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Figure A.1: Comparison of facial pose distribution of FFHQ dataset and training videos.

Appendix A. Motivation

The videos used for training NeRF-based 3D talking head models typically consist

of long speech videos, where the speaker faces a static camera throughout. This setup

results in minimal pose variation across the entire video, making it difficult to train

a complete NeRF representation from scratch due to insufficient diversity in camera

viewpoints.

To address this limitation, we leverage the learned 3D geometry of EG3D [3],

which is trained on the FFHQ [7] dataset—a large collection of facial images with

diverse pose distributions. In Fig. A.1, we compare the facial pose distributions of the

FFHQ dataset and the training videos (Obama and Lieu) commonly used by NeRF-

based baselines. As shown, the FFHQ dataset exhibits significantly greater pose diver-

sity, covering a wide range of yaw and pitch angles. This broader distribution enables

EG3D to provide robust generative priors, resulting in better image fidelity and geom-

etry reconstruction at unseen poses compared to models trained solely on monocular

videos.

Appendix B. Additional Implementation Details

In this section, we provide more details of the implementation of Talk3D. Our

network requires approximately 8 hours to train and achieves an inference speed of 13
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frames per second. We utilized a single Nvidia RTX 3090 for training and inference

for our experiments.

Appendix B.1. Dataset

To perform audio-driven talking head synthesis, we require a few minutes of speak-

ing portrait video paired with an audio track. Specifically, to compare with the state-of-

the-art method, we directly employ datasets from AD-NeRF [6], comprising person-

centric videos averaging 6,000 frames at 25 fps. Following the training methodology

of previous NeRF-based works [6, 15, 13], we split the video into training and testing

sets.

Appendix B.2. Pre-processing

We follow the same image cropping as VIVE3D [5]. They detect the 6 facial land-

marks from every video frame, using an off-the-shelf detector [2] and perform Gaussian

smoothing on the landmarks along the temporal axis to stabilize the transition of the

cropping area. They additionally detect landmarks on a single reference image gen-

erated from the personalized generator. This reference image serves as an anchor for

every frame to calculate the affine transformation matrices. Using these affine matrices,

we calculate the cropping boundaries for each of the raw images. More specifically,

they utilize a slightly wider cropping boundary compared to EG3D [3] which employs

Deep3DFace [4] for image cropping.

Appendix B.3. Augmenting feature extraction

For the audio feature extraction, we follow RAD-NeRF [13] which employ the pre-

trained Wav2Vec [1] model and further encode with several layers of 1D convolutions.

On the other hand, the augmenting features such as the eye (scalar factor), head ro-

tation angles (3-dimensional vector), and landmarks (6-dimensional vector; obtained

by concatenating the 2D coordinates of three individual landmarks) are comparatively

low-dimensional feature vectors. Therefore, we upsample these augmenting features

using the positional encodings and further encode with several layers of MLP. Each of

the output features is a 64-dimensional feature token and is fed to our cross-attention

network FCA.
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Appendix B.4. Network architecture

Attention network.. Our deltaplane predictor F first encodes the 256-resolution tri-

plane P into 32-resolution feature map E, while its hidden dimension is upscaled from

32 to 256. With given flattened image feature vector e and conditioning tokens tn, our

cross-attention layer predicts the low-resolution feature map Eout
n as:

Eout
n = FCA(e, tn). (B.1)

Given learnable parameters of cross-attention layer wq, wk, wv, the above process can

be divided into the sub-processes as:

Q = ewq, Kn = tnwk, Vn = tnwv, (B.2)

An = softmax(QK⊺
n ), Eout

n = AnVn, (B.3)

where Q, Kn, Vn denote query, key and value representation, and An represents attention

scores. Each of the parameters represents MLP with 1 layer and 64 hidden dimensions.

Super-resolution module.. We replaced the original super-resolution module in EG3D [3]

with GFPGAN [14], which enhances rendering quality by reducing noise or artifacts

in the background. Following the training strategy documented in the main paper, we

fine-tune the pre-trained GFPGAN for a few epochs. For a fair comparison, all quanti-

tative evaluations were measured on the results obtained by using the original EG3D’s

super-resolution module.

