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ABSTRACT

Electric vehicles (EVs) play critical roles in autonomous mobility-on-demand
(AMoD) systems, but their unique charging patterns increase the model uncer-
tainties in AMoD systems (e.g. state transition probability). Since there usually
exists a mismatch between the training and test/true environments, incorporat-
ing model uncertainty into system design is of critical importance in real-world
applications. However, model uncertainties have not been considered explicitly
in EV AMoD system rebalancing by existing literature yet, and the coexistence
of model uncertainties and constraints that the decision should satisfy makes the
problem even more challenging. In this work, we design a robust and constrained
multi-agent reinforcement learning (MARL) framework with state transition kernel
uncertainty for EV AMoD systems. We then propose a robust and constrained
MARL algorithm (ROCOMA) that trains a robust EV rebalancing policy to balance
the supply-demand ratio and the charging utilization rate across the city under
model uncertainty. Experiments show that the ROCOMA can learn an effective
and robust rebalancing policy. It outperforms non-robust MARL methods in the
presence of model uncertainties. It increases the system fairness by 19.6% and
decreases the rebalancing costs by 75.8%.

1 INTRODUCTION

Figure 1: Unbalanced demand and supply happen several times
a day. For example, at morning peak, there are more commutes
from the residential area to the work zone. While at evening
peak, there are more needs to leave the work area to recreational
area/home.

The autonomous mobility-on-
demand (AMoD) system is one
of the most promising energy-
efficient transportation solutions
as it provides people with one-
way rides from their origins
to destinations (Zardini et al.,
2021). Electric vehicles (EVs)
are being adopted worldwide for
environmental and economical
benefits (IEA, 2020), and AMoD
systems embrace this trend with-

out exception. However, as shown in Fig. 1, the trips sporadically appear, and the origins and
destinations are asymmetrically distributed. Such spatial-temporal nature of urban mobility motivates
researchers to study vehicle rebalancing methods (Wen et al., 2017; He et al., 2020), i.e. redistribution
of vacant EVs to areas of high demand and assigning low-battery EVs to charging stations.

In real-world AMoD systems, the simulation-to-reality gap remains challenging for vehicle rebalanc-
ing solutions calculated based on simulators, since there usually exists a model mismatch between
the simulator (training environment) and the real world (test environment). For instance, at time t,
with the system state information such as the number of available vehicles and passenger demand
in each region of the city, and the action to take as the number of available vehicles to be balanced
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among regions according to the mobility demand, it is difficult to accurately predict the state of the
system (available vehicle supply and mobility demand) at t + 1 (Zardini et al., 2021; Miao et al.,
2021; Parys et al., 2016). Hence, we usually do not have the true dynamic model of the system, i.e.,
the state transition probability of the AMoD systems. Thus, existing EV AMoD vehicle rebalancing
methods (Yuan et al., 2019; Sadeghianpourhamami et al., 2020; Turan et al., 2020; Wen et al., 2017)
may have significant performance degradation in the test (true) environment. One example is provided
in Fig. 2. Moreover, in real-world applications, the vehicle rebalancing decisions should satisfy
specific constraints such as providing fair mobility service in different regions; when there is model
mismatch, the algorithm solution calculated based on a simulator may violate the constraints in real
AMoD systems. Despite model-based methods considering prediction errors in mobility demand
or vehicle supply (Zhang et al., 2016; He et al., 2020; Miao et al., 2021; Hao et al., 2020; He
et al., 2023), how to calculate policies that satisfy the constraints and optimize the objectives under
model uncertainty of the dynamic state transition remains largely unexplored for AMoD rebalancing
algorithms. More related work is discussed in the appendix due to the page limit.

Figure 2: The model mismatch between the simulator and the real
world degrades the performance of vehicle rebalancing methods.
The red EV chooses to go to the blue region at time t and thinks it
can pick up a passenger at time t+ 1 according to the simulator
model. However, in the real world, at time t+ 1, the red EV gets
no passengers in the blue region and a passenger gets no cars in
the green region.

