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Here we provide further details about biologically relevant solutions for a spiking neural network
with efficient coding. The analytical derivation of the spiking neural network is split in three parts,

1. Definitions and analytical derivations of the loss function.

2. Analytical derivation of the temporal dynamic of the membrane potentials.

3. Expressing the efficient spiking network as a generalized leaky integrate-and-fire neuron model.

Part 1 of the derivation follows closely previous works of efficient coding with spikes (1; 5),
however, with important conceptual differences. The first part of the derivation of our framework
therefore differs from the previous work by imposing the E-I network architecture. We summarize
the first part of the derivation in the section 1. The second step of the derivation deviates in several
ways from the one in (1), and we provide an overview of it in section 2. In section 3, we examine
derived expression of membrane currents about their biological plausibility and express the network
as a generalized leaky integrate-and-fire network model. In last section (section 4) we present and
comment on alternative solutions to the ones described in section 3.
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1 From the loss function to the membrane potentials

In (1), a recurrently connected spiking network is developed from a single loss function of the form:

L(t) =

M∑
m=1

(xm(t)− x̂m(t))2 + ν

N∑
i=1

ri(t) + µ

N∑
i=1

r2i (t) (1)

with ν, µ > 0 and where xm(t), x̂m(t) are the signal and the estimate of the m−th feature of the
stimulus, respectively, and ri(t) is the low-pass filtered spike train of the neuron i.

In the present work, we introduced two loss functions, one for the excitatory (E) and one for
the inhibitory (I) neurons, which allowed us to define biologically plausible membrane equations
for E and I neurons. We consider a sensory stimulus with M independent features, encoded by NE

excitatory (E) and NI inhibitory (I) neurons. We define the loss functions related to the activity
of E and I neurons as follows:

LE(t) =
M∑

m=1

(xm(t)− x̂E
m(t))2 + µE

NE∑
i=1

(rEi (t))
2 (2a)

LI(t) =

M∑
m=1

(x̂E
m(t)− x̂I

m(t))2 + µI

NI∑
i=1

(rIi (t))
2, (2b)

with µE , µI > 0 and where x̂E
m(t) (x̂I

m(t)) is the estimate of the desired signal xm(t), formed by
the population read-out of the spiking activity of E (I) neurons. The variable ryi (t) is the low-pass
filtered spike train of neuron i,

ṙyi (t) = −αy
i r

y
i (t) + fy

i (t), y ∈ {E, I} (3)

with αy
i > 0 ∀i the inverse time constant of the single neuron read-out, (αy

i )
−1 = τ r,yi . Note that

ryi (t) is proportional to the instantaneous firing rate of the neuron i.
We write definitions for the signal x(t) = [x1(1), . . . , xM (t)]⊺ and the estimates x̂y(t) = [xy

1(t), . . . , x
y
M (t)]⊺, y ∈

{E, I}, as follows:

ẋ(t) = Ax(t) + s(t) (4a)

˙̂xE(t) = −λEx̂E(t) +WEfE(t) (4b)

˙̂xI(t) = −λI x̂I(t) +WIf I(t) (4c)

where A ∈ RMxM is the mixing matrix of the features of sensory stimuli s(t) = [s1(t), . . . , sM (t)]⊺.
Scalars λE , λI > 0 are the inverse time constants of the population read-out of E and I neurons,
respectively, with (λy)

−1 = τy. Vector of spike trains, fy(t) = [fy
1 (t), . . . , f

y
Ny

(t)]⊺, assembles spike

trains across excitatory (y = E) and inhibitory (y = I) neurons, where the spike train of the neuron
i is defined as the sum of Dirac delta distributions, fy

i (t) =
∑

k δ(t− tki,y), with tki,y the k−th spike
time of neuron i.

