ResNet-152base 0.653 0.626 + 4.31 %
ResNet-152base/TTE 0.588 0.708 - 16.95 %

Table 12: Summary of compute cost across architectures for full parameter fine-tuning on one sin-
gle task from each dataset. On average the full parameter fine-tuning computation cost for both
INSPECT and RSPECT data ranges from 57.5 (standard deviation: 61.4) to 31.3 (standard devia-
tion: 16.7) GPU hours respectively, which is much more expensive than linear probe, i.e. logistic
regression on CPU, which takes minute level computation cost. In addition, the models when fine-
tuned on single label task, tend to overfit given the large amount of parameter counts. The above
results are from more stringent regularization training.
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K CONFIDENCE INTERVALS

Here we are showing the confidence interval differences between all the baselines against the pro-
posed method (base/TTE) in both classification tasks (measured by AUROC, in Table 13) and time-
to-event tasks (measured by Harrell’s C-index, in Table 14, time-dependent C-statistics, in Table
15 and integrated Brier score in Table 16). The RSPECT dataset confidence interval difference is
detailed in Table 17.

Model Mortality Readmission PH

1M 6M 12M 1M 6M 12M 12M

SwinUNETR base (-0.151, -0.055)* (-0.156, -0.082)* (-0.193, -0.113)* (-0.153, -0.011)* (-0.093, -0.001)* (-0.072, -0.011)* (-0.084, -0.005)*
SwinUNETR base/MTL (-0.103, -0.023)* (-0.123, -0.053)* (-0.112, -0.042)* (-0.140, -0.013)* (-0.093, -0.002)* (-0.074, -0.005)* (-0.083, -0.001)*
SwinUNETR base/visit (-0.123, -0.034)* (-0.141, -0.064)* (-0.124, -0.055)* (-0.135, 0.005) (-0.092, -0.004)* (-0.075, -0.004)* (-0.085, -0.011)*
SwinUNETR base/TTE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

DenseNet-121 base (-0.193, -0.115)* (-0.155, -0.092)* (-0.173, -0.114)* (-0.185, -0.096)* (-0.114, -0.044)* (-0.123, -0.063)* (-0.161, -0.094)*
DenseNet-121 base/MTL (-0.195, -0.113)* (-0.153, -0.095)* (-0.171, -0.113)* (-0.194, -0.094)* (-0.112, -0.044)* (-0.123, -0.065)* (-0.162, -0.092)*
DenseNet-121 base/visit (-0.155, -0.062)* (-0.193, -0.133)* (-0.193, -0.135)* (-0.195, -0.095)* (-0.145, -0.065)* (-0.154, -0.076)* (-0.163, -0.093)*
DenseNet-121 base/TTE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

ResNet-152 base (-0.235, -0.143)* (-0.257, -0.172)* (-0.222, -0.164)* (-0.115, -0.006)* (-0.116, -0.022)* (-0.102, -0.016)* (-0.234, -0.152)*
ResNet-152 base/MTL (-0.174, -0.094)* (-0.155, -0.085)* (-0.145, -0.083)* (-0.093, 0.054) (-0.113, -0.022)* (-0.112, -0.025)* (-0.171, -0.094)*
ResNet-152 base/visit (-0.132, -0.056)* (-0.123, -0.063)* (-0.113, -0.056)* (-0.096, -0.062)* (-0.132, -0.032)* (-0.117, -0.037)* (-0.113, -0.042)*
ResNet-152 base/TTE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 13: 95% confidence interval differences for classification performance on INSPECT dataset
for proposed method (base/TTE) and baselines, measure by AUROC. The * indicates statistical sig-
nificance under p-value at 0.05 for null hypothesis. (PE: pulmonary embolism; PH: pulmonary
hypertension)

Model Harrell’s C-Index ↑
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base (-0.381, -0.178)* (-0.615, -0.126)* (-0.925, -0.134)* (-0.292, -0.072)* (-0.210, -0.121)* (-0.272, -0.164)* (-0.455, -0.190)* (-0.630, -0.264)*
SwinUNETR base/MTL (-0.726, -0.061)* (-0.404, -0.065)* (-0.837, -0.138)* (-0.162, -0.043)* (-0.603, -0.002)* (-0.897, -0.072)* (-0.608, -0.017)* (-0.086, -0.080)*
SwinUNETR base/visit (-0.104, -0.011)* (-0.441, 0.083) (-0.699, -0.077)* (-0.184, -0.001)* (-0.333, -0.078)* (-0.214, -0.127)* (-0.605, 0.090) (-0.776, -0.053)*
SwinUNETR base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

