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In the supplementary material, we provide the differences between our MGN and the recent work,
GroupViT [1], more experiments on model size and grouping strategies. We finally validate the effec-
tiveness of audio/visual tokens in learning class-aware embeddings. The code of our implementation
is also attached as the supplementary material for review.

1 Differences between GroupViT [1] and the proposed MGN

Compared to GroupViT [1], the recent grouping work on image segmentation, there are three main
distinctive characteristics of our MGN for solving the weakly-supervised auido-visual video parsing
problem, which are listed as follows:

1) Constraint on Class Tokens. Most important, we have learned 25 category tokens with each class
constraint, i.e., each class token does not have semantic overlapping information among each other
and we want each token to learn the embeddings for each category. To achieve this, we apply the cross-
entropy loss to class tokens for audio-visual modalities as £.;s = CE({p?},,1)+CE({p/}<,,1).
However, the number of learned group tokens in GroupViT is a hyper-parameter and there is no
constraint on it.

2) Modality-aware Cross-modal Grouping. We have the modality-aware cross-modal grouping
to eliminate the modality uncertainty caused by the weakly-supervised setting in the task, while
GroupViT does not incorporate text embeddings into the grouping stage. The text embeddings is
used in a contrastive loss to match with the global visual representations. In this case, their model
was trained on large-scale data with a large batch size for self-supervised training.

3) Class-aware Unimodal Grouping. We introduce the class-aware unimodal grouping for mitigating
the temporal uncertainty in each modality, but GroupViT only leverages the unimodal grouping on
visual patch tokens without class tokens involved. Therefore, the unimodal grouping in GroupViT can
not be used in this task directly. Furthermore, they apply multiple grouping stages during training and
this is also a hyper-parameter. In our case, one grouping stage is enough for us to learn discriminative
representations in the embedding space with the help of meaningful class tokens.

2 Depth of Transformer Layers and Model Size

The depth of transformer layers affects the extracted audio-visual representations for grouping and
the training parameters as well. To explore such effect more comprehensively, we varied the depth
of CUG and MCG modules from {1, 2, 3, 4, 6, 8}. Table 1 reports the comparison results of the
segment-level performance and the number of parameters. When the depth of CUG and MCG is 1
and 2, the proposed MGN with the least parameters 11 MB increases the baseline with parameters 36
MB by 1.7 Visual and 1.1 Event@ AV. With the increase of the depth of CUG, we achieve consistently
improving performance of Visual and Audio-Visual for segment-level prediction since we extract
better visual representations from transformers for class-aware unimodal grouping. When the depth
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Table 1: Exploration study on model sizes and the depth of transformer layers in Class-aware
Unimodal Grouping (CUG) and Modality-aware Cross-modal Grouping (MCG) modules. Segment-
level audio-visual video parsing results are reported.

CUG MCG Model

Method depth  depth Size Audio Visual Audio-Visual Type@AV Event@AV
HAN N/A  N/A 36MB 60.1 52.9 48.9 54.0 554
MGN 1 2 11MB 597 54.6 49.2 54.5 56.5
MGN 2 4 14MB 589 55.2 50.2 54.8 55.7
MGN 3 6 17MB  60.7 55.5 50.6 55.6 57.2
MGN 4 8 20MB  60.1 54.2 50.0 54.8 56.2
MGN 3 3 ISMB  58.7 55.3 49.8 54.6 55.8
MGN 6 3 20MB  59.0 55.6 50.7 55.1 559

Table 2: Ablation studies on Class-aware Unimodal Grouping (CUG) and Modality-aware Cross-
modal Grouping (MCG) blocks. Segment-level audio-visual video parsing results are reported.

CUG MCG Audio Visual Audio-Visual Type@AV Event@AV
Hard-Softmax Softmax 59.9 54.9 50.4 55.1 56.2
Hard-Softmax Hard-Softmax  57.5 54.9 50.3 54.2 54.8

Softmax Hard-Softmax  59.7 54.5 49.6 54.6 56.2
Softmax Softmax 60.7 55.5 50.6 55.6 57.2

of CUG and MCG is 3 and 6, the proposed MGN with only 47.2% parameters of the vanilla baseline
performs the best on Type@AV and Event@AYV, especially on Audio. These results further shows the
advantage of our MGN in real applications with lightweight parameters against the prior work [2, 3].

3 Grouping Strategy

In addition, we ablated the strategy of CUG and MCG using Hard-Softmax and Softmax. To make
Hard-Softmax differentiable during training, we adopted the Gumbel-Softmax [4, 5] as the alternative.
Table 2 reports the ablation results. With Softmax as both unimodal and cross-modal grouping
strategies, the proposed MGN achieves the best performance. Replacing the Softmax with the hard
version in either unimodal or cross-modal grouping deteriorate the segment-level predictions, which
also complies to the multi-label property of each segment for both modalities.
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5 Quantitative Validation
on Audio/Visual Class Tokens

In order to quantitatively validate the rationality of learned audio/visual token embeddings, we
compute the Precision, Recall, and F1 scores of those tokens during training. The quantitative results
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Figure 2: Quantitative results (Precision, Recall, and F1 score) of learned audio and visual class
tokens.

are shown in Figure 2. We can observe that all metrics arrive to closer to 1 at epoch 10, which means
that the learned class tokens are semantically class-aware. Furthermore, these results demonstrate the
effectiveness of class-aware tokens in the class-aware unimodal grouping for alleviating the temporal
uncertainty in each modality.
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