
Supplementary material

9 Extending to unknown reward function

Let r∗ be the real reward function. Let rθ be a reward function model. Let ηπ(P, r) be the discounted
expected return of π in a MDP whose transition and reward functions are P and r.

Using the triangle inequality, the policy evaluation error is bounded as

|ηπ(P∗, r∗)− ηπ(Pθ, rθ)| ≤ |ηπ(P∗, r∗)− ηπ(Pθ, r∗)|+ |ηπ(Pθ, r∗)− ηπ(Pθ, rθ)|

The first term is bounded as

|ηπ(P∗, r∗)− ηπ(Pθ, r∗)| ≤
γE(s,a)∼dπPθ

[∣∣∑
s′ (P∗(s′|s, a)− Pθ(s′|s, a))V πP∗,r∗(s

′)
∣∣]

1− γ

≤
BE(s,a)∼dπPθ

[||P∗(·|s, a)− Pθ(·|s, a)||1]
√

2

where V πP∗,r∗ is the value function in the real MDP. This derivation is the same with the main paper.
That is, the first equality is the Telescoping lemma [1], and the second inequality holds from Holder’s
inequality and ||V πP∗,r∗ ||∞ ≤

maxs,a |r(s,a)|
1−γ . Thus, the first term is bounded by Equation (4).

The second term is bounded as

|ηπ(Pθ, r∗)− ηπ(Pθ, rθ)| = |E(s,a)∼dπPθ
[r∗(s, a)− rθ(s, a)]|

≤
||dπPθ (s, a)||1||r∗(s, a)− rθ(s, a)||∞

1− γ
=
||r∗(s, a)− rθ(s, a)||∞

1− γ

≤ ||r∗(s, a)||∞ + ||rθ(s, a)||∞
1− γ

=
maxs,a |r∗(s, a)|+ maxs,a |rθ(s, a)|

1− γ
where the first inequality is Holder’s inequality, and the second is the triangle inequality. If the
prediction of a reward model is bounded by some constant, i.e. if maxs,a |rθ(s, a)| < C, then the
second term is bounded by C+maxs,a |r∗(s,a)|

1−γ .

Since the first and secound terms are bounded by Equation (4) and some constant, respectively,
Equation (4) can also be used for reducing the policy evaluation error when the reward function is
unknown. The discussion for policy optimization is the same.

There may be room for improving the upper bound for the second term, while optimizing the improved
upper bound should become more complicated. This paper leaves it a future issue.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



10 Extending LSDG

LSDG(λ) [2] discusses the derivatives of dπP with respect to policy parameters. This paper applies
the idea to the derivatives with respect to model parameters.

10.1 Preliminary

Let pf (a, s′|s) = π(a|s)P(s′|s, a) be the probability of the succeeding action and state. The state
value function satisfies

V πP (s) = E(a,s′)∼pf (·|s) [r(s, a, s′) + γV πP (s′)]

Let ξ be the value function approximation parameter vector. Most temporal difference methods such
as LSTD [3] minimize the mean squared projected Bellman error (MSPBE) [4]. When using linear
function approximation V πP (s) = ξTφ(s), MSPBE is written as

MSPBE = (Aξ − b)TC−1(Aξ − b)

where

A = Es∼dπP ,(a,s′)∼pf (·|s)
[
φ(s)(φ(s)− γφ(s′))T

]
b = Es∼dπP ,(a,s′)∼pf (·|s) [r(s, a, s′)φ(s)]

C = Es∼dπP
[
φ(s)φ(s)T

]
.

For the derivation, see Equation (43) in [5]. MSPBE is minimized by ξ = A−1b, where A and b can
be estimated using LSTD.

10.2 Extension

In a discounted MDP, dπPθ satisfies

dπPθ (s
′) = (1− γ)ρ(s′) + γ

∑
s,a d

π
Pθ (s)π(a|s)Pθ(s′|s, a).