In this work, to address the
simulation-to-reality gap and cal-
culate solutions that satisfy the
constraints, we propose a robust
and constrained multi-agent re-
inforcement learning (MARL)
framework for EV AMoD sys-
tems. The goal is to find robust
policies that minimize the rebal-
ancing cost of the vacant and
low-battery EVs under model
uncertainties and achieve mobil-
ity and charging fairness. The
advantages of our methodology
are two-fold: (i) fairness con-
straints can still be satisfied even
if there exists model mismatch;
and (ii) the expected rebalanc-
ing cost is still optimized when
there is model mismatch. Our
Key Contributions are as follows:

(1) To the best of our knowledge,
this work is the first to formulate
EV AMoD system vehicle rebalancing as a robust and constrained multi-agent reinforcement learning
problem under model uncertainty. Via a proper design of the state, action, reward, cost constraints,
and uncertainty set, we set our goal as minimizing the rebalancing cost while balancing the city’s
charging utilization and service quality, under model uncertainty.

(2) We design a robust and constrained MARL algorithm (ROCOMA) to efficiently train robust
policies. The proposed algorithm adopts the centralized training and decentralized execution (CTDE)
framework. We also develop the robust natural policy gradient (RNPG) in MARL for the first time.

(3) We run experiments based on real-world E-taxi system data. We show that our proposed algo-
rithm performs better in terms of reward and fairness, which are increased by 19.6%, and 75.8%,
respectively, compared with a non-robust MARL-based method when model uncertainty is present.

2 ROBUST AND CONSTRAINED MARL FRAMEWORK FOR EV REBALANCING

2.1 PROBLEM STATEMENT

We consider the problem of managing a large-scale EV fleet to provide fair and robust AMoD service.
The goal is to (i) rebalance vacant EVs among different regions to provide fair mobility service on
the passenger’s side; (ii) allocate low-battery EVs to charging stations for fair charging service on the
EVs’ side; (iii) minimize the managing cost of (i) and (ii). These three goals need to be achieved
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in the presence of model uncertainties, i.e. uncertainties in the state transition probability model of
AMoD systems.

We divide the city into N regions according to a pre-defined partition method (Miao et al., 2019;
Turan et al., 2020; He et al., 2020). A day is divided into equal-length time intervals. In each time
interval [t, t+ 1), customers’ ride requests and EVs’ charging needs are aggregated in each region.
After the location and status of each EV are observed, a local trip and charging assignment algorithm
matches vacant EVs with passengers and low-battery EVs with charging stations, using existing
methods in the literature (Mourad et al., 2019; Chen et al., 2017). Then the state information of each
region is updated, including the numbers of vacant EVs and available charging spots in each region.
Each region then rebalances both vacant and low-battery EVs according to the well-trained MARL
policy. This work focuses on a robust EV rebalancing algorithm design under model uncertainties to
maximize the worst-case expected reward of the system while satisfying fairness constraints. For
notational convenience, the parameters and variables defined in the following parts of this section
omit the time index t when there is no confusion.

2.2 PRELIMINARY: MULTI-AGENT REINFORCEMENT LEARNING

We denote a Multi-Agent Reinforcement Learning (MARL) problem by a tuple G =
⟨N , S,A, r, p, γ⟩, in which N is the set of N agents. Each agent i is associated with an action
ai ∈ Ai and a state si ∈ S. We use A = A1 × · · · × AN to denote the joint action space, and
S = S1 × · · · × SN the joint state space. At time t, each agent chooses an action ait according
to a policy πi : Si → ∆(Ai), where ∆(Ai) represents the set of probability distributions over
the action set Ai. We use π =

∏N
i=1 π

i : S → ∆(A) to denote the joint policy. After executing
the joint action is executed, the next state follows the state transition probability which depends
on the current state and the joint action, i.e. p : S × A → ∆(S). And each agent receives a
reward according to the reward function ri : S × A → R. Each agent aims to learn a policy
πi to maximize its expected total discounted reward, i.e. maxπi vπ,ir (s) for all s ∈ S, where
vπ,ir (s) = E[

∑∞
t=1 γ

t−1rit(st, at)|at ∼ π(·|st), s1 = s] which is also known as the state value func-
tion for agent i. γ ∈ (0, 1) is the discounted rate. When these agents belong to a team, the objective
of all agents is to collaboratively maximize the average expected total discounted reward over all
agents, i.e. maxπ v

π
r (s) for all s ∈ S, where vπr (s) = Eπ[

∑∞
t=1 γ

t−1
∑

i∈N rit(st, at)/N |s1 = s].