Every neuron is assigned a decoding vector, wy
i = [wy

1i, . . . , w
y
Mi]

⊺, as m−th element of the
decoding vector relates the spike train of the neuron i to the m−th dimension of the estimate x̂y

m(t).
The weighting matrix Wy ∈ RMxNy assembles decoding vectors across neurons, Wy = [wy

1, . . . ,w
y
N ].
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We also gather the low-pass filtered spike trains across neurons, ry(t) = [ry1(t), . . . , r
y
Ny

]⊺, and
express their definition in vector notation:

ṙE(t) = −Λr
ErE(t) + fE(t)

ṙI(t) = −Λr
IrI(t) + f I(t)

(5)

with Λr
y = diag(αy) a square diagonal matrix with diagonal αy = [αy

1 , . . . , α
y
Ny

]⊺. Note that the
number of features encoded by the network, M , determines the dimensionality of the desired signal
x(t) and of the estimates x̂E(t) and x̂I(t). The number of neurons Ny is typically larger than the
number of features M .

Similar to refence (1), we assume that a spike of the neuron i at time t will be fired only if this
minimizes the loss function. Additionally, we assume that in a biological network, the condition on
spiking is subjected to noise. It is unlikely that biological circuits could implement spiking as an
entirely noiseless process. The condition to have a spike in the neuron i of cell type y is formulated
as:

Ly

(
t+|[fy

i (t
+) = 1] + ηyi (t

+)
)
< Ly

(
t−|[fy

i (t
−) = 0]

)
, (6)

where ηyi (t
+) = σy

i ξ
y
i (t) models the noise at threshold crossing. The noise at threshold crossing has

intensity σy
i while ξyi (t) is a Gaussian random process with zero mean and unit standard deviation,

ξyi (t) ∼ N (0, 1), with ξyi (t) independent and identically distributed over time, across neurons and
across the two cell types.

Taking into account the effect of a spike on the estimates (eq. 4b-4c) and on the low-pass filtered
spike trains (eq. 3) and applying those in the condition on spiking (eq. 6), we arrive to the following
condition for the spiking neuron i:

w⊺
E (x(t)− x̂E(t))− µEr

E
i (t) >

1

2

(
∥wE

i ∥22 + µE

)
+ σE

i ξ
E
i (t)

w⊺
I (x̂E(t)− x̂I(t))− µIr

I
i (t) >

1

2

(
∥wI

i ∥22 + µI

)
+ σI

i ξ
I
i (t)

(7)

with ∥wy
i ∥22 =

∑M
m=1(w

y
mi)

2 the squared length of decoding vector of the neuron i. As in (2; 1), we
interpret the left-hand side of eq. 7 as the membrane potential of neuron i and the right-hand side
as the firing threshold,

uE
i (t) ≡ w⊺

E (x(t)− x̂E(t))− µEr
E
i (t)

uI
i (t) ≡ w⊺

I (x̂E(t)− x̂I(t))− µIr
I
i (t)

ϑy
i ≡ 1

2

(
∥wI

i ∥22 + µy

)
+ σy

1ξ
y
1 (t), y ∈ {E, I}.

(8)

Note that the firing threshold of the neuron i is proportional to the squared length of the decoding
vector, ||wy

i ||22 =
∑

m(wy
mi)

2, and the constant of the regularizer µy (eq. 8). The vector of the
membrane potentials for NE excitatory and NI inhibitory neurons, can now be written in vector
notation as follows:

uE(t) = W ⊺
E (x(t)− x̂E(t))− µErE(t)

uI(t) = W ⊺
I (x̂E(t)− x̂I(t))− µIrI(t).

(9)

The membrane potentials uy(t) are thus given by the projection of the coding error on the matrix
of decoding weights, and in addition depend on the spiking frequency of the local neuron (eq. 9).
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2 Dynamics of the membrane potential

The second part consists in calculating the difference equation for membrane potentials. To obtain
a difference equation, we take derivatives with respect to time of uE(t) and uI(t),

u̇E(t) = W ⊺
E

(
ẋ(t)− ˙̂xE(t)

)
− µE ṙE(t)

u̇I(t) = W ⊺
I

(
˙̂xE(t)− ˙̂xI(t)

)
− µI ṙI(t).