The derivative with respect to the i-th model parameter component θi is

∇θidπPθ (s
′) = ∇θi

[
γ
∑
s,a

dπPθ (s)π(a|s)Pθ(s′|s, a)

]
dπPθ (s

′)∇θi ln dπPθ (s
′) = γ

∑
s,a

dπPθ (s)π(a|s)Pθ(s′|s, a)
[
∇θi ln dπPθ (s) +∇θi lnPθ(s′|s, a)

]
.(18)

Using the Bayes rule, the backward probability of the preceding state and action is

p̃b(s, a|s′) =
p(s′|s, a)p(s, a)

p(s′)
=
Pθ(s′|s, a)dπPθ (s)π(a|s)

dπPθ (s
′)

Using the backward probability, Equation (18) is rewritten as

∇θi ln dπPθ (s
′) = γ

∑
s,a p̃b(s, a|s′)

[
∇θi lnPθ(s′|s, a) +∇θi ln dπPθ (s)

]
For short, using zi(s) = ∇θi ln dπPθ (s) and r′i(s, a, s

′) = γ∇θi lnPθ(s′|s, a), the above equation is
rewritten as

zi(s
′) =

∑
s,a p̃b(s, a|s′) [r′i(s, a, s

′) + γzi(s)] = E(a,s)∼p̃b(·|s′) [r′i(s, a, s
′) + γzi(s)]

This is the value function under the backward Markov chain and the reward function r′i. Note that, in
the backward Markov chain, the state transition is from s′ to s.

When using linear function approximation zi(s) = ξTφ(s), MSPBE for learning zi is

MSPBE’ = (A′ξ − b′)TC ′−1(A′ξ − b′)
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where

A′ = Es′∼d̃πP ,(s,a)∼p̃b(·|s′)
[
φ(s′)(φ(s′)− γφ(s))T

]
b′ = Es′∼d̃πP ,(s,a)∼p̃b(·|s′) [r′i(s, a, s

′)φ(s′)]

C ′ = Es′∼d̃πP
[
φ(s′)φ(s′)T

]
and d̃πPθ (s) is the discounted state distribution under the backward Markov chain. Using d̃πP(s) =
dπP(s) (disconted MDP version of Proposition 1 in [2]), A′ can be rewritten as

A′ =
∑
s,a,s′

d̃πP(s′)p̃b(s, a|s′)φ(s′)(φ(s′)− γφ(s))T

=
∑
s,a,s′

dπP(s′)p̃b(s, a|s′)φ(s′)(φ(s′)− γφ(s))T

=
∑
s,a,s′

dπP(s)pf (a, s′|s)φ(s′)(φ(s′)− γφ(s))T

= Es∼dπP ,(a,s′)∼pf (·|s)
[
φ(s′)(φ(s′)− γφ(s))T

]
Similarly, b′ and C ′ can be rewritten as

b′ = Es∼dπP ,(a,s′)∼pf (·|s) [ri(s
′, a, s)φ(s′)]

C ′ = Es′∼dπP
[
φ(s′)φ(s′)T

]
= C

Note that (A, b) and (A′, b′) have the same form, except that s and s′ are the opposite. This means
that (A′, b′) can be estimated using LSTD(λ), replacing s with s′.

The following equation is derived from
∑
s d

π
Pθ (s) = 1,

0 = ∇θi
∑
s

dπPθ (s) =
∑
s

dπPθ (s)∇θi ln dπPθ (s) =
∑
s

dπPθ (s)zi(s) = Es∼sdπPθ [ξTφ(s)].

This can be seen as a constraint [2]. The violation of the constraint can be measured by ξTDξ, where
D = Es∼sdπPθ [φ(s)]Es∼sdπPθ [φ(s)]T .

Finally, adding the violation penalty to MSPBE for leaning zi, the loss function is

(A′ξ − b′)TC−1(A′ξ − b′) + χξTDξ

where χ is the coefficient for the violation penalty. This can be minimized by

ξ = (A′TC−1A′ + ξD)−1A′TC−1b′.