2.3 ROBUST AND CONSTRAINED MULTI-AGENT REINFORCEMENT LEARNING FORMULATION
FOR EV REBALANCING

We formulate the EV rebalancing problem as a robust and constrained MARL problem Grc =
⟨N , S,A, P, r, c, d, γ⟩, and we define the agent, state, action, probability transition kernel uncertainty
set, reward, and cost and fairness constraints as follows.

Agent: We define a region agent for each region, who determines the rebalancing of vacant and
low-battery EVs at every time step. This multi-agent setting is more tractable for large-scale fleet
management than a single-agent setting because the action space can be prohibitively large if we use
a single system-wide agent (Lin et al., 2018a).

State: A state si of a region agent i consists two parts that indicate its spatiotemporal status from
both the local view and global view of the city. We define the state si = {siloc, siglo}, where
siloc = (Vi, Li, Di, Ei, Ci) is the state of region i from the local view, denoting the number/amount
of vacant EVs, low-battery EVs, mobility demand, empty charging spots, and total charging spots in
region i, respectively. And siglo = (t, posi), where t is the time index (which time interval), posi is
region location information (longitudes, latitudes, region index). The initial state distribution is ρ.

Action: The rebalancing action for vacant EVs is denoted as aiv = {aiv,j}j∈Nebri , the charging action
for low-battery EVs as ail = {ail,j}j∈Nebri , where aiv,j , a

i
l,j ∈ [0, 1] is the percentage of currently

vacant EVs and low-battery EVs to be assigned to region j from region i, respectively. And Nebri
is the set consisting of region i and its adjacent regions as defined by the given partition. Therefore∑

j∈Nebri a
i
v,j = 1 and

∑
j∈Nebri a

i
l,j = 1 for all i. We denote mi

v,j = h(aiv,jv
i) the actual number

of vacant EVs assigned from region i to region j, mi
l,j = h(ail,j l

i) the actual number of low-battery
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EVs in region i assigned to region j. The function h(·) is used to ensure that the numbers remain as
integers and the constraints

∑
j m

i
v,j = vi,

∑
j m

i
l,j = li hold for all i.

Transition Kernel Uncertainty Set: We restrict the transition kernel p to a δ-contamination un-
certainty set P (Ronchetti & Huber, 2009; Prasad et al., 2020), in which the state transition could
be arbitrarily perturbed by a small probability δ. Specifically, let p̃ = {p̃as | s ∈ S, a ∈ A} be
the centroid transition kernel, from which training samples are generated. The δ-contamination
uncertainty set centered at p̃ is defined as P :=

⊗
s∈S,a∈A P

a
s , where P a

s := {(1− δ)p̃as + δq | q ∈
∆(S)}, s ∈ S, a ∈ A.

Reward: Since one of our goals is to minimize the rebalancing cost, we define the shared reward
as the negative value of the total rebalancing cost after EVs execute the decisions: r(s, a) :=
−[cv(s, a) + ᾱcl(s, a)], where ᾱ is a positive coefficient, and cv(s, a), cl(s, a) are moving distances
of all vacant and low-battery EVs under the joint state s and action a, respectively. We then define
the worst-case value function of a joint policy π as the worst-case expected total discounted reward
under joint policy π over P : vπr (s) = minp∈P Eπ

[∑∞
t=1 γ

t−1rt|s1 = s
]
. The notation is the same

as MARL without considering uncertainty. By maximizing the shared worst-case value function,
region agents are cooperating for the same goal.

Cost and Fairness Constraints: Another goal is to achieve the system-level benefit, i.e., balanced
charging utilization and fair service. We define the charging fairness uc and mobility fairness
um in Subsection 2.4. If the values of these fairness metrics are higher than some thresholds by
applying a rebalancing policy π, we say the policy π provides fair mobility and charging services
among the city. We then augment the MARL problem G with an auxiliary cost function c, and
a limit d. The function c : S × A → R maps transition tuples to cost, like the usual reward.
Similarly, we let vπc (s) denote the worst-case state value function of policy π with respect to cost
function c: vπc (s) = minp∈P Eπ[

∑∞
t=1 γ

t−1c(st, at)|s1 = s]. The cost function c is defined as
the system fairness (a weighted sum of city’s charging fairness uc and mobility fairness um), i.e.,
c(s, a) := uc(s, a)+β̄um(s, a), where β̄ is a positive coefficient. Then the set of feasible joint policies
for our robust and constrained MARL EV rebalancing problem is ΠC := {π : ∀s ∈ S, vπc (s) ≥ d}.