(10)

In eq. (10) we use definitions of the temporal derivatives of the signal (eq. 4a), the estimate by E
neurons (eq. 4b), the estimate by I neurons (eq. 4c), and the definition of low-pass filtered spike
trains (eq. 3). Without loss of generality, we also use the following substitutions:

A = B − λEI
MxM (11a)

∆r
E = λEI

[NExNE ] − Λr
E (11b)

∆r
I = λII

[NIxNI ] − Λr
I (11c)

where I is an identity matrix, and ∆r
y ∈ RNyxNy are square diagonal matrices with diagonal elements

δr,yi = λy−αy
i , for i = 1, . . . , Ny. Diagonal elements of ∆r

E and ∆r
I therefore evaluate the difference

of the time constants of the population read-out (eq. 4b-4c) and the single neuron read-out (eq. 5)
in E and I neurons, respectively. Using substitutions in eq. (11a)-11c, the exact solutions for the
time-derivative of the membrane potentials are:

u̇E(t) = −λEuE(t) + W ⊺
Es(t) − W ⊺

EWEfE(t) + W ⊺
EBx(t) − µE∆

r
ErE(t) − µEfE(t) (12a)

u̇I(t) = −λIuI(t) +W ⊺
I WEfE(t) −W ⊺

I WIf I(t) + δIW
⊺
I Bx̂E(t) − µI∆

r
IrI(t) − µIf I(t) (12b)

with δI = λI−λE . Right-hand side of eqs. 12a-12b comprise a term proportional to the leak current,
synaptic termsW ⊺

y Wzfz(t) for y, z ∈ {E, I}, terms involving the signal x(t) and the estimate x̂E(t),
terms with local currents with slower dynamics, µy∆

r
yry(t), and local terms with faster dynamics

µyfy(t). Excitatory neurons in addition have a term proportional to the feedforward current,
W ⊺

Es(t). Eqs. 12a-12b do not yet express a biologically plausible membrane equation, and several
of the terms have to be constrained in order to obtain a framework that is consistent with know
properties of biological networks.

3 Efficient spiking network as a generalized leaky integrate-
and-fire neuron model.

The following section considers biologically plausible and computationally efficient solutions derived
from eqs. 12a-12b. We examine the terms one by one, and express a biologically plausible solution
in the form of an E-I network of generalized leaky integrate-and-fire neurons.

Leak current The terms −λyuy(t) for y ∈ {E, I} define the leak current in E and I cell type. In
neuron i of cell type y ∈ {E, I}, the leak current is:

I leak y
i ∝ −λyu

y
i (t) = − 1

τy
uy
i (t), y ∈ {E, I} (13)
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with τy = (λy)
−1 the membrane time constant of E (y = E) and I (y = I) neurons. Leak currents

in eq. (13) result from absorbing terms that define the membrane potential, as in eq. (9), and
are, contrary to the procedure in (1), calculated without approximations. In the E cell type, in
particular, inserting the eq. (11a) in eq. (4a), we get

Ax(t) = Bx(t)− λEI
MxMx(t). (14)

The leak current in the E cell type (eq. 13 with y = E) absorbs, among others, the term−λEI
MxMx(t),

while the remaining term, Bx(t), is part of a synaptic current that is discussed further on. Similar
leak term has been obtained in a previous work on efficient spiking networks (5), where the leak
also emerged from analytical treatment of the loss function. In a previous work (5), the same leak
current has been analytically derived in a simplified network with diagonal matrix A = −λEI

MxM ,
where it has also been assumed that the time constant of the signal x(t) is equivalent to the time
constant of the neural membrane τ .

Feedforward current The term W ⊺
Es(t) in the E cell type (eq. 12a) defines a feedforward current

and has been proposed in previous works (1; 2). The feedforward current to the neuron i is
proportional to the sum of feedforward inputs sm(t), weighted by decoding weights of the neuron,

Iffi (t) ∝ (wE
i )

⊺s(t) =

M∑
m=1

wE
mism(t). (15)

In case we assume the variables sm(t), for m = 1 . . . ,M , to correspond to M features of an external
stimulus that the network is receptive to (i.e., sensory features of an image such as the orientation,
the spatial frequency, the color, etc.), the eq. (15) is a plausible expression of the feedforward
current. This is also the interpretation that we follow in the main paper.