The extension of LSDG(λ) estimates this equation.
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Figure 1: Pendulum task. (a) simulated future states when using Algorithms 1 (the same figure in
the main paper), and (b) simulated future states when using Algorithms 2, where black crosses are
simulated future states, and colormap show logwπθ (sn, an) for offline data.

11 Pendulum

11.1 Setting

Let x and v be the angle and angular velocity. The state is s = (x, v). This task considers the
bounded state space, x ∈ [−4π, 4π] and v ∈ [−15, 15]. Let u ∈ [−2.5, 2.5] be the underactuated
torque. The transition function is the equation of motion of the pendulum,

v′ = v +
3

m`2
(u+mg` sin(x)− cv) ∆t

x′ = x+ v′∆t

where m = 1, ` = 1, g = 10, c = 0.01, and ∆t = 0.1. The reward function is

r(s, a) = −(1.− exp(−x2))

The target policy is trained using SAC [6] in the environment.

The agent represents Pθ using two layer neural networks with 8 hidden units with tanh activation.
The agent estimates Pθ using the unweighted/weighted likelihood loss. The agent represents cθ
using two-layer neural networks with 16 units with tanh activation. The agent estimates cθ using L2
loss. The agent represents wπθ using two-layer neural networks with 16 units with tanh activation.
The agent estimates wπθ using the logistic regression loss [7]. The agent represents zπθ using linear
function approximation, where the feature vector is φ(s) = (1, x, x2, v, v2). The agent estimates zπθ
using the extension of LSDG(λ) (see Section 10), where λ = 0.9 and χ = 0.1.

11.2 Result of simplified version

Figure 1(b) shows D̂π
Pθ when using Algorithm 2 with α = 1, i.e. the simplified version. Similarly

to Algorithm 1, the simplified version can also capture the stabilization behavior. When using
Algorithm 2, the estimated value is −17.7, which is similar to when using Algorithm 1.
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12 D4RL MuJoCo Benchmark

This paper uses two desktop PCs, with GeForce RTX 2060 SUPER and GeForce RTX 2070 SUPER.

12.1 Setting

This paper implements Algorithm 3 as follows. The main loop of Algorithm 3 is iterated twice.

E-step. The E-step is Algorithm 2, where θ is updated once per E-step. The agent estimates
Pr(s′, r|s, a) instead of P(s′|s, a), to handle the unknown reward function. The structure of
P(s′, r|s, a) is the same as in the previous works [8–10], and only the model size and hyperpa-
rameter values are different. The agent represents Pθ using a probabilistic ensemble of 7 models and
pick the best 5 models, based on the log likelihod loss function weighted with wπθ . Each of the model
in the ensemble is parametrized as seven-layer neural networks with 256 hidden units and with swish
activation. The learning rate is 10−3. The agent represents wπθ using five-layer neural networks with
256 hidden units and with tanh activation, based on the logistic regression loss [7]. The learning rate
is 10−4. The agent represents cπθ using five-layer neural networks with 256 hidden units and with
tanh activation, based on the log linear regression. The learning rate is 5× 10−3. Throughout the
E-step, fitting is terminated by early-stopping with 10 percent of holdout data, and the batch size is
512.

M-step. The discounted factor is γ = 0.995. The penalty coefficient is B′ = 10−2. The agent
improves π using SAC [6], where samples are drawn from D

⋃
D̂πθ . The batch size is 512, where the

numbers of samples of D and D̂πθ are 256 and 256. Policy π is a gaussian policy represented using
three-layer neural networks with 256 hidden units and with relu activation. The learning rate is 10−3.
The entropy regularization coefficient is 0.2. The number of times to perform SAC update per M-step
is 5× 105. This paper implements SAC by modifying the implementation code by [11]. To stabilize
the M-step, the agent terminates a simulation episode when a state or action variable diverges. In
addition, the agent clips a penalized reward so that the absolute value is not more than 10 times the
maximum absolute value of the reward data.