Goal: The goal of our robust and constrained MARL EV rebalancing problem is to find an optimal
joint policy π∗ that maximizes the worst-case expected value function subject to constraints on the
worst-case expected cost:

max
π

Es∼ρ[v
π
r (s)] s.t. Es∼ρ[v

π
c (s)] ≥ d (1)

We define vπθ
tp (ρ) = Es∼ρ[v

πθ
tp (s)], tp ∈ {r, c}. We then consider policies π(·|θ) parameterized

by θ and consider the following equivalent max-min problem based on the Lagrangian (Boyd &
Vandenberghe, 2004):

max
θ

min
λ≥0

J(θ, λ) := vπθ
r (ρ) + λ(vπθ

c (ρ)− d), (2)

2.4 FAIRNESS DEFINITION

We consider both the mobility supply-demand ratio (Miao et al., 2021; Pfrommer et al., 2014; Wen
et al., 2017) and the charging utilization rate (He et al., 2020; Wan et al., 2019) in each region as
service quality metrics. With limited supply volume in a city, keeping the supply-demand ratio of
each region at a similar level allows passengers in the city to receive fair service (Iglesias et al., 2019;
Zhang et al., 2016). Similarly, given a limited number of charging stations and spots, to improve the
charging service quality and charging efficiency with limited infrastructure, balancing the charging
utilization rate of all regions across the entire city is usually one objective in the scheduling of EV
charging (Wan et al., 2019; Sadeghianpourhamami et al., 2020).

The fairness metrics of the charging utilization rate uc and supply-demand ratio um are designed
based on the difference between the local and global quantities:

uc(s, a) = −
∑N

i=1

∣∣∣∣Ei

Ci
−

∑N
j=1 Ej∑N
j=1 Cj

∣∣∣∣, um(s, a) = −
∑N

i=1

∣∣∣∣Di

Vi
−

∑N
j=1 Dj∑N
j=1 Vj

∣∣∣∣,
where Vi is the number of vacant EVs in region i. The fairness metrics us(s, a) and um(s, a) are
calculated given the EVs rebalancing action a, and the larger the better. One advantage of the
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proposed robust and constrained MARL formulation is that the form of the reward/cost function does
not need to satisfy the requirements as those of the robust optimization methods (Miao et al., 2019;
Miao et al., 2021), e.g., the objective/constraints do not need to be convex of the decision variable or
concave of the uncertain parameters.

3 ALGORITHM

3.1 ROBUST AND CONSTRAINED MULTI-AGENT REINFORCEMENT LEARNING ALGORITHM
(ROCOMA)

We propose a robust and constrained MARL (ROCOMA) algorithm to solve the problem (2) and
train robust policies. The proposed algorithm is shown in Algorithm 1. It adopts the centralized
training and decentralized execution (CTDE) framework, which enables us to train agents in the
simulator using global information but executes well-trained policies in a decentralized manner in
the real world. Specifically, we use centralized critic networks to approximate the value functions
and decentralized actor networks to represent policies. Besides, we develop a robust natural policy
gradient (RNPG) descent ascent to update actor networks and the Lagrange multiplier.

As shown in Algorithm 1, in line 1, we randomly initialize the actor network parameter θ0 and the
Lagrange multiplier parameter λ0. At each iteration t, in line 3, we estimate the critic networks
vθtr , v

θt
c under policy πθt using Algorithm 3 in (Wang & Zou, 2022). Line 4 to line 14 are to estimate

the robust natural policy gradient (RNPG) g̃r,t, g̃c,t for vθtr and vθtc , respectively. For notational
convenience, we omit the subscripts r and c in the value functions when there is no confusion. In
lines 5 and 6, we sample an initial state sj1 following the initial distribution ρ and a time horizon Tj
from the geometric distribution Geom(1− γ + γδ) at iteration j = 1, ...,M . We use these samples
to estimate the RNPG according to Corollary 3.1. Specifically, we initialize g̃jt,0 = 0 and use the
following stochastic gradient descent (SGD) steps: g̃jt,k+1 = g̃jt,k − ζ∇g̃L(g̃jt,k, θt), where ζ is
the learning rate and L(g̃jt,k, θt) =

∑
D(sjTj

)[g̃
⊤ψθt(s, a) − ϕθt(τ) − bθt ]2/D, D(sjTj

) is a set of

trajectories τ starting at sjTj
using policy πθt , i.e. τ = (sjTj

, a, r, c, s′), D = |D(sjTj
)|. After W steps

of SGD iterations, the robust natural policy gradient for vθt(sj1) is estimated as
∑W

k=1 g̃
j
t,k/W .

