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ABSTRACT

Language models can be used to solve long-horizon planning problems in two
distinct modes. In a fast ‘System-1’ mode, models directly generate plans without
any explicit search or backtracking, and in a slow ‘System-2’ mode, they plan
step-by-step by explicitly searching over possible actions. System-2 planning,
while typically more effective, is also computationally more expensive and often
infeasible for long plans or large action spaces. Moreover, isolated System-1 or
System-2 planning ignores the user’s end goals and constraints (e.g., token budget),
failing to provide ways for the user to control the model’s behavior. To this end,
we propose the System-1.x Planner, a framework for controllable planning with
language models that is capable of generating hybrid plans and balancing between
the two planning modes based on the difficulty of the problem at hand. System-1.x
consists of (i) a controller, (ii) a System-1 Planner, and (iii) a System-2 Planner.
Based on a user-specified hybridization factor = governing the degree to which the
system uses System-1 vs. System-2, the controller decomposes a planning problem
into sub-goals, and classifies them as easy or hard to be solved by either System-1 or
System-2, respectively. We fine-tune all three components on top of a single LLM,
requiring only search traces as supervision. Experiments with two diverse planning
tasks — Maze Navigation and Blocksworld — show that our System-1.x Planner
outperforms a System-1 Planner, a System-2 Planner trained to approximate A*
search, and also a symbolic planner (A* search), given a state exploration budget.
We also demonstrate the following key properties of our planner: (1) controllability:
by adjusting the hybridization factor z (e.g., System-1.75 vs. System-1.5) we can
perform more (or less) search, improving performance, (2) flexibility: by building
a neuro-symbolic variant composed of a neural System-1 planner and a symbolic
System-2 planner, we can take advantage of existing symbolic methods, and (3)
generalizability: by learning from different search algorithms (BFS, DFS, A*), we
show that our method is robust to the choice of search algorithm used for training.'

1 INTRODUCTION

A key feature of intelligence — both human and artificial — is the ability to plan. Indeed, planning has
been a major topic of Al research for most of its history (Russell and Norvig, 2016), with applications
ranging from navigation and robotics to manufacturing and story-telling. These days, auto-regressive
Large Language Models (LLMs) are increasingly used for various long-horizon planning and reason-
ing tasks (Bubeck et al., 2023; Wei et al., 2022; Yao et al., 2024). Despite some initial promise, recent
careful investigations have highlighted LLMs’ shortcomings on classical planning tasks (Pallagani
et al., 2023; Valmeekam et al., 2023; 2024; Momennejad et al., 2024). Supervising models with
correct plans has also led to limited success, especially for out-of-distribution generalization (Dziri
et al., 2023). Fundamentally, this issue is attributed to a lack of explicit search, backtracking, or
learning from mistakes (Kambhampati et al., 2024; Bachmann and Nagarajan, 2024; Gandhi et al.,

'Code available at ht tps://github.com/swarnaHub/System—1.x
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Figure 1: Comparative overview of a System-1 Planner, a System-2 Planner, and our hybrid and
controllable System-1.x Planner. Given a Maze Navigation task, a System-1 Planner directly
generates a plan as a sequence of steps without search, thus making it fast but inaccurate. A System-2
Planner performs search before generating a plan and hence is more accurate but much slower.
Our System-1.x Planner generates hybrid plans, where the level of hybridization is controlled by
a user-defined hyperparameter. Hybrid plans balance System-1 sub-plans for easier sub-goals and
System-2 sub-plans for harder ones, making System-1.x fast, accurate, and controllable.

2024), all of which are essential components of standard planning systems. LLMs directly generating
plans generally resemble humans’ fast ‘System-1’ decision-making (Kahneman, 2011), characterized
by quick, intuitive judgments rather than slow, deliberate planning (Kambhampati et al., 2024).

As potential remedies, slow ‘System-2’-inspired LLM planning approaches have emerged that either
(1) augment LL.Ms during inference with symbolic search algorithms (Yao et al., 2024; Sel et al.,
2023; Ahn et al., 2022) or (2) directly teach LLMs to carry out search themselves (Gandhi et al., 2024;
Lehnert et al., 2024). While the former approach of using external search tools can enhance test-time
performance, the latter approach — training models to search — has the advantage of resulting in a
single unified search model and also discovering better and more efficient search strategies (Gandhi
et al., 2024). However, such training-time approaches also face challenges due to high computational
demands and potential infeasiblity. For instance, one such recently proposed (trained) System-2
method, Searchformer, uses token sequences that verbalize entire search trajectories (Lehnert et al.,
2024). Consequently, during inference, based on the action space and the plan length, these models
explore a large number of states, resulting in an increased number of generated tokens. The cost
of exploration is further exacerbated by the fact that Transformers (Vaswani et al., 2017) typically
exhibit quadratic complexity w.r.t. the sequence length. Thus, as sequence length increases, the
computational complexity grows, significantly impacting memory usage and speed, rendering many
long-horizon tasks infeasible due to token limits.”> A more promising alternative would thus be
to avoid incurring a high cost on all samples and steps by training a planner with a smarter, more
balanced allocation of compute, i.e., one that uses System-1 for easier (sub-)problems while reserving
the more expensive System-2 for harder (sub-)problems based on the budget.

To this end, we propose the System-1.x Planner, drawing inspiration from the Dual-Process
Theory (Wason and Evans, 1974; Kahneman, 2011) that argues for the co-existence of fast and slow
planning in humans. The fast system, relying on expertise and quick judgments, can be cheaply and
quickly applied either instinctively or in areas where an individual has acquired expertise. The slow
system is more costly, involving sequential processing and relying on working memory to formulate
a more deliberate plan and includes the consideration of hypothetical alternatives (Evans, 2003).
Crucially, humans can switch between these two modes as determined by the task at hand (Kahneman,
2011). Based on this distinction, we develop the System-1.z Planner, a controllable framework
for long-horizon planning with LLMs that is capable of generating hybrid plans interleaved with
System-1 and System-2 sub-plans. System-1.x offers a promising middle ground between a fast
but inaccurate System-1 Planner, used for easy problems, and an accurate but slow System-2 Planner,
used for hard problems (see Fig. | for an overview).

System-1.z is composed of three trained components: (1) a controller that decomposes a planning
problem into easier and harder sub-goals, (2) a System-1 Planner that solves the easier sub-goals

?For example, full System-2 on 5 x 5 mazes with a plan length of 8 requires ~ 1500 tokens on average.



Published as a conference paper at ICLR 2025

without any explicit search or exploration, and (3) a System-2 Planner that solves the harder sub-goals
by deliberately searching over possible actions. One of the primary strengths of System-1.x is its
train-time controllability — based on a user-specified hyperparameter « € [0, 1], we train a controller
that ultimately governs the degree of hybridization between the System-1 and 2 planners. It also
offers test-time controllability, by which an already trained controller can be adjusted towards
solving more or fewer problems using System-2, providing another level of inference-time compute.’
Importantly, System-1.x is a fully (LLM-based) neural planner built on top of one base LLM, using
supervision only from search traces and not relying on any external solvers or verifiers. Thus, it
has an advantage over inference-time methods that rely on symbolic planners which may not exist
for certain domains, making data-driven approaches like System-1.x self-contained and easier to
apply to new domains and to scale up. At the same time, our LLM-based System-1.z can also
be seamlessly converted into a neuro-symbolic planner by replacing the System-2 Planner with a
symbolic solver (e.g., A*), allowing us to integrate powerful symbolic tools when they are available.

We conduct experiments on the domains of Maze Navigation and Blocksworld to show that System-
1.z Planner matches and generally outperforms a System-1 Planner, a System-2 Planner, and a
System-1.z variant (without sub-goal decomposition) at all budgets by generating up to 33% more
valid plans. We also report similar findings with our neuro-symbolic System-1.z, that in fact typically
outperforms symbolic search, beating A* by up to 39% at a fixed budget of explored states and
matching it at maximum budget. Next, we show the controllability of our framework by training
a System-1.75 Planner that, compared to a System-1.5 Planner, trades off efficiency for greater
accuracy. This trend can be continued to recover the full System-2 performance. System-1.z also
generalizes to different search algorithms (BFS, DFS, A*) and exhibits exploration behavior that
closely resembles the corresponding algorithm it is trained on. Overall, the System-1.x Planner
introduces a novel way of applying LLMs to controllable and hybrid planning, optimizing for both
accuracy and efficiency. This, in turn, allows System-1.z to outperform both System-1 and -2 at a
fixed budget. By intelligently allocating more resources to harder sub-goals, System-1.z is able to
save its System-2 budget for cases where it is necessary.

2 SYSTEM-1.x: CONTROLLABLE AND HYBRID PLANNING WITH LLMS

2.1 BACKGROUND AND PROBLEM SETUP

A planning problem can be modeled as a Markov Decision Process M = (S, A, T, R) defined with
a set of states S, a set of actions .4 on any given state, a transition function 7 : S x A — S defining
transitions between pairs of states based on an action, and a reward function R : S — R assigning a
reward for reaching the goal state. Given such a planning problem, a start state s € S and a goal
state s, € S, the objective of classical planning is to generate a plan P = (a1, ..., ay,), as a sequence
of n actions a; € A that helps transition from the start state to the goal state. Using this notation, we
define some salient concepts in a planning problem below:

» System-1 Planner. We use the term “System-1 Planner” to denote any planner that directly
generates a plan as a sequence of actions without conducting any explicit exploration or search.
System-1 Planners are typically only model-based, trained to only output the final plan. Within the
scope of this study, a System-1 Planner will specifically refer to a neural LLM-based planner.