Fast synaptic currents In eqs. (12a)-(12b), terms of the formW ⊺
y Wzfz(t) with {yz} ∈ {EE, IE, II}

define fast synaptic interactions between E-to-E, E-to-I and I-to-I neurons. We write the absolute
value of fast synaptic currents at a postsynaptic neuron i as the sum of presynaptic inputs as
follows:

|Ĩyzi (t)| ∝
Nz∑
j=1

(wy
i )

⊺wz
jf

z
j (t), {yz} ∈ {IE, II, EE}, (16)

with wy
i the decoding vector of the postsynaptic neuron, and wz

j , f
z
j (t) the decoding vector and the

spike train of the presynaptic neuron, respectively. These currents are in general not biologically
plausible and have to be constrained. The sign of the synaptic interaction from the presynaptic
neuron j of cell type z to the postsynaptic neuron i of cell type y depends on the similarity of
decoding vectors between the presynaptic and the postsynaptic neuron:

(wy
i )

⊺wz
jf

z
j (t) > 0 if (wy

i )
⊺wz

j > 0

(wy
i )

⊺wz
jf

z
j (t) < 0 if (wy

i )
⊺wz

j < 0.
(17)

If the two neurons have similar decoding vectors, dot product of their decoding vectors is positive,
while neuronal pairs with dissimilar decoding vectors have a negative dot product of their decoding
vectors. Irrespectively of the sign in front of the synaptic current (see eq. 12a-12b), therefore, the

5



same presynaptic neuron j sends positive (excitatory) and negative (inhibitory) synaptic currents
to other neurons, depending on the similarity of decoding vectors of the presynaptic and the post-
synaptic neuron. This is inconsistent with Dale’s law that constrains a particular neuron to only
send either excitatory or inhibitory currents to the postsynaptic neuron, but not both. A simple
solution that enforces Dale’s law consists in removing connections between neurons with dissimilar
selectivity (e.g., neuronal pairs with negative dot product of weight vectors; see the second line in
eq. 17). We get:

I fast IE
i (t) ∝

NE∑
j=1

CIE
ij fE

j (t), I fast II
i (t) ∝ −

NI∑
j=1
j ̸=i

CII
ij f

I
j (t), I fast EE

i (t) ∝ −
NE∑
j=1

CEE
ij fE

j (t),

(18)

with Cyz, {yz} ∈ {IE, II, EE} the connectivity matrix between the presynaptic population z and
the postsynaptic population y,

Cyz
ij =

{
(wy

i )
⊺wz

j , if (wy
i )

⊺wz
j > 0

0 otherwise.
(19)

Currents received by I neurons, I fast IE
i (t) and I fast II

i (t), as prescribed by eqs. 18-19, obey Dale’s
law, while while the current I fast EE

i (t) is inconsistent with Dale’s law. Elements of the matrix Cyz

in eq. 19 are always positive and the sign of the synaptic current is given by the sign in front of the
synaptic term in eq. 18. In currents received by I neurons, we get a positive (excitatory) current
originating from E neurons (IIEi (t)), and a negative (inhibitory) current originating from I neurons
(IIIi (t)), which is consistent with Dale’s law. The current I fast EE

i (t), on the contrary, originate
from E neurons, but is negative (inhibitory). Since in biological networks, E neurons cannot send
inhibitory currents, we make the following replacement: −W ⊺

EWEfE(t) ≈ −W ⊺
EWIf I(t), and get

the following fast synaptic currents:

I fast IE
i (t) ∝

NE∑
j=1

CIE
ij fE

j (t), I fast II
i (t) ∝ −

NI∑
j=1
j ̸=i

CII
ij f

I
j (t), I fast EI

i (t) ∝ −
NI∑
j=1

CEI
ij f I

j (t),

(20)
with the matrix of fast synaptic connections as in eq. 19. The current I fast EI

i (t) is now an inhibitory
synaptic current and it originates from I neurons (right-most term in eq. 20), thus contributing fast
inhibition to E neurons that is consistent with Dale’s law.

