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A DATASET

Our primary dataset, “EHR-OMOP”, is sourced from an academic medical center. It contains dei-
dentified longitudinal EHR data formatted according to the Observational Medical Outcomes Part-
nership Common Data Model (OMOP-CDM) (Sciences & Informatics, 2021). All data is stripped
of protected health information and deidentified at the institution level to comply with HIPAA and
the Safe Harbor standard. The dataset is stored in a HIPAA-compliant compute environment. All
patients included in EHR-OMOP sign a form consenting their records to be included in research pur-
poses like this work. This study was conducted under an institution-wide IRB protocol that makes
this deidentified dataset available for research purposes.

We use roughly 2.5M patients from EHR-OMOP for pretraining our models, and hold out 0.5M
patients for conducting validation experiments.

Figure 5: Distributions of patient data from the EHR-OMOP dataset across (A) training and (B)
validation splits, showing both event-level and code-level counts. The x-axis is log-scaled to capture
the wide range in the number of events per patient, the number of unique patients per code, and the
distribution of events associated with each code.

Training Split Value
Overall counts
Number of events 3,501,210,238
Unique codes 3,144,978
Unique patients 2,567,450

Events per patient
Minimum 1
Mean 1,364
Median 121
Maximum 890,048

Unique events per patient
Minimum 1
Mean 237
Median 76
Maximum 26,131

Validation Split Value
Overall counts
Number of events 749,003,035
Unique codes 881,012
Unique patients 550,305

Events per patient
Minimum 1
Mean 1,361
Median 121
Maximum 638,708

Unique events per patient
Minimum 1
Mean 237
Median 76
Maximum 18,561

Table 3: Summary statistics for the EHR-OMOP training (left) and validation (right) splits.
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B EVALUATION

B.1 TASKS

For all of our model evaluations, we use 14 binary clinical prediction tasks sourced from the
EHRSHOT benchmark (Wornow et al., 2023). The definitions of these tasks are detailed in Ap-
pendix Table 4. We also provide label and patient counts in Appendix Table 5 for each task.

Task Name Task Type Prediction Time Time Horizon

Operational Outcomes
Long Length of Stay Binary 11:59pm on day of admission Admission duration
30-day Readmission Binary 11:59pm on day of discharge 30 days post-discharge
ICU Transfer Binary 11:59pm on day of admission Admission duration

Anticipating Lab Test Results
Thrombocytopenia Binary Immediately before result Next result
Hyperkalemia Binary Immediately before result Next result
Hypoglycemia Binary Immediately before result Next result
Hyponatremia Binary Immediately before result Next result
Anemia Binary Immediately before result Next result

Assignment of New Diagnoses
Hypertension Binary 11:59pm on day of discharge 1 year post-discharge
Hyperlipidemia Binary 11:59pm on day of discharge 1 year post-discharge
Pancreatic Cancer Binary 11:59pm on day of discharge 1 year post-discharge
Celiac Binary 11:59pm on day of discharge 1 year post-discharge
Lupus Binary 11:59pm on day of discharge 1 year post-discharge
Acute MI Binary 11:59pm on day of discharge 1 year post-discharge

Table 4: The 14 clinical prediction tasks used for evaluating models in this work. Prediction Time is the precise
time point (up to minute precision) in a patient’s timeline when the prediction is made. Time Horizon is the
length of time considered after the prediction time to determine whether an event occurs, i.e. we only consider
a patient ”positive” for a new diagnosis of pancreatic cancer if she receives that diagnosis within a year of being
discharged. Table reproduced verbatim from (Wornow et al., 2023).

The definitions for each task are provided below (reproduced verbatim from (Wornow et al., 2023)).

Operational Outcomes. These tasks are related to hospital operations. They are defined as follows:

• Long Length of Stay: Predict whether a patient’s total length of stay during a visit to the
hospital will be at least 7 days. The prediction time is at 11:59pm on the day of admission,
and visits that last less than one day (i.e. discharge occurs on the same day of admission)
are ignored.

• 30-day Readmission: Predict whether a patient will be re-admitted to the hospital within
30 days after being discharged from a visit. The prediction time is at 11:59pm on the
day of admission, and admissions where a readmission occurs on the same day as the
corresponding discharge are ignored.

• ICU Transfer: Predict whether a patient will be transferred to the ICU during a visit to the
hospital. The prediction time is at 11:59pm on the day of admission, and ICU transfers that
occur on the same day as admission are ignored.