* System-2 Planner. We use this term to denote planners that do conduct explicit search before
generating a plan. Unlike model-based System-1 Planners, System-2 Planners can also be symbolic
(e.g., search algorithms like Depth First Search, Breadth First Search, A*). A model-based System-
2 Planner, within the scope of this study, will specifically refer to an LLM trained to verbalize
search trajectories (defined below) before generating a plan. Broadly, the terms System-1 and
System-2 will refer to LLM-based planners while symbolic algorithms will be addressed separately.

 Search Trajectory. Given a search algorithm, we define a search trajectory or a search trace as the
step-by-step execution of the algorithm for an input problem. In the context of LLMs, this will
mean a verbalized representation of a search trajectory. Trajectories consist of the final plan, all
intermediate actions explored during search, their corresponding states, their validity, etc.

3E.g., we can train a System-1.5 model and then add a bias term to the controller at test time to increase the
probability of System-2, inducing it to act like a System-2 model (or System-1.25, System-1.75, etc.).
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* Valid Plan: A plan P = (ay,...,a,) is considered valid if starting from the start state sg, se-
quentially executing all taken actions in the plan leads to the goal state s,, or more formally,
T(T(...T(50,G1)..., @n-1),an) = Sq. Plan Validity is a metric measuring the fraction of valid
plans that reach the goal state.

* #States-Explored: Given a planning problem and a planner (System-1, 2, or 1.z), we define
#States-Explored (SE, in short) as the set of all states (both valid as well as invalid) that are visited
by the planner on its way to generating the plan. In the case of an LLM planner, this corresponds
to the number of states that the planner needs to verbalize for exploration (see right of Fig. 2
for an example output), and thus adds to the token cost of generation. Since a System-1 Planner
generates a plan directly without any additional explorations, it only explores the states that are
part of its plan, i.e., SEsy =n, where n is the length of the generated plan. A System-2 Planner,
on the other hand, will perform additional state explorations before generating a plan, resulting
in SEsys > SEsy1. Note that #States-Explored for a System-2 Planner will vary based on the
underlying search algorithm or the LLM planner learning from that algorithm’s traces. For example,
A*, being an informed search algorithm, will typically explore fewer states than Breadth First
Search. Plan Validity and #States-Explored will be our two metrics of interest, using which we will
compare the performance at varying budgets of all planners (discussed in §4).

* Sub-goal. Finally, planning problems are typically compositional, meaning that they can be
decomposed into sub-problems, which we will refer to as sub-goals. Formally, given a plan P
between states s and s4, a sub-goal can be characterized by a pair of states (s;, s;) s.t. 4,j €
[0,9],% < j, where s; and s; are intermediate states on the plan to get from s to s,.

Problem Setup. Having defined the key terms above, we now describe the setup underlying our
LLM-based System-1.z Planner. To build it, we assume access to two things: (1) a training dataset D
of search trajectories for N planning problems, and (2) a user-specified hybridization factor = € [0, 1].
Given a planning problem of initial state sq, goal state s, and a gold plan P, let us denote the cor-
responding gold search trajectory as 7, making the training dataset D = {(s((f), sgf)), PO TN
In our experiments, the gold plans and the corresponding trajectories will be obtained using a
symbolic System-2 Planner (e.g., A* search) but more generally, the source of these trajectories
could be any neural or symbolic engine capable of exploration or search. The hybridization factor
x is a user-defined hyperparameter that will determine the balance between System-1 and System-2.

2.2 SYSTEM-1.x OVERVIEW

System-1.z Planner consists of three trained components: (i) a Controller for decomposing planning
problems into sub-goals and classifying them as easy or hard, (ii) a System-1 Planner for fast planning
of easy sub-goals, and (iii) a System-2 Planner for slow planning of hard sub-goals. Fig. 2 shows an
overview of our method. We train all three components by automatically generating data from the
gold search traces in a way that also respects the user’s constraints (specified via the hybridization
factor). Below, we describe each component and how they combine to make System-1.x.

2.3 TRAINING DATA GENERATION FOR SYSTEM-1.xz

System-1 Planner Training Data. We denote it as Dsyq = { (s, ")), P(O}N | where the input
is a natural language description of the planning problem consisting of a start state sél) and a goal
state sgl) and the output is the corresponding plan in natural language P*) (see Appendix D for
examples). For Maze Navigation, these gold plans are also optimal plans (i.e., having the minimum
length) while for Blocksworld, they may include additional explorations, making them sub-optimal

at times (though always valid).

System-2 Training Data. Similar to System-1, the input to a System-2 Planner is also a natural
language description of the planning problem. However, the target output of the System-2 Planner is
a verbalized search trajectory 7(*) as described in §2.1 (refer to Appendix D for examples). This

yields a training dataset of Dy = {(séi), sgf)), TOWN .
Controller Training Data. Recall that the System-1.z Planner is designed to minimize state

explorations by only performing System-2 planning as needed, i.e., saving states with System-1 for
easier sub-goals and reserving System-2 for harder sub-goals. Hence, the role of the controller is
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Figure 2: Overview of our System-1.z Planner. Left: The process for training data construction. We
generate three kinds of data to fine-tune our three components: (1) System-1 data (linear chains),
(2) System-2 data (search trees), and (3) controller data (consisting of sub-goals and easy/hard
annotations) conditioned on a user-specified hybridization factor . Right: During inference, the
controller generates the sub-goals and predicts whether each is easy or hard. Then, it invokes System-1
and System-2 for easy and hard sub-goals respectively to construct the final plan.

two-fold: (i) decomposing a problem into sub-goals characterized by a start and end state (s;, s;),
and (ii) classifying those sub-goals as easy or hard so that System-2 can be invoked only for the hard
sub-goals. However, most planning domains lack gold annotations of sub-goal decompositions and
their easy and hard classifications. Therefore, we propose an automatic data generation process for
training our controller, as described below and more formally in Algorithm 1. The inputs to preparing
the controller data are (1) the gold plans {P("} ¥ that will be decomposed into sub-goals, (2) the
user-defined hybridization factor x, and (3) a hardness function A(-, -) for (sub-)goals.

* Step 1: Defining and Ranking using a Hardness Function. A hardness function h(s;, s;) takes
a start state s; and a goal state s; as input, and returns a scalar value estimating the hardness of
the goal or the sub-goal. An example of a hardness function for a Maze Navigation task is the
number of obstacles in a sub-maze, where a higher value indicates greater difficulty. Appendix A
and Appendix B more concretely describe and compare these hardness functions for different
tasks, respectively. Generally, hardness functions can be constructed for most planning domains
where standard heuristics are frequently applied for various search techniques.* Using this hardness
function between the start and the goal state h(sg, s4), we generate a rank ordering of the training
examples.

* Step 2: Annotating Easy Instances as System-1-only. Intuitively, some planning problems in the
train set can be solved successfully via only a System-1 Planner. For such instances, no further
decomposition is needed. These correspond to the first (1 — x) x N easiest samples with the least
h(-,-). Note that this is a definition of hardness, and what is considered as easy is determined
by the hybridization factor x. For example, when x = 0.0, all samples will be annotated as easy,
making System-1.z the same as System-1.

» Step 3: Annotating Hard Instances as Hybrid System-1 + System-2. For the remaining
z X N (hard) samples, we assume that they can be decomposed into sub-goals, each of which
can be assigned to either System-1 or System-2. However, to ensure overall task success, the
decompositions should neither be too coarse, i.e., requiring further decompositions, nor too fine-
grained, making them susceptible to decomposition errors (Prasad et al., 2024). Hence, we adopt a
sliding window approach that optimizes for the following: find a contiguous chunk of length = x n
of an n-length plan to be assigned System-2, such that it corresponds to the hardest sub-goal and
the sub-goals on either side of it correspond to the easiest (and hence assigned System-1). More
formally, this requires us to solve the following constrained optimization problem:

(J, k) = argminuﬂ)e[Oﬁgmg“h(so, Su) — h(Su, Sv) + h(sy,8¢), 8.t [V —u| =2 X n

Given a start state so and goal state s, we want to find two intermediate states s; and sy, between sg
and s, along the length of the plan, such that the hardness of that sub-goal h(s;, si) is maximized
(and hence assigned System-2) while the hardness of the other two sub-goals h(so, s;) and h(sg, s¢)

*nttps://www.fast-downward.org/Doc/Evaluator
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is minimized (and hence assigned System-1). This process results in a three-way decomposition.’
The final result is a controller training dataset D, = {(s"”, s"), {G (D}t_,}N| where for each

planning problem, we have an annotated list of ¢ € {1,2,3} sub-goals {G; (l)}ézl and their
corresponding System-1/System-2 assignments. In practice, the components we use for controller
data generation (e.g., sub-goal decomposition strategy, hardness heuristic) can easily be swapped
with other variants, based on the problem at hand (further explored in Appendix B).

2.4 TRAINING AND INFERENCE OF SYSTEM-1.z PLANNER

Using the data generation process described above, we finetune a single base LLM to behave as a
System-1 Planner, a System-2 Planner, or a controller. During inference, we first use the controller to
generate a meta-plan — a list of sub-goals and their easy versus hard assignments. After solving each
with the appropriate planning model, we concatenate the sub-plans from the two planners, in order, to
construct the final plan (see Fig. 2 for an example of a concatenated plan, denoted by ‘+).

