
A A Note on Applications and Future Work

The applications of HRRs may not be immediate, given the approach has been out-of-vogue amongst
most machine learning practitioners for many years. Long term we believe improvements in neuro-
symbolic learning are important for better generalization of ML methods to novel inputs and situations,
as argued by [3]. In the short term future, we do believe HRRs may have considerable opportunity to
provide enhancements. Transformers via their “query, key, value” Multi-Headed Attention (MHA)
are a natural place to explore HRRs due to the match of logical design, while potentially avoiding
MHA’s high costs and are supported by similarly motivated analysis by Schlag et al. [4] through the
lens of an associative memory. Similar recent works on TPR augmented RNNs for natural language
processing (NLP) [5, 6] show value to endowing modern designs with classic symbolic-connectionist
ideas. The same inspiration and other neuro-symbolic work on question-answering with TPRs [6]
leads us to believe HRRs maybe have similar potential for such systems, and in particular as a way to
extract, or augment the knowledge base of an a queryable system in a way that current methods do
not yet allow. Broadly we believe many NLP applications of HRRs may exist given the common
need to perform binding of subjects to their associated nouns, entity resolution, and the large variety
of binding like problems that occur across NLP tasks. Ultimately, we hope that the most interesting
work will come from taking new perspectives on how loss functions and problems may be modeled,
as we have done in § 4, to enable new kinds of tasks and applications.

B Understanding Compositional Representations with HRR

In this section, we provide an illustrative example of how a compositional representation can be
constructed with holographic reduced representations. As shown in Fig. 3, a dog is represented a
combination of the different parts of its body. The representation is in the form of a tree and consists
of a two-level hierarchy where the head part is further represented as a combination of eyes, nose
and mouth. Our objective is to create design a dense vector representation that can represent this
hierarchy. There are multiple ways in which a representation can be constructed, such as a binary
format, or concatenating individual attribute vectors representations. HRRs allow us construct a
dense representation that can be decomposed while maintaining the vector dimension size d constant.

Figure 3: Example representation of dog as a combination of different parts. The representation is a
two level hierarchy where its head can be subdivided into components.

Fig. 4 shows how HRR can be utilized. As described in §1, each attribute is represented as combination
of two vectors: a key (k) and attribute vector. The k† is used to retrieve the original attribute vector.

In the given example, the trace for dog (final dense representation) is computed by adding all
key⌦ attribute pairs. We ask the query: Do dogs have legs? and retrieve the attribute for legs by

16

Figure 4: Following is the vector representation of a dog using HRR. There are three types of vector
representations, namely, the Key / Cue vector, the attribute or property vector and trace / derived
vector. Trace vectors can be added to form a combined vector representation. The diagram shows
how a two-level hierarchy is represented with HRR. It is important to note that the dimension
size of the representation remains constant. To query the vector, the inverse of the key for a given
attribute is utilized (with the unbind operator). In this example, we ask the question: Does a dog
have legs?

computing l†⌦Dog where l is the key for the attribute legs and Dog is the trace vector representing
the concept. A simple yes/no response can then be obtained by comparing to the property, via
legs>l† ⌦Dog Because the ⌦ operation is associative and communicative, we can also ask if dogs
have eyes by checking eyes>e† ⌦Dog, though a stronger response will be obtained by using the
full structure of the encoding and checking eyes>h†

⌦ e† ⌦Dog.

The reader may then ask, why should the HRR operation allow us to answer queries like legs>l† ⌦
Dog in a fixed dimensional space? As an example we will reproduce the excellent illustrative worked
example by Plate [1], followed by a new derivation showing the same nature when distractor terms
are included in the statement.

Consider a d = 3 dimensional space, where we wish to compute c† ⌦ (c⌦ x), we will get the result
that:

c† ⌦ (c⌦ x) =

2

666664

x0

�
c20 + c21 + c22

�
+ x1c0c2 + x2c0c1 + x1c0c1
+x2c1c2 + x1c1c2 + x2c0c2

x1

�
c20 + c21 + c22

�
+ x0c0c1 + x2c0c2 + x0c0c2
+x2c1c2 + x0c1c2 + x2c0c1

x2

�
c20 + c21 + c22

�
+ x0c0c1 + x1c1c2 + x0c1c2
+x1c0c2 + x0c0c2 + x1c0c1

3

777775
(10)

There are two simplifications that can be done to this resulting matrix by exploiting the fact that all
elements in the matrix are sampled according to the distribution x ⇠ N (0, 1

d). First there is the pattern
xi ·

Qd�1
j=0 c

2
j on the left hand side. The sum of squared normals will in expectation be equal to 1, but

we will subtract that value in our change of variable to create ⇠ =
�
c20 + c21 + · · ·+ c2d

�
� 1, which

will then have the distribution ⇠ ⇠ N
�
0, 2

n

�
. Second, the right-hand side will have d(d� 1) products

17

of the form xicjck, 8j 6= k. Summing all of these into a new variable ⌘i products ⌘i ⇠ N
�
0, d�1

d2

�
.