DenseNet-121 base (-0.564, -0.063)* (-0.869, -0.067)* (-0.805, -0.143)* (-0.235, -0.206)* (-0.495, -0.298)* (-0.603, -0.133)* (-0.672, -0.166)* (-0.365, -0.053)*
DenseNet-121 base/MTL (-0.155, -0.073)* (-0.579 0.001)* (-0.596, -0.146)* (-0.663, -0.120)* (-0.644, -0.047)* (-0.576, -0.003)* (-0.965, -0.348)* (-0.829, -0.141)*
DenseNet-121 base/visit (-0.340, -0.134)* (-0.642, -0.108)* (-0.189, 0.044) (-0.463, -0.053)* (-0.672, -0.079)* (-0.420, -0.058)* (-0.709, -0.071)* (-0.273, -0.086)*
DenseNet-121 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ResNet-152 base (-0.332, -0.164)* (-0.443, -0.257)* (-0.275, -0.030)* (-0.615, -0.228)* (-0.518, -0.016)* (-0.332, -0.041)* (-0.289, -0.023)* (-0.574, -0.165)*
ResNet-152 base/MTL (-0.225, 0.177) (-0.131, -0.098)* (-0.440, -0.047)* (-0.560, -0.284)* (-0.834, -0.155)* (0.568, 0.008)* (-0.672, -0.273)* (-0.427, -0.041)*
ResNet-152 base/visit (-0.247, -0.166)* (-0.541, -0.098)* (-0.178, -0.012)* (-0.250, -0.019)* (-0.227, -0.080)* (-0.186, -0.086)* (-0.122, -0.056)* (-0.055, 0.832)
ResNet-152 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 14: 95% confidence interval differences for time-to-event performance on INSPECT dataset
for proposed method (base/TTE) and baselines, measured by Harrell’s C-Index. The * indicates sta-
tistical significance under p-value at 0.05 for null hypothesis.
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Model Time-dependent c-statistics ↑
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base (−0.051,−0.009)∗ (−0.050,−0.010)∗ (−0.044,−0.016)∗ (−0.107,−0.049)∗ (−0.074,−0.014)∗ (−0.132,−0.072)∗ (−0.060,−0.010)∗ (−0.090,−0.030)∗
SwinUNETR base/MTL (−0.053,−0.007)∗ (−0.055,−0.005)∗ (−0.053,−0.005)∗ (−0.073,−0.013)∗ (−0.050,−0.020)∗ (−0.062,−0.032)∗ (−0.042,−0.012)∗ (−0.049,−0.019)∗
SwinUNETR base/visit (−0.040,−0.020)∗ (−0.037,−0.023)∗ (−0.045,−0.015)∗ (−0.052,−0.002)∗ (−0.049,−0.019)∗ (−0.048,−0.018)∗ (−0.034,−0.004)∗ (−0.033,−0.003)∗
SwinUNETR base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

DenseNet-121 base (−0.213,−0.143)∗ (−0.222,−0.152)∗ (−0.146,−0.126)∗ (−0.194,−0.144)∗ (−0.185,−0.135)∗ (−0.163,−0.123)∗ (−0.189,−0.149)∗ (−0.181,−0.131)∗
DenseNet-121 base/MTL (−0.109,−0.069)∗ (−0.100,−0.070)∗ (−0.093,−0.063)∗ (−0.090,−0.060)∗ (−0.082,−0.052)∗ (−0.095,−0.065)∗ (−0.093,−0.063)∗ (−0.094,−0.064)∗
DenseNet-121 base/visit (−0.075,−0.045)∗ (−0.060,−0.030)∗ (−0.051,−0.021)∗ (−0.063,−0.033)∗ (−0.050,−0.020)∗ (−0.060,−0.030)∗ (−0.064,−0.034)∗ (−0.058,−0.028)∗
DenseNet-121 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ResNet-152 base (−0.258,−0.188)∗ (−0.099,−0.069)∗ (−0.172,−0.142)∗ (−0.102,−0.072)∗ (−0.247,−0.217)∗ (−0.106,−0.076)∗ (−0.192,−0.162)∗ (−0.188,−0.158)∗
ResNet-152 base/MTL (−0.067,−0.037)∗ (−0.086,−0.056)∗ (−0.063,−0.033)∗ (−0.067,−0.037)∗ (−0.077,−0.047)∗ (−0.059,−0.029)∗ (−0.061,−0.031)∗ (−0.078,−0.048)∗
ResNet-152 base/visit (−0.062,−0.032)∗ (−0.035,−0.005)∗ (−0.063,−0.033)∗ (−0.059,−0.029)∗ (−0.046,−0.016)∗ (−0.044,−0.014)∗ (−0.029, 0.001) (−0.028,−0.002)∗
DenseNet-121 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 15: 95% confidence interval differences for time-to-event performance on INSPECT dataset
for proposed method (base/TTE) and baselines, measured by time-dependent C-statistics. The * indi-
cates statistical significance under p-value at 0.05 for null hypothesis.