Synaptic currents with kinetics of low-pass filtered spikes Next, we address synaptic terms
W ⊺

EBx(t) in the E cell type and δIW
⊺
I Bx̂E(t) in the I cell type (see eqs. 12a-12b). These terms will

give synaptic currents with kinetics of low-pass filtered spikes (see eqs. 4a and 4b), thus describing
synaptic transmission with slower dynamics.

In the E cell type (eq. 12a), the term W ⊺
EBx(t) contains the signal x(t), a variable that does

not by itself define a biologically plausible current to single neurons. By construction of the loss
function of E neurons (eq. 2a), the signal x(t) is approximated by the E estimate x̂E(t), allowing
us to make the substitution x(t) ≈ x̂E(t). Using the definition of the E estimate (eq. 4b), we get
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the following E-to-E synaptic current to the postsynaptic neuron i:

İEE
i (t) ∝ − 1

τ synE

IEE
i (t) +

NE∑
j=1
j ̸=i

DEE
ij fE

j (t), τ synE = τE

DEE
ij =

{
(wE

i )
⊺BwE

j , if (wE
i )

⊺wE
j > 0, B positive semi-def.

0 otherwise.

(21)

To ensure that synaptic interactions are consistently excitatory, we only allowed connections be-
tween neurons with similar selectivity and constrained the matrix B = (bmn); m,n = 1, . . . ,M , to
be positive semi-definite.

In the I cell type in eq. (12b), we have the term δIW
⊺
I Bx̂E(t) with δI = λI−λE and λy = (τy)

−1

for y ∈ {E, I}. We again use the definition of the E estimate (eq. 4b), and get the following E-to-I
synaptic current in I neurons:

İslowIE
i (t) ∝ − 1

τ synE

Islow IE
i (t) + (

1

τI
− 1

τE
)

NE∑
j=1

DIE
ij fE

j (t), τI < τE ,

DIE
ij =

{
(wI

i )
⊺BwE

j , if (wI
i )

⊺wE
j > 0, B positive semi-def.

0 otherwise

(22)

Since E-to-I currents originate from E neurons, they have to be excitatory. To ensure that E-to-I
synapses are consistently excitatory (and taking into account that the matrixB has been constrained
to be positive semi-definite in eq. 21), we get the following constraint on time constants: τI < τE ,
constraining the membrane time constant in I neurons to be faster than in E neurons. In summary,
the strength of slower synaptic currents is proportional to the similarity of decoding vectors of
the presynaptic and the postsynaptic neuron, similarly as with fast synaptic currents (eq. 20).
Moreover, slower synaptic currents in addition depend on the matrix B (eqs. 21-22).

We note that E-to-E synaptic currents in eq. 21 as well as E-to-I synaptic currents in eq. 22
have kinetics of low-pass filtered spike trains of excitatory presynaptic neurons. Defining a low-pass
filtered spike train with synaptic time constant τ synE , we can simplify the notation and write these
synaptic currents as follows:

IEE
i (t) ∝

NE∑
j=1
j ̸=i

DEE
ij zEj (t), τ synE = τE

Islow IE
i (t) ∝ (

1

τI
− 1

τE
)

NE∑
j=1

DIE
ij zEj (t), τI < τE ,

żEi (t) = − 1

τ synE

zEi (t) + fE
i (t),

(23)

with the matrix DEE and DIE as in eqs. 21-22.