Train- and Test-time Controllability. We design System-1.x such that there is a single point of
control for training the system, i.e., the hybridization factor x, and this control lies with the end-user.
Setting it adjusts the training data for the controller, i.e., what is annotated as easy versus hard,
both across samples (Step 2 of the algorithm) and within samples (with sub-goals; Step 3 of the
algorithm). This ultimately yields the user-specified level of hybridization. Hence, System-1.x
offers training-time control of compute (e.g., one could train a System-1.25, 1.5, or a 1.75 Planner).
Furthermore, the controller’s design also offers an additional degree of test-time control: since the
controller classifies sub-goals as System-1 or 2, the end-user could also re-balance the model towards
either system based on the controller confidence threshold. This means that an already trained
System-1.5 Planner, for example, can be biased to behave as a System-1.25 or a System-1.75 at test
time. In our experiments, we explore how both train-time and test-time control impacts performance.

3 EXPERIMENTAL SETUP

Tasks. We evaluate System-1.x Planner on two classical planning tasks that are challenging for
LLMs (Valmeekam et al., 2023; Lehnert et al., 2024): (1) Maze Navigation and (2) Blocksworld.
In Maze Navigation, given a 2D maze with some cells containing obstacles and four permissible
actions { ‘left’, ‘right’, ‘up’, ‘down’}, the objective is to find a path from a start state to a goal state
by avoiding the obstacles. We randomly generate a balanced dataset of 4K planning problems (split
into 3200/400/400 samples) with 5x5 mazes, 40% of the cells containing obstacles, and having
optimal plan lengths between 1 to 8. Next, to test out-of-distribution (OOD) generalization to longer
plans, we experiment with Blocksworld: a task of moving blocks to another goal configuration by
only moving one unstacked block at a time. Following the data creation algorithm in Bohnet et al.
(2024), we generate problems consisting of 4-7 blocks (without repetition). From there, we create a
train/validation/test split of 3000/250/200 samples where the train and the validation split consist of
samples with plan lengths 1-6 and the test split consists of samples with plan lengths 7-10.

Baselines. We compare our System-1.x Planner with (1) a System-1 Planner, (2) a System-2 Planner,
and (3) a System-1.x Planner without sub-goal decomposition. The latter is also a hybrid planner
but the controller is trained to predict an instance as either fully System-1 or fully System-2, thus
allowing us to evaluate the effectiveness of sub-goal decomposition of our full System-1.2 model.
For showing the effectiveness of our neuro-symbolic System-1.x variant, we compare it to A*
by matching their #States-Explored. Under the umbrella of System-2 Planners, we train multiple
variants that are fine-tuned with data obtained from different search algorithms. In particular, we
consider two uninformed search algorithms (Breadth-First Search and Depth-First Search) and an
informed search algorithm (A*). Given the superiority of A*, our primary experiments will be based
on A* traces while we reserve the other search algorithms for further analysis in §4.3. Refer to
Appendix A for a short background on A*.

Evaluation Metrics. We compare all methods along two axes: plan validity and cost. As defined
in §2.1, plan validity is given by the fraction of valid plans generated by a planner while for cost,
we compute the average #States-Explored by a planner before reaching the goal. Note that in order

>Note that when u = 0 or v = g, there will be two decompositions rather than three.
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Figure 3: Comparison of System-1.x Planner (with and without sub-goals) with a System-1 Planner
and a System-2 Planner. (a) Maze Navigation: System-1.z with sub-goals matches or generally
outperforms all baselines. (b) Blocksworld: For out-of-distribution generalization, System-1.x with
sub-goals leads to much higher plan validity at lower #States-Explored.

to fairly compare all systems, their #States-Explored should be matched, such that we compare
performance at a fixed budget for each system. First, since System-1 does not do any exploration, it is
constant w.r.t. budget and hence has the same plan validity irrespective of #States-Explored. Next, to
adapt System-2 and System-1.x to lower budgets, we truncate the search when the maximum number
of states allowed by the budget has been reached. This value of maximum allowed states is given by
the highest possible value such that the average #States-Explored matches the desired budget. We
refer to this as truncation below. Finally, to adapt System-1.x to higher budgets, we use System-1.z’s
test-time controllability, increasing the bias term on System-2 reasoning (cf. §2.4). As this term
increases, the model uses more and more System-2 planning, i.e., x — 1 in System-1.x. We refer to
this as test-time control. We perform this matching and report plan validity for the following values
of #States-Explored. First, we vary the maximum budget of states explored in intervals of 5 for Maze
and 10 for Blocksworld, up to the number of states used by System-2 (the most compute-intensive
system we consider). We also consider two specific points in the range of #States-Explored: we
match System-2’s #States-Explored to the number of states that System-1.x uses by default. In the
other direction, we match System-1.z’s #States-Explored to the number of states used by System-2.
These points let us directly compare the two systems without any truncation or test-time control. In
the main paper, we present our results with plots while we refer to the Appendix E for detailed tables.

Implementation Details. We choose Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the base LLM
and fine-tune all our components with LoRA (Hu et al., 2021) with a rank of 8 for a maximum of 3
epochs and a batch size of 4, resulting in three adapters for System-1, System-2, and the controller.
For the purposes of §4.1, System-1.x will specifically refer to a System-1.5 Planner (i.e., z=0.5,
which is a balanced hybrid between a System-1 Planner and System-2 Planner) and fine-tuned from
A* traces. Refer to Appendix A for additional implementation details e.g., our hardness functions
and System-2 implementations.

4 RESULTS AND ANALYSIS

4.1 SYSTEM-1.x OUTPERFORMS SYSTEM-1 AND SYSTEM-2

Study Setup. In this first set of experiments, we compare our System-1.x Planner with (1) a System-1
Planner, (2) a System-2 Planner, and (3) a System-1.x Planner without sub-goal decomposition.

Results for Maze Navigation. Fig. 3(a) (cf. Table 3) shows the plan validity obtained by each
planner at different #States-Explored. The values of #States-Explored are as described previously in
§3. Based on this, we summarize our key findings.

* System-1.x outperforms all baselines at all budgets. Without truncation or test-time control,
System-1.z (z = 0.5) uses 13.6 states on average. At this number of states, it generates 70.4%
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valid plans, outperforming the System-1 Planner by 21% (48.7% — 70.4%), the System-2 Planner
by 33% (37.2% — 70.4%), and the System-1.x variant without sub-goal decomposition by 20%
(50.0% — 70.4%). Next, to compare all methods at lower budgets (i.e., with #States-Explored
of 5 and 10), we do state truncation (as described in §3) by limiting the search (generation) to
a maximum number of states. We find that even at these lower budgets, System-1.x continues
to be significantly more accurate compared to baselines, pointing to an effective allocation of
resources. Finally, System-1.2’s fest-time control capability lets us increase compute to match
that of System-2 by biasing the controller and solving more sub-goals with System-2. Doing so
eventually transforms a System-1.x Planner into a System-2 Planner with sub-goal decomposition,
outperforming vanilla System-2 by 3% and achieving the highest validity of 96.7% at 27.3 states.
This highlights the effectiveness of our sub-goal decomposition (more details below).

* System-1.x benefits from sub-goal decomposition. We validate the utility of sub-goal decompo-
sition from two observations. First, the full System-1.x outperforms the System-1.x variant that
does not perform sub-goal decomposition. Second, System-2 also benefits from sub-goal decom-
position as shown by the maximum validity of 96.7% which is achieved via test-time control and
biasing the controller to solve every sub-goal using System-2. However, note that System-2 with
decomposition still applies System-2 planning to every step, making System-1.x more performant
at any given budget.

» System-1 is cheaper but not accurate. On one extreme of the plot, System-1 Planner is cheaper
since it only explores the states that are part of its plan, amounting to an average of 3 states.
However, this comes at a cost to performance: it also only generates 49% valid plans. Another
limitation of a System-1 Planner is that unlike System-1.z, it is not controllable and hence, there is
no easy affordance for improving performance by exploring more states.

» System-2 is more accurate but expensive. On the other extreme, System-2 Planner achieves a
maximum validity of 94% but explores a much higher 24.4 states in the process. While System-2
can be adapted to minimize #States-Explored, such adaptivity is only possible during inference via
state-truncation. Test-time truncation of #States-Explored is typically ad-hoc and not preferable
because the loss in performance will only increase as the plan length grows. This is in contrast to
the System-1.x Planner, which allows for systematic control of compute both at training-time (via
a user-defined hybridization factor x), and at test-time (by biasing the controller).

Results for Blocksworld. Fig. 3(b) (cf. Table 4) reports our results on Blocksworld (BW) that studies
out-of-distribution generalization to longer plan lengths. Our first observation is that System-1 only
obtains a plan validity of 9% and although System-2’s validity is higher at 28%, given the longer plan
lengths, it also explores a significantly higher number of states (55). Thus, when we perform trunca-
tion to get lower values of #States-Explored, System-2’s valid plans drops to almost 0%. System-1.z
without sub-goal decomposition also does not work for OOD test points because the controller predicts
almost all samples as hard and solves them using System-2. Hence, System-1.z without sub-goal de-
composition practically becomes a System-2 in such scenarios, suffering major losses to performance
with truncation. However, in contrast to all baselines, System-1.x with sub-goal decomposition can
solve a larger fraction of problems at lower budgets (e.g., 25% at 30 states compared to System-2 Plan-
ner’s 13%) because of its ability to leverage a System-1 Planner for simpler sub-goals that have shorter
plan lengths and are more likely to be in-distribution (refer to example in Fig. 9). At maximum #States-
Explored, System-1.x obtains comparable performance to System-2. Overall, when testing on OOD
data, the results in Fig. 3(b) highlight the key role that the System-1.x controller plays in decomposing
longer-horizon planning problems. Crucially, what is generally a weak System-1 Planner for harder,
OOD goals can be used effectively to solve easier, ID sub-goals, thereby saving a lot of compute.