Inserting ⇠i and ⌘i we get:

c† ⌦ (c⌦ x) =

"
x0(1 + ⇠) + ⌘0
x1(1 + ⇠) + ⌘1
x2(1 + ⇠) + ⌘2

#
= (1 + ⇠)x̃+ ⌘̃ (11)

Since both ⇠i and ⌘i have a mean of zero, we get the final result that E[c† ⌦ (c⌦ x)] = x, allowing
us to recover a noisy approximation of the original bound value. The communicative and associative
properties of the HRR’s construction then extend this to the more complex statements that are possible,
and accumulate the noise of the resulting variables.

To demonstrate this, we will perform another example with c† ⌦ (c ⌦ x + a ⌦ b). This will be
performed with d = 2 in order to avoid visual clutter, and results in the equation:

c† ⌦ (c⌦ x+ a⌦ b) =

"
c0(a0b0+a1b1+c0x0+c1x1)�c1(a0b1+a1b0+c0x1+c1x0)

(c0�c1)(c0+c1)
c0(a0b1+a1b0+c0x1+c1x0)�c1(a0b0+a1b1+c0x0+c1x1)

(c0�c1)(c0+c1)

#

=

2

4
a0b0c0�a0b1c1�a1b0c1+a1b1c0+c20x0�c21x0

c20�c21
�a0b0c1+a0b1c0+a1b0c0�a1b1c1+c20x1�c21x1

c20�c21

3

5
(12)

Notice that the red highlighted portion of the equation is the product of independent random vari-
ables, meaning two important properties will apply: E[XY] = E[X] · E[Y] and Var(XY) =�
�2
X + µ2

X

� �
�2
Y + µ2

Y

�
� µ2

Xµ2
Y . Because these random variables have a mean µ = 0, the products

result in a new random variable with the same mean and reduced variance as the original independent
components. The first property gives

E[XY] = E[X] · E[Y] = 0 · 0 = 0

and the second property gives:

Var(XY) =
�
�2
X + µ2

X

� �
�2
Y + µ2

Y

�
� µ2

Xµ2
Y =

 ✓
1

d

◆2

+ 0

! ✓
1

d

◆2

+ 0

!
� 0 =

1

d4

That reduces each product of aibjck into a new random variable with a mean of zero, and then the
sum of these random variables, due the the linearity of expectation, will be a new random variable
with an expected value of zero. So in expectation, the highlighted red terms will not be present (but
their variance due to noise will cause errors, though the variance is harder to quantify due to reuse of
random variate across the products). Thus we get the expected result of:

2

4
c20x0�c21x0

c20�c21
c20x1�c21x1

c20�c21

3

5 =


x0

x1

�
(13)

Which recovers the original x value that was bound with c, even though additional terms (e.g., a⌦ b
are present in the summation.

C Implementation

Our implementation for all experiments is included in the appendix, and is based off original XML
projects from the authors of AttentionXML and XML-CNN, and as such contain significant code
that is specific to the data loaders, their original training pipelines, and other features extraneous to
the task of understanding just the code for an HRR. As such we take a moment to demonstrate the
PyTorch code one could write (as of 1.8.1 which added revamped support for complex numbers and
ffts) to implement our HRR approach.

18

First are the operations for binding, the inverse and approximate inverse functions, and our projection
step. This can be accomplished in just 10 lines of Python code, as the below block shows. The use of
the real and nan_to_num functions are defensive guards against numerical errors accumulating in the
fft functions that could cause small complex values to occur in the results of computations.