Local currents The terms −µy∆
r
yry(t) in eq. 12a-12b define local, spike-triggered currents with

dynamics of the low-pass filtered spike train ryi (t). We defined ∆r
y as a diagonal matrix with i−th
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diagonal element (∆r
y)ii = λy − αy

i (eq. 5). Using that λy = (τy)
−1 and αy

i = (τ r,yi )−1 are inverse
time constants, we can write the local current in neuron i as:

I local yi (t) ∝ −µy

(
1

τy
− 1

τ r,yi

)
ryi (t), y ∈ {E, I}. (24)

Using the definition of the low-pass filtered spike train ryi (t) in eq. 3, we can rewrite eq. 24 as leaky
integration of spike trains fy

i (t):

İ local yi (t) ∝ − 1

τ r,yi

I local yi (t)− µy

(
1

τy
− 1

τ r,yi

)
fy
i (t), y ∈ {E, I}. (25)

Local currents as in eq. (25) are biologically plausible, however, different solutions are obtained
depending on the relation of time constants between the population read-out τy and the single
neuron read-out τ r,yi . The regularizer µy is non-negative by definition (see eqs.2a-2b) and does not
influence the sign of the local current in eq. (25). If we constrains the time constant of the single
neuron read-out to be longer than the time constant of the population read-out: τ r,yi > τy, current
in eq. 25 is negative (hyperpolarizing), and we interpret is as spike-triggered adaptation. If, on the
contrary, we have the following relation of inverse time constants: τ r,yi < τy, the local current in
eq. 25 is positive (depolarizing), and we interpret it as spike-triggered facilitation. In the special
case when the two time constants are equal, τ r,yi = τy, the local current vanishes. Note that this
special case has been assumed in previous works (2; 1; 5; 4; 3), while we here developed a more
general solution. Note that the kinetics as well as the strength of local currents is heterogeneous
across neurons due to the heterogeneity of the time constant τ r,yi across neurons (see eq. 25).

Reset current The last terms on the right-hand side of eq. 12a-12b is of the following form:
−µyfy(t), and defines resetting of the local neuron after a spike. The reset current depends on the
constant of the quadratic regularizer µy:

Ireset E
i (t) = −µEf

E
i (t)

Ireset I
i (t) = −(µI + CII

ii )f
E
i (t)

(26)

and in I neurons, we also have the contribution of the negative self-connection CII
ii with CII the

matrix of recurrent inhibitory connections as in eq. 19. Since the regularizer µy is by definition
positive, the reset current in eq. 26 is always a negative (hyperpolarizing) current, which ensures its
biological plausibility as a current that resets the membrane potential after the neuron has reached
the firing threshold.

Spike-triggered rebound current In the definition of the recurrent E-to-E synaptic current
(eq. 23), we omitted the self-connection, since a self-connection is not a synaptic current. The
self connection is activated by the spike of the local neuron and has the dynamics of the low-pass
filtered spike train. We interpret this contribution as the local rebound current:

İreboundi (t) = − 1

τh
Ireboundi (t) +DEE

ii fE
i (t), τh = τE

DEE
ii = (wE

i )
⊺BwE

i , B positive semi-def.

(27)
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Rebound current is always a positive (depolarizing) current, since the coefficient DEE
ii is given

by the product of the decoding vector of the spiking neuron, wE
i , with the positive semi-definite

matrix B. Immediately after a spike of the neuron i, the neuron is strongly hyperpolarized by the
reset current (eq. 26). Hence, the rebound current in eq. 27 activates when the neuron is strongly
hyperpolarized and counteracts the strong hyperpolarization with a depolarizing rebound current
that brings the membrane potential towards the firing threshold.