4.2 NEURO-SYMBOLIC SYSTEM-1.x OUTPERFORMS OR MATCHES A* AT ALL STATE BUDGETS

Study Setup. While we primarily designed System-1.x as a fully neural planner with all three
components (System-1, 2, and the controller) developed on top of the same LLM, we note that
System-1.x can also act as a neuro-symbolic planner. This can be achieved by using a symbolic solver
like A* as the System-2 component. We follow this setup to report results on the Maze Navigation
task, again setting x =0.5.

Results. Fig. 4 (cf. Table 5) compares the validity of all planners at different #States-
Explored. We note that an LL.M-based planner may not be directly comparable to symbolic
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planners like A* with respect to our #States-Explored metric because the former generates to-
kens for states which computationally can be more expensive than invoking a symbolic planner.
However, for the purpose of this study, we
compare them only based on the number of
explored states, without considering the un-
derlying computation responsible for such ex-
plorations. Our main result is that the conclu- &0
sions drawn with a fully neural System-1.z
also transfer to a neuro-symbolic System-1.x.
Notably, at an average of 11.6 states, neuro-
symbolic System-1.z outperforms A* by a
large margin of 39% (31.0% — 70.5%). This
can again be explained by the ineffectiveness 20
of #States-Explored truncation for System-2
Planners, symbolic or neural. The trend is
also consistent at all lower budgets. System-
1.z can be test-time controlled to obtain a
near-perfect validity (99.2%), matching that
of A*.

--- Sys-1 —#%— Sys-1.5 w/o sub-goals —— w/ Truncation
—4— Sys-2 —k— Sys-1.5 w/ sub-goals w/ Test-Time Control

100

Plan Validity
[=2]
2
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Figure 4: Performance of System-1.x in conjunction
with a symbolic (A*) System-2 Planner on Maze.

4.3 ANALYSES AND ABLATIONS OF SYSTEM-1.2x PLANNER

We conduct all analyses and ablations on the maze navigation task.

Train-time Control: System-1.75 trades off efficiency for plan validity compared to System-
1.5. One of the core strengths of our planner is its training-time controllability. The hy-
bridization factor = allows the user to specify the System-1 to System-2 balance they want in
the final planner. To demonstrate this capability, we train a System-1.75 Planner by setting
xz = 0.75. Table 6 (cf. Table 6) shows our results on the maze task. By default, System-
1.75 uses 16.6 states on average and generates 75.7% valid plans, compared to System-1.5’s
70.4% with a default average of 13.6 states (Table 3) i.e., a 5% gain at the cost of 3 more states.
Thus, as we increase the value of x, the
System-1.z Planner will use more states
and improve performance, converging to
a System-2 Planner that additionally per-
forms sub-goal decomposition. Compared to
System-2, System-1.75 is again significantly
more performant at all budgets (e.g., by 28%
at 16.6 states) and eventually obtains the high-
est fraction of valid plans at 96.7% when act-
ing as a System-2 with sub-goals. This echoes
our System-1.5 Planner findings, which also
demonstrated similar gains at high budgets.

--- Sys-1 —#%— Sys-1.75 w/o sub-goals —— w/ Truncation
—— Sys-2 —k— Sys-1.75 w/ sub-goals w/ Test-Time Control

100

Plan Validity

Broadly, these results showcase our con-
troller’s effectiveness, which in turn validates 0 5 10 15166 20 25
our hardness measures and sub-goal decom- #States-Explored

positions. We further ablate features of the
controller in Appendix B, comparing against
a random controller, testing the effectiveness
of the sliding window, and contrasting differ-
ent hardness functions.

Figure 5: Train-time controllability of System-1.z
Planner by setting x =0.75. System-1.75 largely out-
performs System-2. Compared to Fig. 3(a), System-
1.75 yields 75.7% valid plans vs. 70.4% (with
System-1.5) by utilizing 3 more states.

Generalizability: System-1.x beats System-2 with all search algorithms (A*, DFS, BFS). We
conducted our main experiments by leveraging supervision from A* traces. In Appendix Fig. 6, we
show that System-1.x is robust to different search algorithms, working with other options like Breadth
First Search (BFS) and Depth First Search (DFS) and outperforming baselines by large margins
(see Appendix B for details). In Appendix C, we show a representative example of System-1.z
outperforming the baseline systems.
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5 RELATED WORK

Combining LLLMs and Symbolic Planners. A large body of recent work has highlighted the
shortcomings of LLMs on long-horizon planning problems (Valmeekam et al., 2023; 2024; Pallagani
et al., 2023; Momennejad et al., 2024; Hirsch et al., 2024; Zheng et al., 2024; Aghzal et al., 2023),
persisting across popular prompting techniques like Chain-of-Thought (Wei et al., 2022), ReAct (Yao
et al., 2022), and Reflexion (Shinn et al., 2024). These methods largely resemble System-1 inference-
time methods in which the LLM does not explicitly search, backtrack, or learn from incorrect actions.
Systematic search is either not performed at all or delegated to symbolic solvers (e.g., Liu et al.,
2023; Pan et al., 2023; Xie et al., 2023, discussed further below), thus deviating from the focus of
this work on equipping LLMs to solve harder planning problems via search. More related to our
work are inference-time methods that do involve planning, tree search, and backtracking. These
System-2-inspired methods have a search algorithm that operates on top of and guides an LLM with
reward models, value functions, or verifiers (Hao et al., 2023; Yao et al., 2024; Besta et al., 2024;
Zhou et al., 2023; Sel et al., 2023; Koh et al., 2024). In a similar spirit, neuro-symbolic planning
systems like LLM-Modulo Frameworks (Kambhampati et al., 2024) have emerged that combine
LLMs with symbolic planners (Nye et al., 2021; Liu et al., 2023; Pan et al., 2023; Xie et al., 2023;
Zuo et al., 2024; Fabiano et al., 2024; Katz et al., 2025; Zhuang et al., 2024). System-1.x differs
from this class of inference-time methods in two major ways. Firstly, it is a training-time method
that teaches the LLM to search, with the goal of enhancing the LLM’s intrinsic planning capabilities
and discovering more effective search strategies, making it self-contained (as opposed to complex
inference-time methods relying on external modules). Secondly, it is also a hybrid system that can
alternate between System-1 and System-2-style planning, whereas past work is capable of one or the
other, but not both. Notably, this kind of hybridization distinguishes System-1.x from other work that
either creates hybrids between weaker and stronger models in the form of model cascades (Lin et al.,
2024; Yue et al., 2023) or between neural and symbolic methods (e.g., LLM-Modulo frameworks).

LLMs Generating Plans. Methods combining LLMs and symbolic planners need some com-
munication channel between the LLM and the symbolic planning component. This is usually a
value function or reward model producing a single score for a state, making the method’s success
contingent on the quality of the reward model, or the LLM’s ability to act as a value function (as in
Yao et al. (2024); Lightman et al. (2023)). Furthermore, off-loading planning or search adds additional
modules at test-time that may not always be available for certain domains. It also assumes that the
model’s representation is already sufficient for the task and complicates finetuning the representation,
since externalized search is typically non-differentiable. In an attempt to mitigate such concerns,
a second line of work removes the dependency on separate reward models and external tools and
teaches LLMs to conduct search by themselves (Yang et al., 2022; Gandhi et al., 2024; Lehnert et al.,
2024). For example, Gandhi et al. (2024) introduce Stream-of-Search (SoS), which teaches LLMs
to search by verbalizing trajectories and Lehnert et al. (2024) propose Searchformer, that learns
from A* search dynamics. This line of work predates LLMs: Anthony et al. (2017) generate data
from tree search which they use to iteratively train a neural model to perform System-1 planning.
However, Gandhi et al. (2024) and Lehnert et al. (2024) differ from our work in that their final models
are System-2-only, incurring a high computational cost for all examples and states by performing
full planning at all times, whereas our method is a hybrid between Systems 1 and 2, dynamically
allocating computation to more difficult parts of the plan. Moreover, to meet user budget constraints,
System-2-only methods also have to rely on approaches like post-hoc truncation while System-1.x
offers more systematic controllability via its controller.

6 CONCLUSION

We introduced the System-1.2 Planner, a novel LLM-based planner that adaptively interleaves quick
and cost-efficient System-1 planning with more costly but performant System-2 planning. On two
tasks, we showed that our method results in strong performance across a range of budgets: on Mazes,
System-1.2 obtains the best performance at every budget, and on Blocksworld it outperforms System-
2 at all budgets except the highest, where it is comparable. In our analysis, we find that System-1.x is
controllable, generalizes to various search algorithms, and performs better out-of-distribution.

10
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ETHICS STATEMENT

Large Language Models have been shown to reflect stereotypes, biases, and other negative traits
present in their pre-training data (Weidinger et al., 2021). Hence, the outputs produced by our
fine-tuned planner may exhibit undesirable behavior similar to the base model and have the same
potential for misuse as other fine-tuned LLMs. Hence, more studies are needed to evaluate and
mitigate such biases in LLMs.