1 def binding(x, y):

2 return torch.real(ifft(torch.multiply(fft(x), fft(y))))

3 def approx_transpose(x):

4 x = torch.flip(x, dims=[-1])

5 return torch.roll(x, 1, dims=-1)

6 unbind = lambda x, y: binding(s, approx_transpose(y))

7 def projection(x):

8 f = torch.abs(fft(x)) + 1e-5

9 p = torch.real(ifft(fft(x) / f))

10 return torch.nan_to_num(p) #defensive call

The loss is also easy to implement, and below we show a slice of how most of our models implemented
the loss approach. The inference function takes in a p_or_m variable that is either the present
vector p or the missing vector m, extracts the target vector from the prediction (i.e., p⇤

⌦ ŝ or
m⇤

⌦ ŝ), and then L2 normalizes the result so that the down-stream dot product becomes equivalent
to the cosine distance. The inference function is then used for computing J_p and J_n, but using
the abs function instead of the true angular distance as a micro optimization. We obtain the same
results regardless of that implementation choice, but the abs calls are just a bit faster to run and avoid
add inverse cosine calls.

1 def inference(s, batch_size, p_or_m):

2 vec = p_or_m.unsqueeze(0).expand(batch_size, self.label_size) #make
shapes work,!

3 y = unbind(s, vec) #(batch, dims), extracting the target values from
prediction,!

4 y = y / (torch.norm(y, dim=-1, keepdim=True) + 1e-8) #normalize so that
results will be cosine scores,!

5 return y

6

7 convolve = inference(s, target.size(0), p)

8 cosine = torch.matmul(pos_classes, convolve.unsqueeze(1).transpose(-1,

-2)).squeeze(-1) #compute dot products,!

9 J_p = torch.mean(torch.sum(1 - torch.abs(cosine), dim=-1))

10

11 convolve = inference(s, target.size(0), m)

12 cosine = torch.matmul(pos_classes, convolve.unsqueeze(1).transpose(-1,

-2)).squeeze(-1)#compute dot products,!

13 J_n = torch.mean(torch.sum(torch.abs(cosine), dim=-1))

14

15 loss = J_n + J_p # Total Loss.

As seen in the implementation above, J_p and J_n are the positive and negative losses. The cosine
value can be positive or negative value ranging from 1 to �1. While inferring if an unbind vector is
related to a label vector, we compute the cosine distance. Hence, while computing the loss, we take
the absolute value of the cosine in order to maintain the positive loss minimizing towards 0.

D Binding Capacity and VSA Selection

HRRs are but one of many possible vector symbolic architectures (VSAs) that one could select. For
the purposes of our work, we had four desiderata.

1. The VSA vectors should naturally exist in the reals, since most deep learning applications
are using real-valued vectors.

19

2. The VSA should be composed entirely of differentiable operations, so that learning may be
possible.

3. The VSA should be of minimal additional overhead.
4. The VSA should be as effective as possible at the binding operation.

The first two of these items are binary requirements that a VSA either has or not. This excludes
many VSAs that operate in the complex domain or discrete spaces, leaving us with three potential
candidates: HRRs, continuous Multiply-Add-Permute (MAP-C, distinguishing from its binary
alternative)[49][50], and the most recently developed Vector-derived Transformation Binding (VTB).
Of these three the MAP-C option is least desirable because it requires a clipping operation to project
vectors values into the range of [�1, 1], which results in sub-gradients and zero-gradient values that
will make optimization more challenging.

In evaluating the overhead of each method, HRRs and MAP-C are satisficing, they are both composed
of operations well defined and optimized by existing deep learning systems. The VTB approach
requires a sparse block-diagonal Kronecker product that we found is not well optimized in current
tools, often requiring 10⇥ the memory to back-propagate through compared to the HRRs and MAP-C,
making it less desirable. We stress we do not believe this to be a fundamental limitation of VTB, but
a limitation of current tooling. We are confident a custom implementation will work without memory
overheads, but wish to constrain ourselves to already existing functions of PyTorch due to simplicity
and expediency.

D.1 Capacity For Error Free Retrieval

The last question, VSA effectiveness, then becomes part of the decision process in selecting a final
VSA to use. To help elucidate how we came to chose the HRR, we will discuss experimental results
on the capacity of the VSAs with respect to problems of the form:

S =
nX

i=1

bind(xi,yi)

This form of S is the same that we rely on to develop our loss framework in § 4, and does not
capture all the ways that a VSA may be used. This analysis is thus not conclusive to holistic VSA
effectiveness, but it does capture the common form of capacity that we will discuss that influenced
our selection.