Model Integrated Brier Score ↓
Mort. Readm. PH ATX CMG CONS EDM PEFF

SwinUNETR base (0.004, 0.016)* (0.006, 0.014)* (0.005, 0.017)* (0.015, 0.035)* (0.010, 0.030)* (0.021, 0.041)* 0.020 (0.010, 0.030)* (0.012, 0.032)*
SwinUNETR base/MTL (0.002, 0.022)* (0.001, 0.021)* (0.003, 0.023)* (0.003, 0.027)* (−0.004, 0.026) (0.005, 0.025)* (0.013, 0.017)* (−0.004, 0.026)
SwinUNETR base/visit (−0.006, 0.014) (0.009, 0.011)* (0.005, 0.017)* (0.014, 0.016)* (0.016, 0.014)* (0.015, 0.015)* (−0.020, 0.010) (0.014, 0.016)*
SwinUNETR base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

DenseNet-121 base (0.176, 0.206)* (0.736, 0.786)* (0.663, 0.697)* (0.751, 0.779)* (0.188, 0.218)* (0.485, 0.523)* (0.295, 0.329)* (0.794, 0.822)*
DenseNet-121 base/MTL (0.033, 0.053)* (0.031, 0.061)* (0.029, 0.063)* (0.039, 0.069)* (0.036, 0.066)* (0.024, 0.062)* (0.041, 0.079)* (0.039, 0.069)*
DenseNet-121 base/visit (0.032, 0.062)* (0.032, 0.062)* (0.032, 0.066)* (0.042, 0.072)* (0.039, 0.069)* (0.027, 0.065)* (0.033, 0.071)* (0.043, 0.073)*
DenseNet-121 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ResNet-152 base (0.266, 0.296)* (0.006, 0.024)* (0.412, 0.442)* (0.094, 0.124)* (0.086, 0.116)* (0.081, 0.111)* (0.055, 0.085)* (0.028, 0.058)*
ResNet-152 base/MTL (0.001, 0.019)* (0.005, 0.015)* (0.003, 0.027)* (0.005, 0.025)* (0.005, 0.025)* (0.008, 0.022)* (0.007, 0.023)* (−0.004, 0.026)
ResNet-152 base/visit (0.003, 0.017)* (0.002, 0.018)* (0.007, 0.023)* (0.010, 0.020)* (0.012, 0.018)* (0.008, 0.022)* (0.011, 0.019)* (0.010, 0.020)*
ResNet-152 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 16: 95% confidence interval differences time-to-event performance on the INSPECT dataset
for the proposed method (base/TTE) and baselines, measured by integrated Brier score. The * indi-
cates statistical significance under p-value at 0.05 for null hypothesis.

Model PE RV/LV Ratio

Left Cent. Right Chronic Acute Indet. <1 ≥1

SwinUNETR base (-0.094, -0.029)* (-0.139, -0.012)* (-0.089, -0.035)* (-0.159, 0.108) (-0.274, -0.010)* (-0.131, -0.006)* (-0.160, -0.075)* (-0.092, -0.021)*
SwinUNETR base/MTL (-0.097, -0.006)* (-0.089, 0.058) (-0.085, -0.005)* (-0.103, 0.067) (-0.208, -0.030)* (-0.158, 0.060) (-0.174, -0.071)* (-0.084, -0.009)*
SwinUNETR base/visit (-0.156, -0.017)* (-0.096, 0.115) (-0.122, 0.011) (-0.120, 0.178) (-0.290, 0.127) (-0.206, 0.144) (-0.203, -0.047)* (-0.210, -0.031)*
SwinUNETR base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

DenseNet-121 base (-0.093, -0.012)* (-0.170, -0.017)* (-0.077, -0.011)* (-0.098, 0.052) (-0.046, 0.073) (-0.129, 0.054) (-0.082, 0.002) (-0.132, -0.031)*
DenseNet-121 base/MTL (-0.049, -0.024)* (-0.119, -0.042)* (-0.036, -0.016)* (-0.146, -0.019)* (-0.015, 0.018) (-0.082, -0.010)* (-0.042, -0.013)* (-0.068, -0.032)*
DenseNet-121 base/visit (-0.091, -0.013)* (-0.155, -0.009)* (-0.071, -0.005)* (-0.088, 0.054) (-0.040, 0.079) (-0.107, 0.085) (-0.093, -0.007)* (-0.119, -0.018)*
DenseNet-121 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ResNet-152 base (-0.039, 0.034) (-0.061, 0.058) (-0.059, 0.015) (-0.032, 0.043) (-0.026, 0.233) (-0.116, 0.068) (-0.048, 0.038) (-0.142, -0.026)*
ResNet-152 base/MTL (-0.040, 0.037) (-0.061, 0.066) (-0.057, 0.015) (-0.034, 0.041) (-0.012, 0.213) (-0.120, 0.076) (-0.055, 0.036) (-0.122, -0.012)*
ResNet-152 base/visit (-0.021, -0.005)* (-0.038, -0.012)* (-0.024, -0.010)* (0.030, 0.062)* (0.012, 0.283)* (-0.010, 0.006) (-0.062, -0.001)* (-0.075, -0.018)*
ResNet-152 base/TTE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 17: 95% confidence interval differences classification performance of different methods on
RSPECT dataset for diagnosis labels, measured by AUROC. * indicates the statistical significance
under p value = 0.05
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L TASK HEAD CAPACITY ON RANDOMLY INITIALIZED BACKBONES