To reduce the computational complexity, we adopt the centralized training and decentralized execution
(CTDE) framework of Lowe & Wu (2017) in ROCOMA and assume all agents share the same
policy πθi

(ai|si), where θ1 = · · · = θN = θ. Then we have ∇π(a|s) =
∑N

i ψθ
i (s, a) where

ψθ
i (s, a) := π−i(a−i|s−i)∇πi(ai|si), π−i(a−i|s−i) :=

∏
j ̸=i π

j(aj |sj). Therefore, in lines 7 to
12, we address the high-dimensional action and state space issue in computing RNPG by using
ψθ
i (s, a) instead of ψθ(s, a) in (5). Finally, we update θt+1 and λt+1 using Gradient Descent Ascent

(GDA) (Lin et al., 2020) in lines 15, 16.

3.2 ROBUST NATURAL POLICY GRADIENT

Natural policy gradient (NPG) (Schulman et al., 2015; Lillicrap et al., 2015; Mnih et al., 2015)
applies a preconditioning matrix to the gradient, and updates the policy along the steepest descent
direction in the policy space(Ding et al., 2020; Kakade, 2001). It has been proved that NPG moves
toward choosing a greedy optimal action rather than just a better action in the literature (Kakade,
2001). Generally, for a function L defined on a Riemannian manifold Θ with a metric M , the
steepest descent direction of L at θ is given by −M−1(θ)∇L(θ), which is called the natural gradient
of L (Amari, 1998). In the policy parameter space {πθ}, the natural gradient of L at θ is given
by ∇̃L(θ) = F (θ)−1∇L(θ), where F (θ) := Es [Fs(θ)] is the Fisher information matrix at θ and
Fs(θ) = Eπ(a|s,θ)

[
∂ log π(a|s,θ)

∂θi

∂ log π(a|s,θ)
∂θj

]
(Kakade, 2001). Although the natural gradient method

has been studied in non-robust RL, it is not straightforward to efficiently find the NPG for a robust and
constrained MARL problem. We show the robust natural policy gradient for robust and constrained
MARL in the following Theorem 3.1.
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Algorithm 1: Robust and Constrained Multi-Agent Reinforcement Learning Algorithm (RO-
COMA)

1: Input ζ, α, β, γ, δ. Initialize θ0, λ0.
2: for t = 0 to T do
3: Estimate vθtr , v

θt
c using Algorithm 3 in (Wang & Zou, 2022)

4: for j = 1 to M do
5: Sample Tj ∼ Geom(1− γ + γδ), sj1 ∼ ρ

6: Sample trajectory from sj1: (sj1, a
j
1, · · · , s

j
Tj
)

7: for agent i = 1 to N do
8: for k = 1 to W do
9: g̃jt,k+1(i) = g̃jt,k(i)− ζ∇g̃L(g̃jt,k(i), θt), L is defined in (5)

10: end for
11: g̃jt,k =

∑N
i=1 g̃

j
t,k(i)/N

12: end for
13: end for
14: g̃t =

∑M
j=1

∑W
k=1 g̃

j
t,k/MW

15: θt+1 = θt + αt(g̃r,t + λtg̃c,t)

16: λt+1 = max{λt − βt(
∑

j v
θt
c (sj1)/M − d), 0}

17: end for
18: Output θT

Theorem 3.1 (Robust Natural Policy Gradient). Let g̃∗ minimizes the objective J(g̃, πθ) defined as
follows: ∑

s,a

dπγ,δ,s1π(a|s)[g̃
⊤ψπ(s, a)− ϕπ(τ)− bπ]2, (3)

where dπγ,δ,s1 ∝
∑

k γ
k(1 − δ)kpπ(sk = s|s1) is the discounted visitation distribution of sk = s

when the initial state is s1 and policy π is used; ψπ(s, a) denotes ∇ log π(a|s, θ); τ denotes a
trajectory (s, a, r, c, s′); ϕπ(τ) = r + γδmins v

π(s) + γ(1− δ)vπ(s′)− vπ(s) is the TD residual;
bπ = γδ/(1− γ + γδ)∂θ mins v

π(s).