To estimate the capacity, after n pairs of items are bound together we attempt to unbind yi which
should return unbind(S,yi) = x̂i ⇡ xi. There will then be a pool of n random distractor vectors
z1, . . . , zn, sampled in the same manner used to construct the xi and yi values of the VSA being
tested. If there exists any zj such that cos-sim(x̂i,xi) < cos-sim(x̂i, zj), then that j’th item is
considered to be incorrectly retrieved. So our capacity will be the value of n such that no more than t
retrieval errors occur.

Figure 5 shows the capacity of each method given a threshold of no more than 3% error, as estimated
by 10 trials of randomly selecting all n pairs and distractor items, with n tested at values of

p
2
j
.

We can see that the naive HRR actually has the worst performance, in part due to its numerical
instability/approximation error. It is also important to note that the HRR’s original theory developed
by Plate [1] states that the capacity should grow linearly with the dimension size. We find for naive
HRRs this is not the case.

Because HRRs did best satisfying all requirements but the capacity issue, we chose to attempt to
improve the HRRs so that they would be more effective4. As we discussed in § 3.1 this can be done
with our projection operation, which restores the theoretically expected behavior of linear capacity
improvement with dimension size d, and brings HRRs to parity with the best performing (in terms
of capacity) VSA the VTB. Since the HRR required significantly less memory than VTB, and was
slightly faster in our testing, our improved HRR became the most logical choice to move forward
with.

4This work in fact started before the VTB method was published, but was reconsidered when we learned of
it.

20

26 28 210 212

23

24

25

26

27

28

Embedding Size d

C
ap

ac
ity

n

HRR
HRR w/ Proj
VTB
MAP-C

Figure 5: Capacity based on the ability to represent n items bound together and, compared to n false
distractors, correctly identify the true item as the most-similar. As the dimension of the embedding
space d increases, most VSAs capacity increases linearly.

For further edification about the capacity of each evaluated approach, we show in Figure 6 the
probability of a retrieval error occurring as the number of n items increases, with the standard
deviation over 10 trials shown in the highlighted region. As can be seen, our improved HRRs and
VTB have statistically indistinguishable performance, which was quite surprising, and may lead to
further theory work around the limits of binding capacity in a fixed-length representation.

In all cases we can see that while capacity at a threshold t does increase linearly with dimension
d for the non-HRR approaches5. It is also worth noting that capacity is a fairly hard limit, with
error increasing slowly until the capacity is reached, at which point the probability of error begins to
increase rapidly with expanded set size. There are also other forms of VSA capacity that are beyond
our current scope, especially when discussing mechanisms like RNNs built from VSA [51]. Our
results should not be taken as conclusive holistic descriptions of HRRs vs other VSAs, but are limited
to the form of capacity we have discussed in this section and is most relevant to our application.

In relation to our results in storing tens to hundreds of thousands of vectors, we note that our results
in § 5 are based on learning to extract the correct objects, and the penalty term is based on a single
averaged representation of all other concepts, which thus down weights any false-positive response
due to noise of a single item. The capacity results we discuss in this section are with respect to any of
the original zi distractors having a higher response, which requires n brute force evaluations and is a
harder scenario than what we required.

D.2 Capacity For Average Response Range

The capacity question we have just walked through is for error free recognition of the true item as
more similar than a set of n distractors. However, our use of the HRR operations poses a mixed
representation. In Jp we perform extraction of the classes present, but Jn relies on the average
response value being accurate. Jp requires on average less than 76 explicit items to be retrieved in all
our datasets, but Jn is representing the average response over tens to hundreds of thousands of items.
So while Jn requires a “larger” capacity in some sense, it only requires the average response to be
stable.

We can explore this in our data by looking at Figure 7, where we plot the mean and standard deviation
of individual responses. The solid lines correspond to the same results as presented in Figure 1, but

5It is possible naive HRRs would increase linearly given even larger values of d, but experimentation past
that point is unreasonable.

21

24 26 28 210

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=25 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(a) d = 25

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=64 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(b) d = 64

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=121 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(c) d = 121

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=256 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(d) d = 256

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=484 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(e) d = 484

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=1024 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(f) d = 1024

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=2025 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(g) d = 2025

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=4096 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(h) d = 4096

24 26 28 210

0.0

0.2

0.4

0.6

0.8

1.0

Number of Vector Pairs and Distractors

P(
R

et
rie

va
lE

rr
or

)

d=8100 Dimensions

HRR
HRR w/ Proj
VTB
MAP-C

(i) d = 8100

Figure 6: Probability of a retrieval error (y-axis) when, given n (x-axis) pairs of objects bound
together and n distractor items, the unbound concept vector is more similar to a distractor than the
true original object. The values of d are prefect squares due to a technical requirement of the VTB
approach.

we are looking at only the improved HRR, and showing the standard deviation of the individual
responses that form the average.