We are interested in knowing the different probing method’s utility, with random initialization from
different model architectures (i.e. image backbone provides no predictive power thus only relying
on probing methods), how much does probe methods provide for prediction, and what is delta of
each model from that initialization. The comparisons are shown in Figures 6, 7, 8.
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Figure 6: Comparison of models towards random initialization and each model’s delta on AUROC
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Figure 7: Comparison of models towards random initialization and each model’s delta on Harrell’s
C-index
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Figure 8: Comparison of models towards random initialization and each model’s delta on integrated
Brier score
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M PIECEWISE EXPONENTIAL LOSS FUNCTION

In our methods section, we briefly describe that we use a piecewise exponential model, and thus,
we use the corresponding piecewise exponential survival loss as our loss function. In this appendix
section, we provide the exact formulas used to implement that survival loss.

For the piecewise exponential, we select a number of pieces and each piece covers the response
period starting at Sp and ending at Ep. For every piece p and image i in our dataset, our model
needs to output λip, the instantaneous hazard rate for the patient described by that image during the
response time period p. These λ values are then used to define a survival function for each image i:

Si(t) =

P∏
p=1

exp
[
−λip(min(t, Ep)− Sp))I(t ≥ Sp)

]
, (3)

This survival function has an associated PDF, f , that is simply the negative of the derivative of the
survival function.

fi = −∂Si

∂t
(4)

Applying the derivative operator, we obtain that

fi = Si(t)

P∑
p=1

λipI(Se ≤ t ≤ Sp) (5)

We define the loss function for training by using the survival function to implement the standard
survival likelihood equation and taking the product of that likelihood over the entire dataset. ∆i

is event indicator whose value is 1 when the actual event is observed. We can then plug in our
definitions for the survival function S and the pdf f to obtain our final loss function:

L =

n∏
i=i

[Si(t)]
1−∆i [fi(t)]

δi

L =

n∏
i=i

[Si(t)]

[
P∑

p=1

λipI(Se ≤ t ≤ Sp)

]∆i

L =

n∏
i=i

[

P∏
p=1

exp
[
−λip(min(t, Ep)− Sp))I(t ≥ Sp)

]
]

[
P∑

p=1

λipI(Se ≤ t ≤ Sp)

]∆i

(6)
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N KAPLAN-MEIER CURVES FOR TTE TASKS

We here plot the stratified groups in terms of the diagnosis of pulmonary embolism for Kaplan-Meier
curves among all of our TTE tasks, shown in Figures 9, 10, 11, 12, 13, 14, 15, 16.

Figure 9: Kaplan-Meier curve for Mortality

Figure 10: Kaplan-Meier curve for Readmission
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Figure 11: Kaplan-Meier curve for Pulmonary Hypertension (PH)

Figure 12: Kaplan-Meier curve for Atelectasis

Figure 13: Kaplan-Meier curve for Cardiomegaly
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Figure 14: Kaplan-Meier curve for Consolidation

Figure 15: Kaplan-Meier curve for Edema

Figure 16: Kaplan-Meier curve for Pleural Effusion
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O PRETRAINING TASK EVENT TIME DISTRIBUTIONS

We have employed 8,192 future clinical events in our pretraining mixture and here we plot the
distribution of the time to event w.r.t to each of the 8,192 events across all the cohorts in INSPECT
data. We have maximum and median time to event distributions for the 8192 labels and all time to
event distribution for each occurrence in Figures 17, 18, 19.

Figure 17: Maximum Time to Event across INSPECT cohort for 8192 future events (Per event)

Figure 18: Median Time to Event across INSPECT cohort for 8192 future events (Per event)

Figure 19: All Time to Event across INSPECT cohort for 8192 future events (Per occurrence)

32



Published as a conference paper at ICLR 2025

P EXAMPLES OF PRETRAINING CLINICAL EVENTS

We have list the set of medical ontologies that are availabe in the EHR modality, in Table 18. We fur-
ther stratify the frequency of our 8,192 pretraining clinical events across all cohorts in the INSPECT
dataset into quintiles and present the top 3 examples in each quintile, in Table 19.