Then g̃∗ = F (θ)−1∇θv
π(s1) being the robust natural policy gradient of the objective function

vπ(s1). For notational convenience, we omit the subscripts r and c in the value functions when there
is no confusion.

Proof. Considering we have denoted ψπ(s, a) = ∇ log π(a|s, θ), Fisher information matrix is then
given by F (θ) =

∑
s,a d

π
γ,δ,s1

(s)π(a|s)ψπ(s, a)ψπ(s, a)⊤. The robust policy gradient of the value
function is given by ∇θv

π(s1) =
∑

s,a d
π
γ,δ,s1

(s)∇θπ(a|s)ϕπ(τ)+bπ ∝ Eπ,s1 [ϕ
π(τ)∇ log π(a|s)+

bπ] (Wang & Zou, 2022).

Since g̃∗ minimizes (3), it satisfies the condition ∂J/∂g̃i = 0, which implies:
∑

s,a d
π
γ,δ,s1

π(a|s)×
ψπ(s, a)[ψπ(s, a)⊤g̃∗ − ϕπ(τ)− bπ] = 0. Then we have∑

s,a

dπγ,δ,s1π(a|s)ψ
π(s, a)ψπ(s, a)⊤g̃∗ (4)

=
∑
s,a

dπγ,δ,s1π(a|s)ψ
π(s, a)[ϕπ(τ) + bπ].

By the definition of Fisher information: LHS = F (θ)g̃∗ and RHS = ∇θv
π(s1), which lead to:

F (θ)g̃∗ = ∇θv
π(s1). Solving for g̃∗ gives g̃∗ = F (θ)−1∇θv

π(s1) which follows from the definition
of the NPG on the worst-case value function of robust and constrained MARL. We name it a robust
natural policy gradient in robust and constrained MARL.

Considering the vanilla policy gradient may suffer from overshooting or undershooting and high
variance, which results in slow convergence (Liu et al., 2020b), our proposed robust natural policy
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gradient (RNPG) method updates the policy along the steepest ascent direction in the policy space in
robust and constrained MARL (Ding et al., 2020).

Corollary 3.1 (Calculating RNPG by SGD). As shown in Theorem 3.1, we can get the RNPG of
vπ(s1) by minimizing the objective defined in (3). To minimize (3) and get the minimizer, we initialize
g̃0 = 0 and use the following stochastic gradient descent (SGD) steps:

g̃k+1 = g̃k − ζ∇g̃L(g̃k, π),

where ζ is the learning rate and L is defined as follows:

L(g̃, π) =
∑
D(s1)

[g̃⊤ψπ(s, a)− ϕπ(τ)− bπ]2/D, (5)

where D(s1) is a set of trajectories τ starting at s1 using policy π, i.e. (s1, a, r, c, s′), D = |D(s1)|.
After W steps of SGD iterations, the robust natural policy gradient for vπ(s1) is estimated as∑W

k=1 g̃k/W .

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Three different data sets (He et al., 2020; 2022) including E-taxi GPS data, transaction data, and
charging station data are used to build an EV AMoD system simulator as the training and testing
environment. We modify the parameters of the simulator model such that the testing environment is
different from the training environment, e.g., the parameters of the order generator. The simulated
map is set as a grid city. The policy networks and critic networks are two-layer fully-connected
networks, both with 32 nodes. We use Softplus as activations to ensure the output is positive. The
output of policy networks is used to be the concentration parameters of the Dirichlet distribution to
satisfy the action constraints (sum to one). We set the maximal training episode number = 20000,
the maximal policy/critic estimation number = 2000, the NRPG SDG iteration number = 500,
the discount rate γ = 0.99, the perturbed rate δ = 0.05, the coefficients ᾱ = β̄ = 1, the fairness
constraint limit d = −20 for one simulation step, and use AdamOptimizer with a learning rate of
0.001 for both policy/critic networks.

4.2 EXPERIMENT RESULTS

Table 1: Comparison: rocoma VS other rebalancing methods
rebalancing system expired response

cost fairness order rate
ROCOMA 2.06× 105 −292.14 1.20× 102 99.82%

COP 1.88× 105 −383.19 1.61× 103 93.05%
EDP 2.15× 105 −409.49 6.90× 101 99.69%
RDP 2.43× 105 −629.85 3.68× 103 84.34%
NO - −4317.53 7.64× 103 66.89%

Compared to no rebalancing, by using our method, the expired or-
ders number is decreased by 98.4%, the system fairness and order
response rate are increased by about 93.2% and 32.9%, respectively.