Given this results there are multiple ways we could look at when the HRR response begins to “fail”.
If we look at when do the mean and standard deviation of the responses start to overlap for the
present/absent cases, that starts around n = 512 items. If we look at when the standard deviation
starts to approach the other item’s mean, that occurs around n = 1, 536. If we look at when the
mean response begins to deviate away from the target value of 1/0, that does not start to occur
until around n = 216 = 65, 536 (and is still very close, but larger values of n are computationally
expensive)! This stability of the average for large n is an important component of our loss component
Jn = cos

⇣
m†

⌦ ŝ,
P

cp2Yp cp
⌘

is implicitly working over an average response of all the negative
labels.

This shows that the distributional average around the desired response value for present/absent items
is very stable, but the tails of the distribution do begin to grow as you try to pack more and more
into the single representation. This validates further why we need to use a normalized response via

22

23 25 27 29 211 213 215

�23

�22
�21

0
21
22

23

Number of Vector Pairs n

Q
ue

ry
R

es
po

ns
e

d=256 Dimensions

Present
Absent

Figure 7: Distribution of the response to queries of the form q†Pn
i=1 ai ⌦ bi for cases where q is

present or absent from the summation. The standard deviation of responses is shown in the shaded
region, y-axis is symlog scale and x-axis is log scale.

the cosine similarity when extracting the present terms, but also how the Jn term can function well
despite the large symbolic query space.

E Datasets

All datasets and their source are given in Table 6.

Table 6: Dataset Statistics from Bhatia et al. [44]. The table describes the statistics of each dataset
utilized for experiments and includes the number of features per sample, number of labels in each
input sample, the diversity of the dataset represented through the average number of points per label
and average number of labels in each sample.

Dataset Features Labels Avg. Samples per Label Avg. Labels per Point
Mediamill [52] 120 101 1902.15 4.38

Bibtex [53] 1836 159 111.71 2.40
Delicious [54] 500 983 311.61 19.03

EURLex-4K [55] 5000 3993 25.73 5.31
Wiki10-31K [56] 101938 30938 8.52 18.64

Ama13K [57] 203882 13330 448.57 5.04
Delicious-200K [58] 782585 205443 2.29 75.54
Amazon-670K [55] 135909 670091 3.99 5.45

F Additional Metrics

Next there is the DCG@k and PSDCG@k scores, which differ only by the inclusion of the pl term
being absent / present respectively. PSDCG is shown below.

PSDCG@k :=
X

l2rankk(ŷ)

yl

pl log(l + 1)

23

As recommended we use the normalized versions of each giving us nDCG@k and PSnDCG@k,
resulting in eq. (14) and eq. (15).

nDCG@k :=
DCG@k

Pmin(k,kyk0)
l=1

1
log(l+1)

(14)

PSnDCG@k :=
PSDCG@k
Pk

l=1
1

log(l+1)

(15)

Across all experiments we see that results across different values of k tend to be consistent. The
pairings of Precision@k and nDCG@k and PSprec@k and PSnDCG@k are highly correlated in all
our results, and equivalent for k = 1. For this reason we will show most results at k = 1 for brevity,
with larger tables of results in the appendix.

G Computer Resources

Training was done primarily on a shared compute environment, but in general we had access to only
one or two compute nodes at any given time. The main compute node used had a Tesla V100 with 32
GB of RAM, which could barely fit the Amazon-670K experiments during training. Going through
all datasets to obtain results took approximately 2-weeks of compute time per model tested, and we
have three models under evaluation. Combined with other experiments that did not pan out, we did
not have the capacity to perform the 25+ runs that we would prefer to provide robust measures of
variance in our results. We do report that spot checking smaller datasets like Bibtex that had large
effect sizes consistently returned those large effect sizes.

H Inference for XML with HRR

We take a moment to be more explicit about how inference is done with HRRs to perform XML
prediction, and also discuss further potential advantages that could be achieved given more software
engineering effort.