Ontology
OMOP Extension

Medicare Specialty
CPT4
CVX

ICD9Proc
RxNorm

SNOMED
RxNorm Extension

Cancer Modifier
ICD10PCS

CMS Place of Service
Visit

Ethnicity
Gender
ICDO3
Race

LOINC
HCPCS

Table 18: OHDSI Athena ontolgies used in our benchmark

Medical Code Description Quintile

SNOMED/60853003 Disorder of magnesium metabolism 1
SNOMED/167321001 Urine dipstick for urobilinogen 1
LOINC/2472-9 Immunoglobulin M (IgM) in serum or plasma 1

RxNorm/905216 Hydralazine Hydrochloride 50 MG 2
SNOMED/276319003 Finding of menstrual bleeding 2
RxNorm/979463 Losartan potassium 100 MG 2

SNOMED/89659001 Amylase measurement, serum 3
SNOMED/400166009 Acquired keratoderma 3
SNOMED/70209001 Late effect of complications of procedure (disorder) 3

LOINC/32355-0 Bacteria identified in Specimen by Respiratory culture 4
SNOMED/56675007 Acute heart failure 4
SNOMED/297971001 Finding of sensation of skin 4

SNOMED/118664000 Procedure on body system 5
SNOMED/118717007 Procedure on organ 5
SNOMED/118672003 Procedure on cardiovascular system 5

Table 19: Top 3 events in each quintile
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Q FEATURE ATTRIBUTION

We use GradCAM (Selvaraju et al., 2017) to visualize the Gradient-weighted Class Activation Map-
ping for our DenseNet-121model and its baselines, w.r.t. to the TTE tasks we curated, where we
selected the CTs with the corresponding TTE labels that actually happened for the patient after the
CT capture, in Figure 20. We can observe that the TTE version of the model can focus the pathology
in a more reasonable region rather than scattered features learned by different baselines.
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(a) GradCAM for Atelectasis=True after CT’s capture for models and baselines
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(b) GradCAM for Consolidation=True after CT’s capture for models and baselines
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(c) GradCAM for Pleural Effusion=True after CT’s capture for models and baselines
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(d) GradCAM for Cardiomegaly=True after CT’s capture for models and baselines
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(e) GradCAM for Edema=True after CT’s capture for models and baselines
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(f) GradCAM for Pulmonary Hypertension=True after CT’s capture for models and baselines

Figure 20: GradCAM visualizations of sampled CTs for various occurred conditions: Atelectasis,
Consolidation, Pleural Effusion, Cardiomegaly, Edema, and Pulmonary Hypertension.

34



Published as a conference paper at ICLR 2025

R SUBGROUP PERFORMANCE

We conduct an analysis to assess performance on our best performing model, SwinUNETR, across
sensitive subgroups, ensuring our pretraining technique does not unfairly disadvantage any group
compared to existing methods. The stratified subgroup counts for this experiment under test split
of INSPECT dataset is in Table 20. We evaluate performance using the AUROC (bootstrapped,
n=1000) on 5 binary prognostic tasks, comparing TTE against base, showing that TTE pretraining
does not reduce performance for sensitive groups and generally improves risk ranking across all
groups. The details are in Tables 21, 22, 23, 24, 25, 26, 27.

Group Concept Counts

Gender Female 1844
Male 1370

Age

18-39 448
39-69 1667
69-89 993
>89 106

Race

Asian 554
Black 192
Native 74
White 1730
Unknown 664

Ethnicity
Hispanic 495
Not Hispanic 2612
Unknown 107

Table 20: Subgroup stratified counts for the test split under INSPECT dataset

AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.666 (0.607, 0.722) 0.648 (0.588, 0.705) 0.690 (0.636, 0.739) 0.828 (0.789, 0.866)
Male 0.735 (0.670, 0.800) 0.712 (0.637, 0.785) 0.696 (0.634, 0.753) 0.841 (0.797, 0.879)

Age

18-39 0.753 (0.591, 0.887) 0.715 (0.553, 0.863) 0.643 (0.512, 0.765) 0.887 (0.808, 0.952)
39-69 0.701 (0.639, 0.755) 0.688 (0.626, 0.751) 0.683 (0.628, 0.735) 0.846 (0.809, 0.882)
69-89 0.661 (0.580, 0.738) 0.643 (0.558, 0.720) 0.730 (0.672, 0.790) 0.809 (0.752, 0.864)
>89 0.662 (0.435, 0.869) 0.648 (0.434, 0.877) 0.723 (0.445, 0.916) 0.647 (0.426, 0.847)

Race

Asian 0.675 (0.547, 0.787) 0.642 (0.522, 0.760) 0.668 (0.562, 0.774) 0.831 (0.732, 0.912)
Black 0.533 (0.328, 0.738) 0.512 (0.313, 0.707) 0.660 (0.523, 0.785) 0.805 (0.690, 0.905)
Native 0.667 (0.040, 1.000) 0.689 (0.040, 1.000) 0.743 (0.333, 0.997) 0.773 (0.555, 0.939)
White 0.749 (0.694, 0.797) 0.732 (0.673, 0.786) 0.718 (0.665, 0.769) 0.855 (0.816, 0.889)
Unknown 0.649 (0.561, 0.733) 0.636 (0.553, 0.726) 0.670 (0.598, 0.740) 0.778 (0.719, 0.830)

Ethnicity
Hispanic 0.645 (0.532, 0.754) 0.646 (0.524, 0.758) 0.685 (0.588, 0.778) 0.785 (0.701, 0.866)
Not Hispanic 0.701 (0.648, 0.751) 0.681 (0.630, 0.730) 0.699 (0.655, 0.741) 0.842 (0.809, 0.873)
Unknown 0.731 (0.563, 0.862) 0.720 (0.566, 0.848) 0.688 (0.572, 0.800) 0.832 (0.744, 0.912)