Performance measure. In the M-step, the simulation and real undiscounted returns are evaluated
averaging over 5 episodes per 104 SAC updates, respectively. The figures of the lerning curves of the
second iteration in the main paper show them. The normalized scores in Table 1 are computed using
the last values of the learning curves of real returns, averaging over 5 runs. The ± in Table 1 means
the standard deviation.
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Table 1: Weighted loss function for policy evaluation error on Walker2d-medium-expert dataset
(lower is better).

run α = 0.0 α = 0.1 α = 0.2 α = 0.5 α = 1.0

(a) -59.8 -74.1 -68.6 -59.0 -14.1
(b) -69.3 -75.3 -74.0 -61.3 -34.6
(c) -59.6 -52.0 -80.9 -52.2 -23.2
(d) -64.3 -65.9 -64.7 -55.7 2112.4
(e) -68.0 -67.8 -66.6 -53.8 202.5

12.2 Effect of α

The newly introduced hyperparameter in this paper is α, which interpolates between ERM and
importance-weighted ERM, see Section 5. The purpose of α is to stabilize importance-weighted
ERM in the E-step. The closer the α is to 0, the more stable the model estimation is, while the smaller
the correction for covariate shift is. Below, this papers experimentally shows the effect of α.

Figure 2 shows the learning curves for α = 0, α = 0.1, α = 0.2, α = 0.5, and α = 1, on Walker2d-
medium-expert dataset. The case of α = 1 is poor in most cases. The case of α = 0 obtains bad real
returns in runs (b) and (d). The cases of α = 0.5, α = 0.2, and α = 0.1 are relatively good in terms
of real returns. This result shows that α controls the trade-off between consistency and stability.

Table 1 shows L̂π(θ) for learned policies in Figure 2, namely, the weighted loss functions for policy
evaluation error. The case of α = 1 is poor in all cases. The case of α = 0.5 is also relatively bad.
The case of α = 0.2 is the best for run (c) in terms of L̂π(θ), and it is only the case where both real
and simulated returns are good. The case of α = 0.1 is the best for run (a), (b), and (d) in terms
of L̂π(θ), and it has good real and simulated returns. The case of α = 0 is the best for run (e) in
terms of L̂π(θ), and it has good real and simulated returns in this run. Here, when L̂π(θ) is good, the
results of real and simulated returns also tend to be good.

How to choose α is an important question, as the real retutn is unknown before applying a learned
policy. For policy evaluation, Table 1 suggests that comparing L̂π(θ) gives an insight. For policy
optimization, evaluating the estimate of J(π, θ) may be a more straightforward to policy optimization,
while it also depends on another hyperparameter, B‘, which scales the penalty of policy evaluation
error. Note that B‘ corresponds to the hyperparameter previously introduced in MOPO [10]. Since
evaluating the estimate of J(π, θ) requires choosing α and B′ at the same time, it may be more
complicated. Compared to it, this paper considers that comparing L̂π(θ) is a reasonable choice.
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Figure 2: D4RL MuJoCo Benchmark. 5 runs on Walker2d-medium-expert dataset.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] The

possibility of negative societal impacts is essentially the same with existing offline
MBRL approaches [10], or other automation research. That is, there is still a risk of
deploying a learned policy that may behave unpredictably in high-risk domains. This
paper discusses improving predictive performance, but it does not guarantee guarantee
safety. Much additional work is needed.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The ± in the Table means standard deviation, averaged
over 5 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use D4RL dataset
[? ]. We use a modification of pytorch SAC implementation [11].

(b) Did you mention the license of the assets? [Yes] D4RL datasets are licensed under the
Creative Commons Attribution 4.0 License (CC BY), and D4RL code is licensed under
the Apache 2.0 License [? ]. Pytorch SAC implementation [11] is under MIT License.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
See the zip file of the code.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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