Given a network’s prediction ŝ = f(x), inference can be done by simply iterating though all class
HRR vectors c1, c2, . . . , cL, and selecting argmaxi c

>
i p

⇤
⌦ ŝ to determine that class i is the top

prediction of the network. To select the top-k predictions, as is common in XML scenarios, one
simply selects the top-k largest dot products to be the predicted set. Or one can use a threshold of
c>i p

⇤
⌦ ŝ > 0.5 to select the set of likely present classes. While this is not a calibrated probability,

this works out by the math of HRRs that a value being present should produce a dot product of ⇡ 1
and non-present values should produce a dot product of ⇡ 0.

The above describes how inference is currently done in our code. We note that it could be further
accelerated. This is because the inference formulation argmaxi c

>
i (p

⇤
⌦ ŝ) is now a Maximum

Inner-Product Search (MIPS) problem, for which many algorithms have been designed to accelerate
such queries [32, 59, 60]. We have not incorporated these tools due to current freely available
software not being well designed for our use case. This appears to be a purely software engineering
problem, and beyond our current capacity to implement. For example, the MLPACK3 library6 has
MIPS algorithms that can perform the exact search for the top-k items in expected O(log n) time
after building the index at cost O(n log n). Our setup would allow such a construction, but the library
is based on CPU only calculations. For the scale of datasets that are publicly available that we tested,
the constant-factor speedup of a GPU is still faster than the O(log n) search. If we had access to
private XML corpora with 100 million classes[33, 39], we would expect this result to change.

The only software we are aware of with GPU support for approximate MIPS search is the FAISS
library7. While broadly useful, the library does not support the functionality we need to avoid
significant overheads that make it slower than a brute force search in this case. First, the FAISS
library requires keeping its own copy of all vectors c1, . . . cL in GPU memory. This is a non-trivial

6https://www.mlpack.org/
7https://github.com/facebookresearch/faiss/wiki

24

https://www.mlpack.org/
https://github.com/facebookresearch/faiss/wiki

cost that can make it difficult for us to fit the model in memory at the same time, which is the case
where such MIPS searches would prove advantageous. Our implementation does not require storing
the symbols ci in memory, because they can be re-constructed as needed based on a random seed.
This makes the brute force search faster because it requires no additional memory accesses once
p⇤

⌦ ŝ has been computed and stored in GPU memory. This makes our brute force considerably
faster, and causes the FAISS implementation to have significant overhead for unneeded memory use
in its normal index structure combined with explicitly storing all ci.

I HRR Model Runtime with XML-CNN

In §5.4, we measured the performance of the baseline FFN (FC) and HRR-FFN (HRR-FC) and
showed how its execution time decreases as the number of labels increase. The cost of a single
forward pass through the network is lower than baseline because the size of the output layer is smaller.
Similarly, we analyze the impact of output layer size reduction on the XML-CNN architecture [61].
We observe in table 7 that execution time reduces across larger datasets, but initially the optimization
time is higher (amazoncat-12k). The optimization time accounts for both: (a) the time taken to
compute the loss and (b) the time taken to calculate the gradients and update the network.

Table 7: Model Execution & Optimization Time. Compare execution and optimization time for
XML-CNN [61] and HRR-CNN. Execution time is the average time (seconds) to perform a forward
pass and inference through the model for 1 epoch of training. It corresponds to the throughput of the
model. Similarly, optimization time includes the time to compute the loss and optimize the model.
As observed, overall Train time reduces as the number of labels in the dataset increases.

Dataset Model Execution Time Optimization Time

EURLex-4K CNN 0.466 2.306
HRR-CNN 0.467 3.657

Wiki10-31K CNN 0.630 2.665
HRR-CNN 0.712 3.286

AmazonCat-12K CNN 16.722 83.305
HRR-CNN 16.178 117.098

Amazon-670K CNN 239.48 734.694
HRR-CNN 122.665 301.376

Figure 8: Difference between the precision @ k for HRR-FC trained when p & m vectors are updated.
Positive values indicate a preference for fixed values, negative a preference for learned values.

25

	Introduction
	Related Work
	Holographic Reduced Representation
	Improved HRR Learning

	Dense Label Representations
	Experiments & Analysis
	Datasets & Evaluation Metrics
	Network Architectures
	XML HRR Accuracy
	HRR Model Compression & Runtime
	Assessing Impact of Hyper-parameters

	Conclusion
	A Note on Applications and Future Work
	Understanding Compositional Representations with HRR
	Implementation
	Binding Capacity and VSA Selection
	Capacity For Error Free Retrieval
	Capacity For Average Response Range

	Datasets
	Additional Metrics
	Computer Resources
	Inference for XML with HRR
	HRR Model Runtime with XML-CNN