Table 21: 1-Month Mortality prognosis breakdown by subgroups, reported as the mean AUROC of
a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.
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AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.661 (0.620, 0.702) 0.676 (0.632, 0.717) 0.699 (0.653, 0.743) 0.813 (0.779, 0.842)
Male 0.710 (0.657, 0.762) 0.739 (0.688, 0.790) 0.727 (0.683, 0.769) 0.819 (0.779, 0.858)

Age

18-39 0.799 (0.727, 0.861) 0.803 (0.729, 0.867) 0.723 (0.634, 0.810) 0.887 (0.820, 0.944)
39-69 0.685 (0.641, 0.725) 0.700 (0.653, 0.747) 0.690 (0.645, 0.734) 0.811 (0.775, 0.842)
69-89 0.635 (0.571, 0.691) 0.657 (0.596, 0.717) 0.755 (0.693, 0.805) 0.799 (0.752, 0.844)
>89 0.680 (0.502, 0.844) 0.738 (0.562, 0.880) 0.687 (0.473, 0.870) 0.732 (0.528, 0.883)

Race

Asian 0.666 (0.583, 0.740) 0.693 (0.608, 0.771) 0.682 (0.591, 0.770) 0.755 (0.667, 0.840)
Black 0.573 (0.414, 0.728) 0.615 (0.478, 0.758) 0.666 (0.536, 0.793) 0.818 (0.720, 0.905)
Native 0.806 (0.500, 1.000) 0.794 (0.488, 0.986) 0.795 (0.586, 0.966) 0.882 (0.710, 0.990)
White 0.713 (0.674, 0.751) 0.724 (0.684, 0.765) 0.733 (0.694, 0.772) 0.834 (0.802, 0.862)
Unknown 0.664 (0.612, 0.713) 0.680 (0.627, 0.728) 0.707 (0.650, 0.761) 0.779 (0.739, 0.818)

Ethnicity
Hispanic 0.651 (0.554, 0.743) 0.673 (0.579, 0.762) 0.679 (0.597, 0.756) 0.767 (0.694, 0.833)
Not Hispanic 0.688 (0.653, 0.724) 0.709 (0.675, 0.743) 0.724 (0.688, 0.759) 0.820 (0.795, 0.845)
Unknown 0.693 (0.624, 0.758) 0.689 (0.625, 0.753) 0.726 (0.647, 0.795) 0.792 (0.741, 0.840)

Table 22: 6-Month Mortality prognosis breakdown by subgroups, reported as the mean AUROC of
a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.

AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.655 (0.616, 0.694) 0.669 (0.630, 0.706) 0.660 (0.617, 0.702) 0.796 (0.762, 0.825)
Male 0.717 (0.669, 0.762) 0.732 (0.685, 0.775) 0.672 (0.626, 0.717) 0.796 (0.761, 0.833)

Age

18-39 0.828 (0.760, 0.886) 0.839 (0.777, 0.893) 0.681 (0.589, 0.764) 0.876 (0.805, 0.936)
39-69 0.682 (0.636, 0.722) 0.694 (0.653, 0.731) 0.644 (0.598, 0.686) 0.791 (0.759, 0.825)
69-89 0.632 (0.573, 0.687) 0.647 (0.589, 0.702) 0.706 (0.649, 0.763) 0.784 (0.738, 0.827)
>89 0.605 (0.434, 0.771) 0.616 (0.429, 0.796) 0.632 (0.440, 0.809) 0.660 (0.481, 0.819)

Race

Asian 0.675 (0.604, 0.746) 0.695 (0.624, 0.763) 0.657 (0.567, 0.741) 0.754 (0.684, 0.824)
Black 0.624 (0.498, 0.746) 0.645 (0.522, 0.766) 0.620 (0.505, 0.730) 0.781 (0.683, 0.866)
Native 0.716 (0.451, 0.950) 0.690 (0.394, 0.937) 0.745 (0.487, 0.952) 0.840 (0.650, 0.981)
White 0.716 (0.675, 0.755) 0.724 (0.687, 0.762) 0.676 (0.632, 0.714) 0.822 (0.793, 0.851)
Unknown 0.657 (0.609, 0.703) 0.673 (0.625, 0.719) 0.672 (0.621, 0.725) 0.750 (0.707, 0.788)

Ethnicity
Hispanic 0.643 (0.553, 0.728) 0.660 (0.571, 0.746) 0.631 (0.551, 0.701) 0.708 (0.630, 0.780)
Not Hispanic 0.689 (0.657, 0.721) 0.702 (0.668, 0.736) 0.675 (0.640, 0.714) 0.808 (0.782, 0.835)
Unknown 0.698 (0.638, 0.755) 0.706 (0.647, 0.761) 0.695 (0.621, 0.764) 0.764 (0.713, 0.811)

Table 23: 12-Month Mortality prognosis breakdown by subgroups, reported as the mean AUROC of
a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.

AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.539 (0.459, 0.623) 0.534 (0.457, 0.614) 0.551 (0.477, 0.630) 0.599 (0.522, 0.671)
Male 0.498 (0.391, 0.607) 0.492 (0.386, 0.600) 0.532 (0.448, 0.613) 0.587 (0.499, 0.675)

Age

18-39 0.452 (0.280, 0.634) 0.438 (0.260, 0.613) 0.598 (0.456, 0.737) 0.603 (0.423, 0.760)
39-69 0.458 (0.373, 0.546) 0.457 (0.374, 0.546) 0.523 (0.446, 0.597) 0.558 (0.482, 0.628)
69-89 0.687 (0.573, 0.794) 0.689 (0.581, 0.787) 0.492 (0.370, 0.608) 0.676 (0.547, 0.787)
>89 0.459 (0.013, 0.907) 0.432 (0.013, 0.878) 0.772 (0.585, 0.915) 0.363 (0.200, 0.533)

Race

Asian 0.594 (0.442, 0.742) 0.603 (0.428, 0.748) 0.674 (0.485, 0.854) 0.619 (0.460, 0.763)
Black 0.374 (0.025, 0.848) 0.397 (0.027, 0.865) 0.523 (0.338, 0.775) 0.524 (0.201, 0.945)
Native 0.860 (0.760, 0.940) 0.880 (0.780, 0.960) 0.287 (0.146, 0.447) 0.941 (0.875, 1.000)
White 0.490 (0.411, 0.573) 0.478 (0.395, 0.558) 0.521 (0.449, 0.591) 0.614 (0.540, 0.686)
Unknown 0.491 (0.408, 0.571) 0.489 (0.410, 0.575) 0.613 (0.525, 0.700) 0.525 (0.444, 0.604)

Ethnicity
Hispanic 0.670 (0.479, 0.836) 0.662 (0.468, 0.842) 0.515 (0.406, 0.626) 0.587 (0.400, 0.774)
Not Hispanic 0.515 (0.439, 0.586) 0.513 (0.442, 0.587) 0.542 (0.475, 0.610) 0.620 (0.557, 0.680)
Unknown 0.433 (0.347, 0.522) 0.426 (0.340, 0.511) 0.666 (0.563, 0.761) 0.480 (0.380, 0.576)

Table 24: 1-Month Readmission prognosis breakdown by subgroups, reported as the mean AUROC
of a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.
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AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.571 (0.522, 0.619) 0.577 (0.528, 0.626) 0.488 (0.436, 0.541) 0.607 (0.558, 0.654)
Male 0.525 (0.466, 0.585) 0.526 (0.470, 0.583) 0.608 (0.541, 0.670) 0.607 (0.556, 0.660)

Age

18-39 0.533 (0.428, 0.630) 0.542 (0.440, 0.636) 0.541 (0.434, 0.654) 0.660 (0.569, 0.753)
39-69 0.516 (0.467, 0.564) 0.519 (0.472, 0.566) 0.519 (0.461, 0.573) 0.590 (0.544, 0.634)
69-89 0.616 (0.542, 0.691) 0.624 (0.549, 0.694) 0.537 (0.456, 0.616) 0.610 (0.535, 0.689)
>89 0.604 (0.000, 0.984) 0.616 (0.000, 0.984) 0.792 (0.601, 0.956) 0.553 (0.161, 0.921)

Race

Asian 0.548 (0.456, 0.641) 0.556 (0.459, 0.648) 0.549 (0.401, 0.693) 0.591 (0.497, 0.678)
Black 0.510 (0.305, 0.706) 0.509 (0.305, 0.698) 0.525 (0.365, 0.697) 0.557 (0.382, 0.734)
Native 0.841 (0.612, 0.989) 0.850 (0.659, 0.985) 0.598 (0.431, 0.774) 0.835 (0.588, 0.977)
White 0.554 (0.504, 0.604) 0.561 (0.511, 0.610) 0.529 (0.479, 0.580) 0.626 (0.575, 0.675)
Unknown 0.504 (0.451, 0.559) 0.502 (0.451, 0.553) 0.591 (0.522, 0.652) 0.594 (0.544, 0.642)

Ethnicity
Hispanic 0.610 (0.516, 0.704) 0.606 (0.510, 0.695) 0.594 (0.503, 0.685) 0.556 (0.455, 0.648)
Not Hispanic 0.553 (0.507, 0.596) 0.560 (0.519, 0.601) 0.528 (0.475, 0.574) 0.620 (0.581, 0.661)
Unknown 0.469 (0.401, 0.532) 0.472 (0.413, 0.534) 0.600 (0.511, 0.687) 0.605 (0.541, 0.665)

Table 25: 6-Month Readmission prognosis breakdown by subgroups, reported as the mean AUROC
of a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.

AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.588 (0.539, 0.629) 0.565 (0.520, 0.609) 0.492 (0.444, 0.538) 0.607 (0.562, 0.650)
Male 0.563 (0.512, 0.612) 0.547 (0.497, 0.598) 0.555 (0.501, 0.610) 0.601 (0.552, 0.650)

Age

18-39 0.557 (0.467, 0.645) 0.554 (0.462, 0.639) 0.496 (0.402, 0.581) 0.653 (0.573, 0.730)
39-69 0.562 (0.519, 0.605) 0.530 (0.484, 0.571) 0.509 (0.461, 0.557) 0.596 (0.554, 0.640)
69-89 0.611 (0.544, 0.673) 0.600 (0.529, 0.664) 0.529 (0.464, 0.596) 0.592 (0.523, 0.659)
>89 0.589 (0.019, 0.913) 0.675 (0.180, 0.981) 0.678 (0.466, 0.875) 0.564 (0.130, 0.855)

Race

Asian 0.614 (0.524, 0.694) 0.587 (0.497, 0.679) 0.473 (0.383, 0.561) 0.635 (0.555, 0.716)
Black 0.494 (0.336, 0.680) 0.486 (0.325, 0.642) 0.488 (0.344, 0.635) 0.634 (0.472, 0.787)
Native 0.901 (0.763, 0.987) 0.843 (0.679, 0.976) 0.631 (0.462, 0.792) 0.861 (0.658, 1.000)
White 0.589 (0.542, 0.632) 0.564 (0.519, 0.607) 0.516 (0.472, 0.562) 0.626 (0.585, 0.668)
Unknown 0.523 (0.481, 0.569) 0.515 (0.470, 0.560) 0.566 (0.510, 0.621) 0.560 (0.512, 0.607)

Ethnicity
Hispanic 0.522 (0.440, 0.604) 0.534 (0.447, 0.622) 0.602 (0.510, 0.689) 0.479 (0.401, 0.557)
Not Hispanic 0.597 (0.560, 0.634) 0.570 (0.534, 0.608) 0.506 (0.464, 0.545) 0.635 (0.601, 0.669)
Unknown 0.509 (0.454, 0.565) 0.501 (0.437, 0.557) 0.554 (0.472, 0.631) 0.589 (0.529, 0.644)

Table 26: 12-Month Readmission prognosis breakdown by subgroups, reported as the mean AUROC
of a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance across all models.

AUROC ↑
Group Concept SwinUNETR base SwinUNETR base/MTL SwinUNETR base/visit SwinUNETR base/TTE

Gender Female 0.597 (0.547, 0.645) 0.607 (0.556, 0.655) 0.559 (0.515, 0.602) 0.665 (0.618, 0.710)
Male 0.563 (0.504, 0.622) 0.572 (0.512, 0.631) 0.542 (0.496, 0.592) 0.673 (0.625, 0.721)

Age

18-39 0.543 (0.379, 0.709) 0.553 (0.386, 0.703) 0.515 (0.431, 0.594) 0.758 (0.650, 0.862)
39-69 0.606 (0.552, 0.660) 0.615 (0.562, 0.669) 0.552 (0.506, 0.596) 0.661 (0.614, 0.705)
69-89 0.547 (0.486, 0.609) 0.556 (0.497, 0.616) 0.579 (0.516, 0.639) 0.644 (0.584, 0.705)
>89 0.539 (0.361, 0.731) 0.548 (0.361, 0.728) 0.534 (0.404, 0.669) 0.464 (0.294, 0.631)

Race

Asian 0.613 (0.521, 0.707) 0.620 (0.523, 0.714) 0.547 (0.470, 0.627) 0.667 (0.576, 0.750)
Black 0.706 (0.532, 0.850) 0.727 (0.562, 0.876) 0.373 (0.249, 0.501) 0.767 (0.644, 0.872)
Native 0.378 (0.074, 0.711) 0.326 (0.046, 0.644) 0.218 (0.075, 0.369) 0.583 (0.312, 0.833)
White 0.579 (0.529, 0.630) 0.593 (0.543, 0.643) 0.580 (0.539, 0.625) 0.687 (0.643, 0.730)
Unknown 0.603 (0.558, 0.647) 0.609 (0.566, 0.655) 0.581 (0.532, 0.633) 0.641 (0.595, 0.686)

Ethnicity
Hispanic 0.602 (0.511, 0.687) 0.615 (0.521, 0.703) 0.500 (0.414, 0.584) 0.641 (0.550, 0.722)
Not Hispanic 0.584 (0.538, 0.626) 0.589 (0.547, 0.632) 0.562 (0.526, 0.598) 0.679 (0.643, 0.715)
Unknown 0.618 (0.566, 0.672) 0.626 (0.570, 0.677) 0.597 (0.526, 0.662) 0.646 (0.594, 0.696)

Table 27: 12-Month Pulmonary Hypertension prognosis breakdown by subgroups, reported as the
mean AUROC of a test set bootstrap (n=1000) with 95% CI. Bold indicates the best performance
across all models.
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