Our goal of the exper-
iments is to validate
the following hypothe-
sis: (1) The proposed
ROCOMA can learn
effective rebalancing
policies; (2) Our proposed
ROCOMA learns more
robust policies than a
non-robust MARL algo-
rithm by considering state
transition uncertainties
and constraints in the
MARL problem formulation and the proposed RNPG method for policy training. We compare
metrics:Rebalancing cost: the total moving distance of vacant and low-battery EVs by using a
rebalancing policy (the lower the better); and System fairness: the weighted sum of mobility and
charging fairness (the higher the better); we also monitor Number of expired orders: the total number
of canceled orders due to waiting for more than 20 minutes (the lower the better) and Order response
rate: the ratio between the number of served demands and the number of total passenger demand (the
higher the better). All metrics are calculated in every testing period which consists of 25 simulation
steps. Then the fairness constraint limit for one testing period is −500. We repeat testing for 10
times and show the average values.
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Table 2: Comparison: rocoma VS non-constrained marl method
rebalancing system expired response

cost fairness order rate
ROCOMA 2.06× 105 −292.14 120 99.82%

Non-constrain 1.98× 105 −1812.48 1607 93.06%

Our method achieves 83.9% higher in fairness compared to the non-constrained MARL method
with 4% extra rebalancing cost.

ROCOMA is effective: In Table 1, we compare ROCOMA with no rebalancing scenario (NO) and
the following rebalancing algorithms: (1) Constrained optimization policy (COP): The optimization
goal is to minimize the rebalancing cost under the fairness constraints (He et al., 2023). The fairness
limit is the same as that used in ROCOMA. The dynamic models are calculated from the same data
sets used in simulator construction. (2) Equally distributed policy (EDP): EVs are assigned to their
current and adjacent regions using equal probability (20%). (3) Randomly distributed policy (RDP):
EVs are randomly distributed to their current and adjacent regions.

Figure 3: Comparison of ROCOMA and Non-
robust MARL method: Compared to the non-
robust method, ROCOMA decreases the re-
balancing cost and increases the system fair-
ness by 19.6% and 75.8%, respectively, when
model uncertainties are present.

In Table 1, compared to the no rebalancing scenario,
ROCOMA is effective in rebalancing AMoD systems
in terms of fairness, expired orders and response rate.
Specifically, ROCOMA policy decreases the num-
ber of expired orders by 98.4%, increases the system
fairness and order response rate by about 93.2% and
32.9%, respectively. Besides, ROCOMA achieves a
higher system fairness and order response rate using
less rebalancing cost than EDP and RDP. Though
ROCOMA takes more rebalancing costs than COP, it
has a better system fairness and order response rate.
It is within expectation since the constrained opti-
mization method is a centralized method that aims to
optimize the rebalancing cost and it does not consider
any uncertainties.

ROCOMA is robust: In Figure 3 and Table 2, we
compare ROCOMA with (1) Non-constrain MARL
algorithm: Instead of considering fairness constraints

in MARL, the reward is designed as a weighted sum of negative rebalancing cost and system fairness.
The coefficient is 1. And model uncertainty is considered; (2) Non-robust MARL algorithm: The
model uncertainty is not considered but the fairness constraint is considered in MARL. They use the
same network structures and other hyper-parameters as that in ROCOMA.

In Figure 3, we test well-trained robust and non-robust methods in a testing environment (different
from the training environment) to show the robustness of the ROCOMA policy. We can see ROCOMA
policy achieves better performance in terms of all metrics. Specifically, ROCOMA decreases the
rebalancing cost and increases the system fairness by about 19.6% and 75.8% , respectively, when
model uncertainty exists, compared to the non-robust method.

In Table 2, ROCOMA achieves 83.9% higher in fairness compared to the non-constrained MARL
algorithm with just 4% extra rebalancing cost. Without the fairness constraint design, the non-
constrained MARL method falls into a pit that sacrifices fairness to achieve a lower rebalancing cost
since its objective is a weighted sum of them. It would take a lot of effort to tune the hyper-parameter
to find a policy that performs well in both rebalancing cost and fairness. The constrained MARL
design of ROCOMA avoids such extra tuning efforts.