REPRODUCIBILITY STATEMENT
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A ADDITIONAL DETAILS OF SYSTEM-1.2z PLANNER

Algorithm 1 Training Data Generation for System-1.2 Controller

Input: System-1 Training Data Dsyg = {(s”, s\"), P}V |, Hybridization Factor z € [0, 1],
Hardness Function A(-, -)

Output: Training Data D, for System-1.z Controller

Sort(Dsysl7 key= h(so, Sg)) // Ranking data points in increasing order of hardness

D. « {} o

for data point ((s), s{), P®) € Dy do

ifi < (1 —2) x N then

// For the first (1 — x)% of instances (easiest), solve them directly using System-1 planner

y@ (s, 5), “Sys17}

else:

// For the remaining x% hardest instances, find the best decomposition into three sub-goals such that
the middle sub-goal (s, si) is solved using System-2 and has a length of x% of the total plan length
(j, k) = argminu ve[o,gmgv(h(s((f), Su) — h(Su, Su) + h(sy, Sg))) st.jv—ul=xxn

y @ {(s§,5;),“Sys1"}

Y@ <y D 4 {(s;,51), “Sys2"}
y@  y® + {(Skvsg)) “Sys1”}
Do Dot {(s,s5),y )
return D,

A.1 BACKGROUND ON A*

A* is an informed search algorithm that decides the next best state to expand with a function
f(n) = g(n) + t(n) that considers (1) the cost g(n) from the start state to the current state n, and
(2) a heuristic function #(n) that gives an estimate of the cost from state n to the goal. Note that
A* is optimal if the heuristic ¢(n) is admissible (i.e., t(n) < ¢t*(n) which means that the heuristic
never overestimates the true cost to the goal h*(n)) and consistent (i.e., t(n) < ¢(n,n’) + t(n’) for
all states n and its successor n’ and c is the cost to transition from 7 to n'). For the Maze Navigation
task, Manhattan Distance is an example of such an admissible heuristic, and hence A* with it will
always generate optimal plans.

A.2 IMPLEMENTATION DETAILS FOR MAZE NAVIGATION

System-2 Planner. We implement a System-2 Planner for the Maze domain by verbalizing all
possible explorations at each state, including the ones that lead to invalid states (i.e., outside the maze,
have obstacles, or have already been visited). See example in Appendix D.

Hardness Function. Given two maze states s; = (a,b) and s; = (c, d) we define hardness of a
sub-goal h(s;, s;) as the number of obstacles in the rectangular sub-maze given the end-points. More
obstacles will mean that the model might have to search more and would likely benefit from System-2
planning.

A.3 IMPLEMENTATION DETAILS FOR BLOCKSWORLD

System-2 Planner. In contrast to the Maze domain, the number of actions at each state in
Blocksworld problem is directly proportional to the total number of blocks. Consequently, the
number of possible states that can be explored (both valid and invalid) is significantly larger in this
domain, often exceeding the maximum input token budgets of standard LLMs (in our case, 8096
tokens). Therefore, when verbalizing the search trajectories 7 in Dsys, using A* search to train
System-2 Planner, we cap the number of valid and invalid states explored to 3 and 2 respectively.
The verbalized valid states are chosen by picking the top-3 scored states as per the A* heuristic (that
computes the number of mismatches between the start state and the goal state), while (up to) 2 invalid
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Figure 6: Comparison of System-1.z Planner on Maze Navigation using (a) Breadth-First Search and
(b) Depth-First Search traces. The System-1.x Planner generally outperforms System-2 Planner in
both cases, converging to System-2, showing robustness to the underlying search algorithm.

states are chosen randomly to make the model learn from mistakes. Refer to Appendix D for an
example.

Hardness Function. A state in Blocksworld is characterized by the configuration of the blocks.
Our hardness function computes a distance metric for a sub-goal: For every block that is not in its
correct position in the goal state (i.e., the blocks above and below it are different between the start
and goal states), we add a cost of 1. Additionally, for a block that is not on the table and also not in
its correct position, we add 1 more to the cost, indicating greater hardness for moving blocks that are
in the middle of a stack.

B ADDITIONAL RESULTS

Generalizability: System-1.x beats System-2 with all search algorithms (A*, DFS, BFS). We
conducted our main experiments by leveraging supervision from A* traces. In this experiment,
we show that System-1.x is robust to different search algorithms, working with other options like
Breadth First Search (BFS) and Depth First Search (DFS). First, note that for mazes, BFS explores
all four actions (up, down, left, right) at each state and hence, on average, is the most expensive
search strategy in terms of states explored. However, for an unweighted maze, BFS always generates
optimal plans. DFS, on the other hand, explores fewer states because it returns the first valid plan,
though that plan may not necessarily be optimal. Appendix D contains examples of BFS and DFS
trajectories. Based on Fig. 6 (cf. Tables 7 and 8), we summarize our key findings:

* System-1.z continues to outperform System-2 and ‘System-1.x without sub-goal decomposition’
by large margins (e.g., up to 39% at 17.4 states for BFS and at 10 states for DFS), showcasing our
planner’s flexibility to learn from different algorithms.

* System-1.x closely resembles the behavior of the search algorithm it is trained on. For example,
System-1.z (BFS) is more accurate and generates a significantly higher number of optimal plans
than System-1.2 (DFS) because the former is trained on optimal plans (refer to Table 2 for a study
on validity versus optimality). In the process, however, System-1.5 (BFS) explores more states
than System-1.z (DFS), similar to their symbolic counterparts. Among the three algorithms studied
in this paper, System-1.xz (A*) is the most accurate and efficient.

System-1.x Controller outperforms a random controller. In Table 1, we compare our System 1.5
controller with a random controller that arbitrarily chooses 50% problems to be solved by System-2.
Our trained controller outperforms the random controller by a significant 10%.

Analyses of System-1.x Controller. In this section, we analyze the different components of our
System-1.x controller.
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Table 1: Comparison of our trained controller in System-1.2 Planner with a controller that randomly

chooses x% of problems to solve with System-2.

Plan Validity

System 1.5 (w/ random controller)
System 1.5 (w/ our controller)

70.5
79.5

—8— Sys-1.5 w/o Sliding Window —— w/ Truncation
—k— Sys-1.5 w/ Sliding Window w/ Test-Time Control
100

Plan Validity
S o oo}
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Figure 7: Comparison of System-1.z Planner
with and without sliding window-based sub-goal
decomposition on the Maze Navigation task.
Sliding window-based decomposition outper-
forms the variant without it at all budgets.

—8— Sys-1.5 w/ Manhattan Distance —— w/ Truncation
—*— Sys-1.5 w/ #Obstacles w/ Test-Time Control
100
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Figure 8: Comparison of two hardness functions
(Manhattan Distance and #Obstacles) for Maze
Navigation. Both yield comparable results, with
#Obstacles being slightly better.

 Effectiveness of Sliding Window Decomposition. Recall that we generated training data for

the controller by using a sliding window approach that assigned a contiguous % of the plan to
System-2 according to a hardness function. Here, we evaluate the effectiveness of this approach by
comparing it to a System-1.x variant without the sliding window decomposition. In this variant,
the % System-2 allocation can either be at the beginning or at the end of the plan but not in the
middle, resulting in a maximum of two decompositions instead of three. As shown in Fig. 9, our
sliding window variant not only obtains higher plan validity but is also far more efficient. This is
because with three decompositions, a weaker System-1 Planner can be used to solve two granular
sub-goals (instead of one) and hence is more likely to succeed.

Comparison of Hardness Functions. Our experiments on maze used the number of obstacles in a
sub-maze as the hardness function. In Table 10, we compare it to Manhattan Distance, which rates
goals that are further away (according to the distance function) as more difficult. We observe that
both functions lead to comparable performance, with obstacles being slightly more efficient. Taken
together with the previous experiment, these results quantify the influence of two essential inputs
to the controller’s training: hardness function and the decomposition strategy.

Table 2: Comparison of Plan Validity and Optimality for System-1.z Planner in Maze Navigation
using A* search. While not using sub-goal decomposition nearly guarantees optimality, using
sub-goal decomposition may generate plans that are sub-optimal.

Plan Validity

Plan Optimality ~ #States-Explored

System-1.x (w/o sub-goals) 335 33.2 4.8
System-1.x (w/o sub-goals) 38.2 38.0 9.7
System-1.x (w/o sub-goals) 62.2 61.7 15.0
System-1.z (w/o sub-goals) 79.5 78.7 17.4
System-1.x (w/ sub-goals) 30.5 30.2 4.5
System-1.z (w/ sub-goals) 56.2 53.7 10.0
System-1.x (w/ sub-goals) 70.4 61.5 13.6
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Figure 9: An example decomposition generated by System 1.5 for Blocksworld. The controller
generates an intermediate state G; where blocks ‘C’ and ‘F’ are a block apart, with the sub-goal
50 — G1 solved using System-2 and G; — s, solved via System-1.

Optimality of System-1.z. In Table 2, we compare the optimality and validity of the plans
generated by our System-1.x Planner. While System-1.z without sub-goal decomposition generates
plans that are almost always optimal, we observe that sub-goal decomposition may sometimes hurt
optimality. This happens because the sub-goals generated by the controller may not always lie on the
optimal path.

C QUALITATIVE ANALYSIS OF SYSTEM-1, SYSTEM-2, AND SYSTEM-1.x

Fig. 10 shows an example from our test set where both System-1 and System-2 fail but System-1.z
succeeds. We consider a maze configuration where the plan length is quite long (8) and there is
a solitary path to the goal, making the problem challenging for LLMs. We find that the System-1
Planner generates an incorrect plan that ignores the placement of the obstacles. On the other hand,
the System-2 Planner avoids obstacles successfully initially but then takes a path that leads it to a
dead end. It is unable to recover from that and the search does not terminate. Our System-1.x Planner
is, however, able to solve the problem successfully by first breaking it up into 3 sub-goals and solving
the easy sub-goals close to the start state and the goal state using System-1 and the hard sub-goal in
the middle (that includes a number of obstacles) with deliberate System-2 planning.