Integrate-and-fire formulation Finally, we gather results and express the efficient spiking net-
work as an E-I network of generalized LIF neurons. We use the fact that the activation of the
reset current is instantaneous (eq. 26) and creates a jump in the membrane potential as the neuron
reaches the threshold. The jump in the membrane potential corresponds to the amplitude of the
reset current, and the dynamics of E and I neurons can be expressed as a generalized LIF neuron
model:

τE V̇
E
i (t) = −V E

i (t) + Iffi (t) + IEI
i (t) + IEE

i (t) + I local Ei (t) + Ireboundi (t)

τI V̇
I
i (t) = −V I

i (t) + IIEi (t) + IIIi (t) + I local Ii (t)

if V y
i (t

−) ≥ ϑy
i (t

−) → V y
i (t

+) = V reset y
i , y ∈ {E, I},

(28a)

The firing thresholds and resets are proportional to the regularizer µy and the squared length of
the decoding vector ||wy

i ||22:

ϑy
I (t) =

1

2
(µy + ||wy

i ||
2
2 + σy

i ξ
y
i (t), y ∈ {E, I}

V reset E
i = −1

2
(µE − ||wE

i ||22)

V reset I
i = −1

2
(µI + ||wI

i ||22),

(28b)
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and the currents are:

Iffi (t) = τE

M∑
m=1

wE
mism(t)

IEE
i (t) = τE

NE∑
j=1
j ̸=i

DEE
ij zEj (t)

IIEi (t) = τI

NE∑
j=1

CIE
ij fE

j (t) +

(
1− τI

τE

) NE∑
j=1

DIE
ij zEj (t), τE > τI

IIIi (t) = −τI

NI∑
j=1
j ̸=i

CII
ij f

I
j (t)

IEI
i (t) = −τE

NI∑
j=1

CEI
ij f I

j (t)

I local yi (t) = −µy

(
1− τy

τ r,yi

)
ryi (t), y ∈ {E, I}

Ireboundi (t) = τED
EE
ii zEi (t),

(28c)

Matrices Cyz
ij and DyE

ij determine the strength of the fast and slow channels in the synapse, respec-
tively:

Cyz
ij =

{
(wy

i )
⊺wz

j , if (wy
i )

⊺wz
j > 0 {yz} ∈ {IE, II, EI}

0 otherwise

DyE
ij =

{
(wy

i )
⊺BwE

j , if (wy
i )

⊺wE
j > 0, B positive semi-def., y ∈ {E, I}

0 otherwise,

(28d)

while zEi (t) and ryi (t) are low-pass filtered spike trains,

żEi (t) = − 1

τ synE

zEi (t) + fE
i (t)

ṙyi (t) = − 1

τ r,yi

ryi (t) + fy
i (t), y ∈ {E, I}.

(28e)

With eqs.28a-28e, we obtained a complete description of a biologically plausible spiking network
model, where all elements obey constraints of biological neurons and networks and describe the set
of membrane currents that are highly relevant for the function and dynamics of networks in cerebral
cortex.

4 Alternative solutions for slow synaptic currents

While the recurrent excitatory synaptic currents suggested in eq. 23 seem the most biologically
plausible solution, we here, for completeness, present alternative solutions for excitatory synaptic
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currents with slower kinetics. These alternative solutions are mathematically well defined and
obey Dale’s law, but are less likely to describe biological neural networks because they lack global
balance of excitation and inhibition, and/or because they describe an E-I network without E-to-E
connections. While the function of recurrent E-E connections in biological networks is still unclear,
and in some instances, the probability of E-to-E connections in the local network can be very low
(6), recurrent E-to-E connections are presumably still relevant for the dynamics of the cortical
circuitry, and the lack thereof only gives an incomplete description of cortical networks.

We so far defined recurrent excitatory synapses (eq. 21) by substituting the signal x(t) with the
excitatory estimate x̂E(t) (eq. 21), and justified the substitution by the fact that the loss function of
E neurons minimizes the distance between these two variables (eq. 2a). Seen that the loss function
of I neurons minimizes the distance between the E and the I estimates (eq. 2b), we can further
assume the following: x(t) ≈ x̂E(t) ≈ x̂I(t). With this assumption, several alternative solutions
emerge.