5 CONCLUSION
It remains challenging to address AMoD system model uncertainties caused by EVs’ unique charging
patterns and AMoD systems’ mobility dynamics in algorithm design. In this work, we design
a robust and constrained multi-agent reinforcement learning framework to balance the mobility
supply-demand ratio and the charging utilization rate, and minimize the rebalancing cost for EV
AMoD systems under state transition uncertainties. We then design a robust and constrained MARL
algorithm (ROCOMA) to train robust policies. Experiments show that our proposed robust algorithm
can learn effective and robust rebalancing policies.
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A RELATED WORK

As the technologies on autonomous vehicles (Cui et al., 2022; Liu et al., 2020a; 2021b) are getting
mature, they are becoming essential parts of a transportation system. They can be used to provide
transportation services, such as taxi or shuttle services, to passengers in a shared and on-demand
manner (Wu et al., 2023). However, these autonomous vehicles need to be rebalanced due to
the unbalanced supply and demand distributions in AMoD systems (He et al., 2023). AMoD
system vehicle rebalancing algorithms re-allocate vacant vehicles, sometimes considering charging
constraints. Heuristics can lead to sub-optimal rebalancing solutions (Liu et al., 2019). Other major
categories of AMoD system rebalancing methods include optimization-based algorithms (Miao et al.,
2021), Model Predictive Control (MPC) (Camacho & Alba, 2013) and Reinforcement Learning (RL)
(Sutton & Barto, 2018; Chen et al., 2022).

Optimization and MPC-based approaches usually formulate the AMoD system vehicle rebalancing
problem as an optimization problem, where the objective is to improve service quality (Miller
& How, 2017; Pfrommer et al., 2014) or maximize the number of served passengers with fewer
vehicles (Zhang et al., 2016; Wallar et al., 2018; Iglesias et al., 2018). These model-based approaches
usually rely on knowledge of the probability transition model of the complex dynamics of AMoD
systems. Though robust and distributionally robust optimization-based methods have been designed
to consider uncertainties caused by mobility demand, supply, or covariates predictions (He et al.,
2020; Hao et al., 2020; He et al., 2023), the probability transition error or uncertainty in system
dynamics has not been addressed yet. Various RL-based methods include DQN, A2C and their
variants (Mnih et al., 2015; Konda & Tsitsiklis, 1999; Wen et al., 2017; Guériau & Dusparic, 2018;
Holler et al., 2019; Lin et al., 2018b; He & Shin, 2020; Wang et al., 2021) have been proposed to
solve the vehicle rebalancing problem. However, RL suffers from the sim-to-real gap; that is, the gap
between the simulator and the real world often leads to unsuccessful implementation if the learned
policy is not robust to model uncertainties (Ding & Dong, 2020; Pinto et al., 2017). None of the
above RL-based rebalancing strategies consider this gap.

As Machine Learning methods have been proposed to advance Smart City (Huang & Wang, 2022; Ma,
2022; Liu et al., 2021a), Reinforcement Learning (RL)-based methods are getting a lot of attention
(Huang & Wang, 2020). However, uncertainties caused by sensor errors, noise, malicious attacks,
and inaccurate predictions can undermine these RL-based methods (Luo et al., 2022; Ma et al.,
2020; Su et al., 2022; Zhang et al., 2023). Therefore, Robust RL has been proposed to find a policy
that maximizes the worst-case cumulative reward over an uncertainty set of MDPs (Bagnell et al.,
2001; Pinto et al., 2017; Nilim & Ghaoui, 2003; Han et al., 2022). To achieve a desired level of
system fairness while minimizing rebalancing cost under model uncertainty, we put the fairness
constraints in our RL formulation, which is known as Constrained RL that aims to find a policy that
maximizes an objective function while satisfying certain cost constraints (Altman, 1999; Wang & Zou,
2022). However, it remains challenging to design a robust EV rebalancing algorithm under model
uncertainties and policy constraints, since the problem of robust constrained RL itself is already
difficult to solve even in the simple tabular case. A robust and constrained RL for AMoD rebalancing
cannot directly apply existing robust constrained RL solutions due to the high-dimensional state and
action spaces commonly present in transportation systems. Our proposed robust and constrained
MARL formulation and algorithm explicitly consider model uncertainties and policy constraints to
learn robust rebalancing solutions for AMoD systems. And we derive a robust natural policy gradient
for robust and constrained MARL to improve the efficiency of policy training.
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