Input Maze System-1 Plan System-2 Plan System-1.x Final Plan
| Output: Sub-goal D
- | -~ - | - -
«| ole] |v] (o] ||« Fe s
- - - ' - -_
e ele] |B |eole| |le| B E)
v
® ® x il
y A | A | A - | A | - - -
© 900 S 090 ok @
o Failed because of o Failed because of & Succeeded by combining System-1 and Syetem-2
invalid plan dead-end plan

Figure 10: A qualitative example showing (1) a failure case for a System-1 Planner because it
generates a plan through the obstacles, (2) a failure case for a System-2 Planner because the generated
plan leads to a dead end and the model does not recover from it, and (3) a successful case for our
System-1.z Planner that solves the easy sub-goals near the start state and the goal state using System-1
and the hard sub-goal in the middle using System-2.

D PROMPTS AND EXAMPLES

See the subsequent pages for prompts and examples from both domains.
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( Svyst

/ € y 1/ System-2 Prompt for Maze )
You are in a 2d maze of dimensions 5 and 5 and some of the cells have walls.
The walls are placed in cells [[3, 4], [0, 41, (3, 3], [1, 1], [2, 3], [0, O
[z, ol, [4, 01,1, O], [2, 4]].

Given a start and a goal state, your task is to generate the optimal plan as
sequence of actions. The optimal plan is one that has the minimum number of

["left’, 'right’, 'up’, ’'down’].

The optimal plan from [1, 4] to [3, 2] is

1,

a

steps. The list of permissible actions that you can take at any given cell are

~

)

( 0

¢ System-1 Output for Maze (#States-Explored=4) )

start [1, 4] | left [1, 3] | left [1, 2] | down [2, 2] | down [3, 2]

( System-2 (A*) Output for Maze (#States-Explored=16) )

Moved to state [1, 4]
state [1, 3] | State [
state [1, 5] | State [
state [0, 4] | State [
state [2, 4] | State [

1

\

| Plan so far [] | Exploring action 'left' to move to

1, 3] is valid | Exploring action 'right' to move to

1, 5] is invalid | Exploring action 'up' to move to

0, 4] is invalid | Exploring action 'down' to move to

2, 4] is invalid | Taking action 'left' from state [1,
4] | Moved to state [1, 3] | Plan so far ['left'] | Exploring action 'left'
move to state [1, 2] State [1, 2] is valid | Exploring action 'right' to
move to state [1, 4] | State [1, 4] is invalid | Exploring action 'up' to mo
to state [0, 3] | State [0, 3] is valid | Exploring action 'down' to move to
state [2, 3] | State [2, 3] is invalid | Taking action 'left' from state [1,
3] | Moved to state [1, 2] | Plan so far ['left', 'left'] | Exploring action
'left' to move to state [1, 1] | State [1, 1] is invalid | Exploring action
'right' to move to state [1, 3] | State [1, 3] is invalid | Exploring action
'up' to move to state [0, 2] | State [0, 2] is valid | Exploring action 'dow
to move to state [2, 2] | State [2, 2] is valid | Taking action 'down' from
state [1, 2] | Moved to state [2, 2] | Plan so far ['left', 'left', 'down']
Exploring action 'left' to move to state [2, 1] | State [2, 1] is wvalid |
Exploring action 'right' to move to state [2, 3] | State [2, 3] is invalid |
Exploring action 'up' to move to state [1, 2] | State [1, 2] is invalid |
Exploring action 'down' to move to state [3, 2] | State [3, 2] is valid |
Taking action 'down' from state [2, 2] | Moved to state [3, 2] | Plan so far

\\\}'left', 'left', 'down', 'down'] | Goal state [3, 2] reached!

to

ve

n'

/
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System-2 Output (BFS) for Maze (#States-Explored=36)

Moved to state [1, 4] | Plan so far [] | Exploring action 'left' to move to
state [1, 3] | State [1, 3] is valid | Exploring action 'right' to move to
state [1, 5] | State [1, 5] is invalid | Exploring action 'up' to move to
state [0, 4] | State [0, 4] is invalid | Exploring action 'down' to move to
state [2, 4] | State [2, 4] is invalid | Taking action 'left' from state [1,
4] | Moved to state [1, 3] | Plan so far ['left'] | Exploring action 'left' to
move to state [1, 2] | State [1, 2] is valid | Exploring action 'right' to
move to state [1, 4] | State [1, 4] is invalid | Exploring action 'up' to move
to state [0, 3] | State [0, 3] is valid | Exploring action 'down' to move to
state [2, 3] | State [2, 3] is invalid | Taking action 'left' from state [1,
3] | Moved to state [1, 2] | Plan so far ['left', 'left'] | Exploring action
'left' to move to state [1, 1] | State [1, 1] is invalid | Exploring action
'right' to move to state [1, 3] | State [1, 3] is invalid | Exploring action
'up' to move to state [0, 2] | State [0, 2] is valid | Exploring action 'down'
to move to state [2, 2] | State [2, 2] is valid | Taking action 'up' from
state [1, 3] | Moved to state [0, 3] | Plan so far ['left', 'up'] | Exploring
action 'left' to move to state [0, 2] | State [0, 2] is valid | Exploring
action 'right' to move to state [0, 4] | State [0, 4] is invalid | Exploring
action 'up' to move to state [-1, 3] | State [-1, 3] is invalid | Exploring
action 'down' to move to state [1, 3] | State [1, 3] is invalid | Taking
action 'up' from state [1, 2] | Moved to state [0, 2] | Plan so far ['left',
'left', 'up'] | Exploring action 'left' to move to state [0, 1] | State [0, 1]
is valid | Exploring action 'right' to move to state [0, 3] | State [0, 3] is
invalid | Exploring action 'up' to move to state [-1, 2] | State [-1, 2] is
invalid | Exploring action 'down' to move to state [1, 2] | State [1, 2] is
invalid | Taking action 'down' from state [1, 2] | Moved to state [2, 2] |
Plan so far ['left', 'left', 'down'] | Exploring action 'left' to move to
state [2, 1] | State [2, 1] is wvalid | Exploring action 'right' to move to
state [2, 3] | State [2, 3] is invalid | Exploring action 'up' to move to
state [1, 2] | State [1, 2] is invalid | Exploring action 'down' to move to
state [3, 2] | State [3, 2] is valid | Taking action 'left' from state [0, 3]
| Moved to state [0, 2] | Plan so far ['left', 'up', 'left'] | Exploring
action 'left' to move to state [0, 1] | State [0, 1] is valid | Exploring
action 'right' to move to state [0, 3] | State [0, 3] is invalid | Exploring
action 'up' to move to state [-1, 2] | State [-1, 2] is invalid | Exploring
action 'down' to move to state [1, 2] | State [1, 2] is invalid | Taking
action 'left' from state [0, 2] | Moved to state [0, 1] | Plan so far ['left',
'left', 'up', 'left'] | Exploring action 'left' to move to state [0, 0] |
State [0, 0] is invalid | Exploring action 'right' to move to state [0, 2] |
State [0, 2] is invalid | Exploring action 'up' to move to state [-1, 1] |
State [-1, 1] is invalid | Exploring action 'down' to move to state [1, 1] |
State [1, 1] is invalid | Taking action 'left' from state [2, 2] | Moved to
state [2, 1] | Plan so far ['left', 'left', 'down', 'left'] | Exploring action
'left' to move to state [2, 0] | State [2, 0] is invalid | Exploring action
'right' to move to state [2, 2] | State [2, 2] is invalid | Exploring action
'up' to move to state [1, 1] | State [1, 1] is invalid | Exploring action
'down' to move to state [3, 1] | State [3, 1] is valid | Taking action 'down'
from state [2, 2] | Moved to state [3, 2] | Plan so far ['left',6 'left',

\\\\:down’, 'down'] | Goal state [3, 2] reached! 4///
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System-2 Output (DFS) for Maze (#States-Explored=29)

Plan so far
3] is wvalid

Moved to state

[1, 41 |
state [1, 3] | State [1,
| Moved to state [1, 3] |
move to state [1, 2] | State [1,
[1, 3] | Moved to state [1, 2] |
action 'left' to move to state [1,
action 'right' to move to state [1,
action 'up' to move to state [0, 2]
'up' from state [1, 2] | Moved to st
'up'] | Exploring action 'left'
valid | Taking action 'left' from st
so far ['left', 'left', 'up', 'left'
[0, 0] | State [0, 0] is inval
[0, 2] | State [0, 2]
[-1, 1] | State [-1,
[1, 1] | State [1, 1]
[0, 3] | State [0, 3]
| Moved to state [0, 3] |
Exploring action 'left'
Exploring action 'right'
Exploring action 'up' to move to sta
Exploring action 'down'
Exploring action 'up' to move to sta
Exploring action 'down'
Exploring action 'down'
Taking action 'down' from state
['left', 'left', 'down'] |
State [2, 1] is wvalid | Taking actio
state [2, 1] | Plan so far ['left',

'left' to move to state [2, 0] |
'right' to move to state [2, 2] |
'up' to move to state [1, 1] |
'down' to move to state [3, 1]

from state [2, 1] | Moved to state
'down', 'left', 'down'] |
State [3, 0] is valid |
state [3, 0] | Plan so far
Exploring action 'left'
Exploring action 'right'
Exploring action 'up'
Exploring action 'down'
Exploring action 'right'
Taking action 'right'

2]

1

state
state
state
state
state

is inval
1]
is inval

(1,

[

['left"',

from state [3,

is valid
Plan so far ['left',

State
State
State [1,
State

Taking action
'left',
to move to state [3,
to move to state
to move to state

(1
| T

Plan so far ['left'] |
is valid
Plan so far

11
31 |
| St
ate

to move to state

ate
11
id |
id |

is invalid

id |
| T

to move to state [O,
to move to state

te [

to move to state [1,

te [

to move to state [1,
to move to state [2,

2] |

Exploring action

n 'l

"left?,

[

[

3, 1

Exploring action

'l

[

to move to state [4,
to move to state

1]