Appendix C. Novel-view synthesis and depth information

We demonstrate the robustness of Talk3D by generating images from the extreme

viewpoints, shown in Fig. C.2. We compare our method with the previous NeRF-based

methods [6, 13, 8] visualizing both the generated images and their corresponding depth

maps. Note that, the other NeRF-based methods do not synthesize the background and

therefore lack depth information in that particular area. Furthermore, they frequently

show the head and torso separation due to their separative volumetric representation

for torso rendering. Especially, RAD-NeRF [13] and ER-NeRF [8] employ a 2D de-

formation neural field for torso rendering, thus they are not capable of generating a
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realistic torso geometry. In contrast, our model successfully constructs the entire im-

age as a single NeRF representation, providing depth information for all parts of the

synthesized portrait.
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y, p +30◦, +20◦ +15◦, +10◦ +0◦, +0◦ -15◦, -10◦ -30◦, -20◦

AD-
NeRF

RAD-
NeRF

ER-
NeRF

Talk3D
(Ours)

Figure C.2: Visualization of synthesized portraits and depth map rendered from novel viewpoints.

We show a randomly selected frame from synthesized talking portraits (odd rows) and corresponding depth

information (even rows) using different rendering viewpoints of yaw and pitch angles (y, p) with 15◦, 10◦

intervals.
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Testset A Testset B

Methods Sync↑ LMD↓ AUE↓ Sync↑ LMD↓ AUE↓

Ground Truth 7.850 0 0 6.976 0 0

AD-NeRF 5.670 7.378 4.736 5.076 5.542 3.711

RAD-NeRF 6.532 5.848 4.717 5.472 5.599 3.666

ER-NeRF 6.507 6.181 4.489 5.160 5.374 3.519

Talk3D (Ours) 6.827 5.352 4.693 5.780 4.814 3.132

Table C.1: Quantitative comparison under the cross-driven setting. We extract two audio clips from

the demo of SynObama [12] to drive each method and compare the audio-lips synchronization and lips

movement consistency.

Appendix D. Cross-driven synthesis

The cross-driven setting evaluates model generalization by synthesizing lip move-

ments from entirely unrelated audio tracks not seen during training. We use two distinct

audio clips extracted from SynObama [12] to drive each method, measuring lip-sync

accuracy independent of training data.

As shown in Table 3, Talk3D achieves the highest SyncNet scores and lowest land-

mark distance among NeRF-based methods across both test sets. This demonstrates

superior generalization to novel audio inputs while maintaining precise lip synchro-

nization. The method’s audio-driven deltaplane strategy combined with sync loss opti-

mization enables accurate mapping from unseen phonemes to lip movements.
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Settings Methods Wav2Lip [10] PC-AVS [16] AD-NeRF [6] RAD-NeRF [13] ER-NeRF [8] Talk3D(Ours)

Novel-view

Synthesis

Lip-sync Accuracy − − 2.056 2.411 2.983 3.103

Image Quality − − 0.924 1.417 2.532 3.123

Video Realness − − 1.205 0.834 2.163 2.242

audio-driven

Lip-sync Accuracy 3.455 2.511 2.455 2.636 2.909 3.394

Image Quality 2.623 0.607 3.723 3.650 3.789 3.970

Video Realness 2.868 0.757 2.936 2.991 3.223 3.467

Cross-driven

Lip-sync Accuracy 2.933 1.767 2.867 2.467 2.667 3.301

Image Quality 2.967 0.767 3.733 3.441 3.763 3.798

Video Realness 2.801 0.878 3.233 2.731 3.183 3.267

Table D.2: User study results. The rating is on a scale of 1-5, the higher the better. The top, second-best,

and third-best results are shown in red, orange, and yellow, respectively.

Appendix E. User Study

We present a user study to assess the visual quality of the generated heads. We

invited 31 participants to compare 9 randomly selected video clips from the quanti-

tative evaluation of the main study. We also include results from 2D talking head

research, such as Wav2Lip [10] and PC-AVS [16] Utilizing the mean opinion scores

(MOS) rating protocol, participants first provided ratings for the generated videos of

the novel-view synthesis setting, audio-driven setting and cross-driven setting, each

based on three criteria: (1) lip-sync accuracy; (2) image quality; and (3) video real-

ness. The average scores for each method are presented in Tab. D.2, revealing that

our Talk3D outperforms most of the criteria. These results demonstrate the outstand-

ing visual quality of our method, in light of both facial reconstruction and novel view

synthesis.