Let us first consider the solution that maintains slow recurrent excitation in E neurons and with
that imposes positive semi-definiteness of the matrix B (as in eq. 21). In the membrane equation
for the I cell type (eq. 12b), where we have the term (λI − λE)W

⊺
I Bx̂E(t), we now replace the E

estimate with the I estimate, x̂E(t) ≈ x̂I(t). Using the definition of the I estimate (eq. 4c), we get
the following solution for the slower component of synaptic currents:

IEE
i (t) ∝

NE∑
j=1
j ̸=i

DEE
ij zEj (t)

IslowII
i (t) ∝ (

1

τI
− 1

τE
)

NI∑
j=1

DII
ij z

I
j (t), τI > τE

Dyy
ij =

{
(wy

i )
⊺Bwy

j , if (wy
i )

⊺wy
j > 0, B positive semi-def., {yy} ∈ {EE, II}.

0 otherwise

(29)

The current Islow II
I (t) originates from I neurons and must therefore be inhibitory. To ensure the

consistency of inhibitory connections, the membrane time constant of I neurons is slower than the
membrane time constant of E neurons.

Moreover, slower E-to-E synaptic connections together with slower I-to-I synapses lead to a
global imbalance of E-I currents. The network without slower synapses balances excitatory and
inhibitory currents on its own. As we add slower E-to-E synapses, these bring additional excitation
to the network that has to be counterbalanced by inhibition to maintain the global E-I balance.
In the eq. 29, we instead have a slower inhibitory current in I neurons. Since E-to-E and I-to-I
synaptic currents both promote the excitation at the network level, such a network is imbalanced
and risks runaway excitation.

Two other alternative solutions describe networks without E-to-E connections. As we replace
the signal x(t) in W ⊺

EBx(t) with the estimate by I neurons, x(t) ≈ x̂I(t), this constrains the
slow synaptic current in E neurons to originate from I neurons and the current in question is now
constrained to be inhibitory. To ensure the synaptic current to E neurons to be inhibitory, the
matrix B to has to be negative semi-definite. Assuming that the slow synaptic current in the I cell
type is excitatory, the negative semi-definite matrix B now imposes the constant (λI − λE) to be
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negative. This solutions reads as follows:

IslowEI
i (t) ∝

NI∑
j=1

DEI
ij rIj (t)

IslowIE
i (t) ∝ (

1

τI
− 1

τE
)

NE∑
j=1

DIE
ij zEj (t), τI > τE

Dyz
ij =

{
(wy

i )
⊺Bwz

j , if (wy
i )

⊺wz
j > 0, B negative semi-def., {yz} ∈ {EI, IE}

0 otherwise.

(30)

Constraint τI > τE imposes that the membrane time constant of I neuron is longer than in E
neurons. Moreover, such a network again risks a global imbalance of E and I currents. Slow
inhibition in E neurons is accompanied by slow excitation in I neurons, and both currents globally
promote inhibition. The latter solution seems of lesser biological relevance also because the network
does not have E-to-E connections that are known to exist among excitatory neurons.

To prevent the imbalance of E and I currents, we can replace the excitatory estimate in
(λI − λE)W

⊺
I Bx̂E(t) with the inhibitory estimate, x̂E(t) ≈ x̂I(t). This gives slow recurrent in-

hibition in I neurons, and the following set of solutions:

IslowEI
i (t) ∝

NI∑
j=1

DEI
ij rIj (t)

IslowII
i (t) ∝ (

1

τI
− 1

τE
)

NI∑
j=1

DII
ij r

I
j (t), τI < τE

Dyz
ij =

{
(wy

i )
⊺Bwz

j , if (wy
i )

⊺wz
j > 0, B negative semi-def., {yz} ∈ {EI, II}.

0 otherwise

(31)

In the solution as in eq. (31), we added an inhibitory current to E and to I neurons on top of a
balanced network. Such a solution is expected to globally balance E and I currents in the network.
However, the solution in eq. (31) leads to an incomplete description of cortical networks because
the network lacks E-to-E connections.

5 Computational resources

Spiking network has been implemented with own computer code in Matlab, Mathworks, version
2021b. The complete computer code used to generate figures is part of the Supplementary material
of the present paper. Integration of the membrane potential is done with Euler integration scheme.
A network of 400 E and 100 I units is computed within seconds on a standard laptop.
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