Exploring action 'left' to move to
aking action 'left' from state [1,
Exploring action 'left' to
| Taking action 'left' from state
['left', 'left'] | Exploring

[1, 1] is invalid | Exploring
[1, 3] is invalid | Exploring
2] is wvalid | Taking action
Plan so far ['left', 'left',
[0, 1] | State [0, 1] is
Moved to state [0, 1] | Plan
'left' to move to
Exploring action 'right' to move to
Exploring action 'up' to move to

| Exploring action 'down' to move to
Exploring action 'right' to move to
aking action 'right' from state [O,
'left', 'up', 'right']l |
2] | State [O, is invalid |
[0, 4] | State [O, is invalid |
-1, 3] | State [-1, invalid
3] | State [1, invalid
2] | State [-1, invalid
2] | State [1, invalid
2] | State [2, valid |
Moved to state [2, | Plan so far
'left' to move to state [2, 1] |
from state [2, 2] | Moved to
'down', 'left'] | Exploring action
0] is invalid | Exploring action

2] is invalid | Exploring action
is invalid | Exploring action
1] is wvalid | Taking action 'down'
Plan so far ['left',K 'left',
'left' to move to state [3, 0] |
eft' from state [3, 1] | Moved to
'down', 'left', 'down', 'left'] |
-1] | State [3, -1] is invalid |
[3, 1] | State [3, 1] is invalid |
0] | State [2, 0] is invalid |
0] | State [4, 0] is invalid |
[3, 2] | State [3, 2] is valid |
| Moved to state [3, 2] |

4]

State
State
(o,
2] |

ate
(o,

[0, 21 |
Exploring action

2]

is
is
is
is
is

I
|
-1, I
|

eft’
2/

[2,

1]

3,
11

2,

Plan so far

\\\jfleft', 'left', 'down', 'left', 'down', 'right'] | Goal state [3, 2] reached!
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/ ( Controller Prompt for Maze )
You are in a 2d maze of dimensions 5 and 5 and some of the cells have walls.
The walls are placed in cells [[3, 4], [0, 41, (3, 31, (1, 11, [2, 31, [0, O],
(2, 01, 4, o1, (1, 01, (2, 4]11.

Given a start and a goal state, your task is to first generate a set of
subgoals that can then be solved to generate the optimal plan between the
states. The optimal plan is one that has the minimum number of steps. The list
of permissible actions that you can take at any given cell are ['left',
'right', 'up', 'down’].

\\>Generate the subgoals for generating a plan from [1, 4] to [3, 2].

~

/

/—( Controller Output (Sub-goal Decomposition + Easy / Hard Annotations) for Maze H

The walls between [1, 4] to [3, 2] are at [2, 3], [2, 4], [3, 31, [3, 4] which
are a total of 4 walls. Based on this, the plan should be broken down into 2
sub-goals:

1. Start State: [1, 4] and Goal State: [2, 2]. Planning for this subgoal is
hard and can be solved slow using system 2

2. Start State: [2, 2] and Goal State: [3, 2]. Planning for this subgoal is
easy and can be solved fast using system 1
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( N

( € System-1/ System-2 Prompt for Blocksworld V)

Your task is to generate a plan for a blocksworld problem given an initial state and a
goal state.

The initial state:

The hand is empty.

C is on the table. B is on C. E is on B. E is clear.
D is on the table. A is on D. A is clear.

The goal is:
A is on the table. C is on A. is on C. B is clear.
D is on the table. E is on D. E is clear.

w

~

r

€ System-1 Output for Blocksworld (#States-Explored=6) )

N

Move E from B to table | Move A from D to table | Move E from table to D | Move B from C
to table | Move C from table to A | Move B from table to C

-

( System-2 (A*) Output for Blocksworld (#States-Explored=28) )

~

Moved to state -> Stack 1: [C, B, E], Stack 2: [D, A] | Plan so far [] | Exploring action
Move E from B to A | New state -> Stack 1: [C, B], Stack 2: [D, A, E] | Exploring action
Move E from B to table | New state -> Stack 1: [C, B], Stack 2: [D, A], Stack 3: [E] |
Exploring action Move A from D to table | New state -> Stack 1: [A], Stack 2: [C, B, E],

Stack 3: [D] | Exploring action Move B from C to E | New state -> Invalid | Taking action
Move E from B to table | Moved to state -> Stack 1: [C, B], Stack 2: [D, A], Stack 3: [E]
| Plan so far [Move E from B to table] | Exploring action Move B from C to table | New
state -> Stack 1: [B], Stack 2: [C], Stack 3: [D, A], Stack 4: [E] | Exploring action

Move A from D to table | New state -> Stack 1: [A], Stack 2: [C, B], Stack 3: [D], Stack
4: [E] | Exploring action Move D from table to E | New state -> Invalid | Exploring
action Move A from D to E | New state -> Stack 1: [C, B], Stack 2: [D], Stack 3: [E, A]
Exploring action Move C from table to E | New state -> Invalid | Taking action Move A
from D to table | Moved to state -> Stack 1: [A], Stack 2: [C, B], Stack 3: [D], Stack 4:

[E] | Plan so far [Move E from B to table | Move A from D to table] | Exploring action
Move B from C to E | New state -> Stack 1: [A], Stack 2: [C], Stack 3: [D], Stack 4: [E,
B] | Exploring action Move C from table to D | New state -> Invalid | Exploring action

Move E from table to D | New state -> Stack 1: [A], Stack 2: [C, B], Stack 3: [D, E] |
Exploring action Move B from C to table | New state -> Stack 1: [A], Stack 2: [B], Stack
3: [C], Stack 4: [D], Stack 5: [E] | Exploring action Move C from table to A | New state
-> Invalid | Taking action Move E from table to D | Moved to state -> Stack 1: [A], Stack
2: [C, B], Stack 3: [D, E] | Plan so far [Move E from B to table | Move A from D to table
| Move E from table to D] | Exploring action Move B from C to A | New state -> Stack 1:
[A, B], Stack 2: [C], Stack 3: [D, E] | Exploring action Move B from C to table | New
state -> Stack 1: [A], Stack 2: [B], Stack 3: [C], Stack 4: [D, E] | Exploring action
Move C from table to B | New state -> Invalid | Exploring action Move A from table to B |
New state -> Stack 1: [C, B, A], Stack 2: [D, E] | Exploring action Move C from table to
A | New state -> Invalid | Taking action Move B from C to table | Moved to state -> Stack
1: [A], Stack 2: [B], Stack 3: [C], Stack 4: [D, E] | Plan so far [Move E from B to table
| Move A from D to table | Move E from table to D | Move B from C to table] | Exploring
action Move A from table to B | New state -> Stack 1: [B, A], Stack 2: [C], Stack 3: [D,
E] | Exploring action Move B from table to C | New state -> Stack 1: [A], Stack 2: [C,
B], Stack 3: [D, E] | Exploring action Move D from table to E | New state -> Invalid
Exploring action Move C from table to A | New state -> Stack 1: [A, C], Stack 2: [B],
Stack 3: [D, E] | Exploring action Move D from table to B | New state -> Invalid | Taking
action Move C from table to A | Moved to state -> Stack 1: [A, C], Stack 2: [B], Stack 3:
[D, E] | Plan so far [Move E from B to table | Move A from D to table | Move E from table
to D | Move B from C to table | Move C from table to A] | Exploring action Move C from A
to table | New state -> Stack 1: [A], Stack 2: [B], Stack 3: [C], Stack 4: [D, E] |
Exploring action Move A from table to C | New state -> Invalid | Exploring action Move B

from table to C | New state -> Stack 1: [A, C, B], Stack 2: [D, E] | Exploring action
Move E from D to table | New state -> Stack 1: [A, C], Stack 2: [B], Stack 3: [D], Stack
4: [E] | Taking action Move B from table to C | Moved to state -> Stack 1: [A, C, BI,
Stack 2: [D, E] | Plan so far [Move E from B to table | Move A from D to table | Move E

from table to D | Move B from C to table | Move C from table to A | Move B from table to
C] | Reached goal state!

o

2NN

/
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/ ( Controller Prompt for Blocksworld )

You are given a blocksworld problem and its initial state, and goal state.
Your task is to first generate a set of subgoals that can then be solved to
generate the plan between the states.

The initial state:

The hand is empty.

C is on the table. B is on C. E is on B. E is clear.
D is on the table. A is on D. A is clear.

The goal is:
A is on the table. C is on A. B is on C. B is clear.
\\\ D is on the table. E is on D. E is clear.

/—( Controller Output (Sub-goal Decomposition + Easy / Hard Annotations) for Blocksworld h

The plan should be broken down into 2 sub-goals:

1. Start State -> Stack 1: [C, B, E], Stack 2: [D, A] and Goal State -> Stack
1: [A], Stack 2: [C, B], Stack 3: [D, E].

Planning for this subgoal is hard and can be solved slow using system 2

2. Start State -> Stack 1: [A], Stack 2: [C, B], Stack 3: [D, E] and Goal
State -> Stack 1: [A, C, B], Stack 2: [D, E].
Planning for this subgoal is easy and can be solved fast using system 1

/
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E TABLES CORRESPONDING TO RESULT FIGURES

In the tables below, we report the accuracies corresponding to all the plots in the paper.

Table 3: Comparison of System-1.z Planner (xz = 0.5) with all baselines on Maze Navigation
(corresponding to Fig. 3(a)). The blue rows indicate plan validity obtained by all methods when
#States-Explored is matched to that of System 1.5 with sub-goals. The green rows indicate plan
validity obtained when #States-Explored is maximized. All tables, henceforth, will use the same
color coding.