Appendix F. Further Analysis

Appendix F.1. Analysis of attention

In Fig. F.3, we visualize the attention map to demonstrate the efficacy of our

attention-based network. The first column is the generated image result, while the rest

of the columns show the attention map of the low-resolution xy-plane(the plane that

is orthogonal to the canonical direction) captured by each of the specific conditioning

tokens. The result shows that each of the conditioning tokens successfully disentangles
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Result Audio Eye Angles Landmarks

Figure F.3: Visualizations of attention maps. Our region attention module successfully captures the relation

between diverse conditioning tokens and spatial regions.

Results

Identity
plane

Delta
plane

Figure F.4: Visualizations of triplanes. We visualize generated image results and their corresponding tri-

planes. Each set of three columns depicts the orthogonal planes of the triplane representation.

the local movements of the low-resolution feature map. Despite the close relationship

between angles and landmarks, they capture different attention maps, since the head ro-

tation angles are closely related to torso movement, while facial landmarks are suitable

for capturing the background motion.

Appendix F.2. Analysis of triplane

Fig. F.4 visualizes the generated image alongside its two corresponding triplanes:

the identity plane and the deltaplane. Each column shows the three orthogonal planes.
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Especially xy-plane(orthogonal to canonical direction) in the 1st and 4th columns high-

lights the facial structure representation within the identity plane. Also, the deltaplane

visualization confirms our method’s ability to precisely manipulate specific regions

such as the lips, eyes, torso, and background.

Appendix F.3. Ablation Study

We also present the ablation study to validate the efficacy of our primary contri-

butions. All ablation studies are conducted under a slightly different setting than the

audio-driven scenario, with the key distinction being the measurement of metrics on

the entire image pixels.

Appendix F.3.1. Use of the sync loss.

Due to the computationally expensive nature of NeRF limits full-image rendering

during training time, prior NeRF-based works [6, 9, 13, 8] solely employ pixel-based

MSE loss and patch-wise LPIPS loss. On the other hand, leveraging the efficient rep-

resentation of EG3D, our model is capable of utilizing full image-based loss functions

such as the sync loss function. In Tab. F.3, we assess the significance of the sync

loss by comparing results without its utilization. While forgoing the sync loss func-

tion marginally enhances reconstruction accuracy, it is essential for generating well-

synchronized lips.

Appendix F.3.2. Feature token selection.

We also investigate the significance of using augmented conditions, such as eye

blink, head rotation, and facial landmarks. In Tab. F.4, we measure the impact of each

feature on image fidelity by turning them on and off in turn. The lower Sync and AUE

scores are caused by the feature entanglement between lip movement and other scene

variations, which degrades lip-sync accuracy. Furthermore, PSNR and SSIM show that

the absence of each token impacts the reconstruction of scene variations such as proper

eye closure or torso movement. We also show detailed visualizations in the appendix.

Appendix F.3.3. Deltaplane predictor design.

We further ablate design choices of deltaplane predictor. Tab. F.5 shows four dif-

ferent design choices, which are predicting w latent vector instead of deltaplane(w/o
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Table F.3: Ablation study on the importance of using the sync loss function.

Method PSNR ↑ LPIPS ↓ LMD ↓ AUE ↓ Sync ↑

Ground Truth - - 0 0 8.605

w/o sync 26.180 0.068 3.149 1.715 6.137

All (Ours) 26.799 0.054 3.227 1.540 6.529

Table F.4: Ablation study on use of each feature token.

Method PSNR ↑ LPIPS ↓ LMD ↓ AUE ↓ Sync ↑

Ground Truth - - 3.322 1.815 8.605

w/o null-vec 25.745 0.064 2.781 1.650 6.267

w/o eye feature 25.862 0.062 3.335 1.598 6.414

w/o landmark 26.195 0.059 3.392 1.719 5.498

w/o angle 26.152 0.060 3.313 1.920 6.508

All (Ours) 26.799 0.054 3.227 1.540 6.529

Table F.5: Ablation study on specific design selections for deltaplane prediction.

Method PSNR ↑ LPIPS ↓ LMD ↓ AUE ↓ Sync ↑

Ground Truth - - 0 0 8.605

w/o deltaplane 19.180 0.187 4.675 2.939 1.192

w/o attention 24.925 0.071 3.485 2.115 4.591

w/o split 24.403 0.096 3.793 2.730 1.024

w/o rollout 25.621 0.064 3.233 1.962 6.438

All (Ours) 26.799 0.054 3.227 1.540 6.529

deltaplane), replacing attention module to affine layer(w/o attention), merging split-

convolution layer into a single convolution(w/o split), and removing roll-out method.

Our model exhibits superior image generation quality compared to other design choices,

highlighting the effectiveness of our model architecture. Notably, the results for the w/o

deltaplane configuration—where facial movements are modeled by traversing EG3D’s

latent space rather than using the delta plane—show significantly weaker lip synchro-

nization and overall reconstruction accuracy. This underscores the importance of di-

rectly predicting the delta plane to capture precise audio-driven dynamics while pre-

serving structural integrity.
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Figure G.5: Facial attribute manipulation results.

Appendix G. Application: Facial Editing

In this section, we introduce an additional feature of our model that distinguishes it

from other NeRF-based methods: facial attribute manipulation. Talk3D is built on pre-

trained EG3D [3] and thus inherits the rich and diverse latent space of the generative

models. The latent space of EG3D enables semantic editing by adding pre-defined style

vectors to the input latent code. We exploit InterFaceGAN [11] to find several style

vectors wedit which represent the semantic editing directions within the EG3D latent
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space. However, naively applying InterFaceGAN to our methodology is not feasible,

since our approach directly predicts the triplane representation instead of a latent code.

So we slightly alter the methodology of InterFaceGAN by simply replacing the identity

triplane with the edited triplane Pedit. Specifically, for given personalized generatorGID

and identity latent code wID, we first construct the edited triplane Pedit as:

Pedit = GID(wID + wedit; θ∗G). (G.1)

Then we replace the identity triplane to generate edited image Iedit
n as:

Iedit
n = R(Pedit + ∆Pn, πn; θ∗R). (G.2)

In Fig. G.5, we visualize the results of editing several attributes, including age and

hair length. The process demonstrates consistent manipulation across attributes like

age and hair length, without disrupting lip synchronization.

Appendix H. Broader Impact

Appendix H.1. Ethical considerations

Talk3D aims to advance applications in digital humans, video production, and

human-computer interaction by generating realistic talking portraits with accurate lip-

audio synchronization. However, the technology’s potential misuse for malicious pur-

poses raises ethical concerns, particularly in distinguishing authentic from synthetic

content. To mitigate misuse, we advocate for measures like digital watermarks, col-

laboration with deepfake detection communities, and regulatory frameworks to foster

responsible use and inform policymakers and the public about associated risks.

Appendix H.2. Limitations and future work

While Talk3D demonstrates strong performance in high-fidelity talking portrait

synthesis by leveraging the generative prior of EG3D [3], it has several limitations

that warrant further exploration:

1. Preprocessing Challenges with GAN Inversion: The reliance on GAN inver-

sion introduces preprocessing challenges, such as the need for precise alignment
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and cropping of input videos. Errors in these steps can lead to visual artifacts,

particularly around the neck and background regions. Future work will explore

more robust inversion techniques that reduce preprocessing dependency.

2. Limited Temporal Consistency: Although Talk3D achieves accurate lip syn-

chronization and disentangles audio-driven dynamics from unrelated variations,

it does not explicitly incorporate temporal enhancement. Adding lightweight

temporal consistency mechanisms could improve smoothness and coherence across

video frames.

3. Background Decoupling: Talk3D inherits EG3D’s limitation of not separating

foreground and background during training or inference. This can result in arti-

facts when handling complex backgrounds. Future efforts will focus on develop-

ing methods to decouple background dynamics while maintaining computational

efficiency.

By addressing these limitations, we aim to improve Talk3D’s adaptability and ensure

consistent performance across diverse datasets, including those with varying visual

styles, complex backgrounds, and dynamic temporal requirements.
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