Plan Validity =~ #States-Explored

System-1 48.7 3.1

System-2 (truncated) 12.2 4.8

System-2 (truncated) 19.7 9.9

System-2 (truncated) 37.2 13.6
System-2 (truncated) 37.2 14.8
System-2 (truncated) 63.7 19.8
System-2 (default) 93.7 24.4
System-1.5 w/o sub-goal (truncated) 335 4.8

System-1.5 w/o sub-goal (truncated) 38.2 9.7

System-1.5 w/o sub-goal (truncated) 50.0 13.4
System-1.5 w/o sub-goal (truncated) 62.2 15.0
System-1.5 w/o sub-goal (default) 79.5 17.4
System-1.5 w/o sub-goal (test-time controlled) 83.7 20.0
System-1.5 (w/o sub-goal) (test-time controlled) 93.7 24.4
System-1.5 w/ sub-goal (truncated) 30.5 4.5

System-1.5 w/ sub-goal (truncated) 56.2 10.0
System-1.5 w/ sub-goal (default) 70.4 13.6
System-1.5 w/ sub-goal (test-time controlled) 82.2 19.9
System-1.5 w/ sub-goal (test-time controlled) 92.2 24.4
System-1.5 w/ sub-goal (test-time controlled) 96.7 27.3

Table 4: Comparison of System-1.z Planner (x = 0.5) with all baselines on Blocksworld (corre-
sponding to Fig. 3(b)).

Plan Validity = #States-Explored

System 1 9.0 4.5
System 2 (truncated) 0.0 9.8
System 2 (truncated) 0.0 19.9
System 2 (truncated) 13.0 29.3
System 2 (truncated) 27.0 38.2
System 2 (default) 28.0 55.5
System-1.5 w/o sub-goal (truncated) 0.0 9.8
System-1.5 w/o sub-goal (truncated) 0.0 19.9
System-1.5 w/o sub-goal (truncated) 13.0 29.3
System-1.5 w/o sub-goal (truncated) 27.0 38.0
System-1.5 w/o sub-goal (default) 28.0 55.1
System-1.5 w/ sub-goal (truncated) 1.5 9.6
System-1.5 w/ sub-goal (truncated) 17.5 20.0
System-1.5 w/ sub-goal (truncated) 25.0 30.0
System-1.5 w/ sub-goal (default) 25.0 38.3
System-1.5 w/ sub-goal (test-time controlled) 26.0 53.5
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Table 5: Comparison of Neuro-symbolic System-1.x Planner (x = 0.5) with all baselines on Maze
Navigation (corresponding to Fig. 4).

Plan Validity = #States-Explored

A" (truncated) 12.5 4.8
A* (truncated) 22.5 9.8
A (truncated) 31.0 11.3
A* (truncated) 42.0 14.5
A™ (truncated) 67.7 19.8
A* (default) 100.0 22.4
System-1.5 w/o sub-goal (truncated) 33.0 4.8
System-1.5 w/o sub-goal (truncated) 40.2 9.8
System-1.5 w/o sub-goal (truncated) 45.7 11.5
System-1.5 w/o sub-goal (truncated) 65.7 14.9
System-1.5 w/o sub-goal (default) 84.2 16.5
System-1.5 w/o sub-goal (test-time controlled) 94.0 20.0
System-1.5 w/o sub-goal (test-time controlled) 100.0 22.4
System-1.5 w/ sub-goal (truncated) 30.5 4.5
System-1.5 w/ sub-goal (truncated) 58.7 10.0
System-1.5 (default) 70.5 11.6
System-1.5 w/ sub-goal (test-time controlled) 76.0 14.8
System-1.5 w/ sub-goal (test-time controlled) 89.7 19.9
System-1.5 w/ sub-goal (test-time controlled) 99.2 23.9

Table 6: Comparison of System-1.x Planner (z = 0.75) with all baselines on Maze Navigation
(corresponding to Fig. 5).

Plan Validity  #States-Explored

System-2 (truncated) 12.2 4.8
System-2 (truncated) 19.7 9.9
System-2 (truncated) 37.2 14.8
System-2 (truncated) 47.0 16.6
System-2 (truncated) 63.7 19.8
System-2 (default) 93.7 24.4
System-1.75 w/o sub-goal (truncated) 24.2 4.6
System-1.75 w/o sub-goal (truncated) 29.2 9.8
System-1.75 w/o sub-goal (truncated) 44.5 14.6
System-1.75 w/o sub-goal (default) 59.7 16.6
System-1.75 w/o sub-goal (default) 86.5 20.3
System-1.75 w/o sub-goal (test-time controlled) 93.7 24.4
System-1.75 w/ sub-goal (truncated) 23.0 4.9
System-1.75 w/ sub-goal (truncated) 38.7 9.6
System-1.75 w/ sub-goal (truncated) 66.7 15.0
System-1.75 w/ sub-goal (default) 75.7 16.6
System-1.75 w/ sub-goal (test-time controlled) 82.0 19.9
System-1.75 w/ sub-goal (test-time controlled) 91.2 24.4
System-1.75 w/ sub-goal (test-time controlled) 96.7 26.8
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Table 7: Comparison of System-1.x Planner (z =0.5 and BFS) with all baselines on Maze Navigation
(corresponding to Fig. 6(a)).

Plan Validity  #States-Explored

System-2 (truncated) 11.7 9.4
System-2 (truncated) 28.0 17.4
System-2 (truncated) 28.0 199
System-2 (truncated) 56.2 29.7
System-2 (default) 91.2 39.8
System-1.5 w/o sub-goal (truncated) 35.2 9.6
System-1.5 w/o sub-goal (truncated) 45.0 17.2
System-1.5 w/o sub-goal (truncated) 52.5 199
System-1.5 w/o sub-goal (default) 772 26.9
System-1.5 w/o sub-goal (test-time controlled) 81.2 30.0
System-1.5 w/o sub-goal (test-time controlled) 91.2 39.8
System-1.5 w/ sub-goal (truncated) 43.0 9.8
System-1.5 w/ sub-goal (default) 67.0 17.4
System-1.5 w/ sub-goal (test-time controlled) 78.5 29.7
System-1.5 w/ sub-goal (test-time controlled) 86.5 39.9
System-1.5 w/ sub-goal (test-time controlled) 91.7 45.4

Table 8: Comparison of System-1.x Planner (z =0.5 and DFS) with all baselines on Maze Navigation
(corresponding to Fig. 6(b)).

Plan Validity = Avg States

System-2 (truncated) 11.7 4.7
System-2 (truncated) 23.2 9.7
System-2 (truncated) 42.0 14.5
System-2 (truncated) 69.7 19.8
System-2 (truncated) 81.2 25.0
System-2 (default) 83.5 304
System-1.5 w/o sub-goal (truncated) 36.0 4.7
System-1.5 w/o sub-goal (truncated) 50.7 9.8
System-1.5 w/o sub-goal (truncated) 73.2 15.0
System-1.5 w/o sub-goal (default) 74.0 18.7
System-1.5 w/o sub-goal (test-time controlled) 76.3 19.8
System-1.5 w/o sub-goal (test-time controlled) 81.2 25.0
System-1.5 w/o sub-goal (test-time controlled) 83.5 30.4
System-1.5 (truncated) 40.2 4.5
System-1.5 (default) 62.3 10.0
System-1.5 (test-time controlled) 76.3 14.9
System-1.5 (test-time controlled) 79.7 20.0
System-1.5 (test-time controlled) 82.7 33.6
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Table 9: Comparison of System-1.z Planner with and without sliding window decomposition
(corresponding to Fig. 7).

Plan Validity = #States-Explored

System-1.5 w/o Sliding Window (truncated) 27.5 4.6
System-1.5 w/o Sliding Window (truncated) 45.2 10.0
System-1.5 w/o Sliding Window (default) 67.2 17.0
System-1.5 w/o Sliding Window (test-time controlled) 72.1 20.0
System-1.5 w/o Sliding Window (test-time controlled) 77.2 25.0
System-1.5 w/o Sliding Window (test-time controlled) 83.2 30.0
System-1.5 w/o Sliding Window (test-time controlled) 90.0 353
System-1.5 w/ Sliding Window (truncated) 30.5 4.5
System-1.5 w/ Sliding Window (truncated) 56.2 10.0
System-1.5 w/ Sliding Window (default) 70.4 13.6
System-1.5 w/ Sliding Window (test-time controlled) 82.2 19.9
System-1.5 w/ Sliding Window (test-time controlled) 92.2 24.4
System-1.5 w/ Sliding Window (test-time controlled) 96.7 27.3

Table 10: Comparison of two hardness functions (Manhattan Distance and #Obstacles) for Maze
Navigation (corresponding to Fig. 8).

Plan Validity = #States-Explored

System-1.5 w/o sub-goal (#Obstacles) 335 4.8
System-1.5 w/o sub-goal (#Obstacles) 38.2 9.7
System-1.5 w/o sub-goal (#Obstacles) 50.0 13.4
System-1.5 w/o sub-goal (#Obstacles) 62.2 15.0
System-1.5 w/o sub-goal (#Obstacles) 79.5 17.4
System-1.5 w/o sub-goal (#Obstacles) 83.7 20.0
System-1.5 w/o sub-goal (#Obstacles) 93.7 24.4
System-1.5 w/o sub-goal (Manhattan) 31.7 4.8
System-1.5 w/o sub-goal (Manhattan) 54.5 15.0
System-1.5 w/o sub-goal (Manhattan) 35.2 10.0
System-1.5 w/o sub-goal (Manhattan) 80.0 18.8
System-1.5 w/o sub-goal (Manhattan) 81.5 19.9
System-1.5 w/o sub-goal (Manhattan) 93.7 24.4
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