Anticipating Lab Test Results. These tasks are related to lab value prediction. The prediction time
is immediately before the lab result is recorded. They are defined as follows:

• Thrombocytopenia: Predict whether a thrombocytopenia lab comes back as normal
(>=150 109/L) or abnormal (any other reading). We consider all lab results coded as
LOINC/LP393218-5, LOINC/LG32892-8, or LOINC/777-3.

• Hyperkalemia: Predict whether a hyperkalemia lab comes back as normal (<=5.5
mmol/L), or abnormal (any other reading). We consider all lab results coded
as LOINC/LG7931-1, LOINC/LP386618-5, LOINC/LG10990-6, LOINC/6298-4, or
LOINC/2823-3.
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Task Name

Train Val Test

# Patients # Labels # Patients # Labels # Patients # Labels
(# Positive) (# Positive) (# Positive) (# Positive) (# Positive) (# Positive)

Operational Outcomes
Long Length of Stay 1377 (464) 2569 (681) 1240 (395) 2231 (534) 1238 (412) 2195 (552)
30-day Readmission 1337 (164) 2608 (370) 1191 (159) 2206 (281) 1190 (151) 2189 (260)
ICU Transfer 1306 (107) 2402 (113) 1157 (84) 2052 (92) 1154 (75) 2037 (85)

Anticipating Lab Test Results
Thrombocytopenia 2084 (906) 68776 (22714) 1981 (807) 54504 (17867) 1998 (853) 56338 (19137)
Hyperkalemia 2038 (456) 76349 (1829) 1935 (428) 60168 (1386) 1958 (405) 63653 (1554)
Hypoglycemia 2054 (511) 122108 (1904) 1950 (433) 95488 (1449) 1970 (435) 100568 (1368)
Hyponatremia 2035 (1294) 81336 (23877) 1930 (1174) 64473 (17557) 1956 (1224) 67028 (19274)
Anemia 2092 (1484) 70501 (49028) 1992 (1379) 56224 (38498) 2002 (1408) 58155 (39970)

Assignment of New Diagnoses
Hypertension 792 (129) 1259 (182) 781 (128) 1247 (175) 755 (129) 1258 (159)
Hyperlipidemia 923 (137) 1684 (205) 863 (140) 1441 (189) 864 (133) 1317 (172)
Pancreatic Cancer 1376 (128) 2576 (155) 1242 (46) 2215 (53) 1246 (40) 2220 (56)
Celiac 1392 (48) 2623 (62) 1252 (8) 2284 (11) 1255 (13) 2222 (21)
Lupus 1377 (79) 2570 (104) 1238 (24) 2225 (33) 1249 (19) 2243 (20)
Acute MI 1365 (130) 2534 (175) 1234 (112) 2176 (145) 1235 (115) 2127 (144)

Table 5: The number of unique patients and total labels for each split of the 14 EHRSHOT tasks evaluated in
this work. The prevalence of positive patients/labels is shown in parenthesis. Table reproduced from (Wornow
et al., 2023), with updates to reflect the latest version of the EHRSHOT dataset.

• Hypoglycemia: Predict whether a hypoglycemia lab comes back as normal (>=3.9
mmol/L) or abnormal (any other reading). We consider all lab results coded as
SNOMED/33747003, LOINC/LP416145-3, or LOINC/14749-6.

• Hyponatremia: Predict whether a hyponatremia lab comes back as normal (>=135
mmol/L) or abnormal (any other reading). We consider all lab results coded as
LOINC/LG11363-5, LOINC/2951-2, or LOINC/2947-0.

• Anemia: Predict whether an anemia lab comes back as normal (>=120 g/L) or abnormal
(any other reading). We consider all lab results coded as LOINC/LP392452-1.

Assignment of New Diagnoses. These tasks are related to predicting the first diagnosis of a disease.
The prediction time is at 11:59pm on the day of discharge from an inpatient visit, and we count any
diagnosis that occurs within 365 days post-discharge as a positive outcome. We ignore all discharges
in which the patient already has an existing diagnosis of a disease. The tasks are defined as follows:

• Hypertension: Predict whether the patient will have her first diagnosis of essential hy-
pertension within the next year. We define hypertension as an occurrence of the code
SNOMED/59621000, as well as its children codes in our ontology.

• Hyperlipidemia: Predict whether the patient will have her first diagnosis of hyperlipi-
demia within the next year. We define hyperlipidemia as an occurrence of the code
SNOMED/55822004, as well as its children codes in our ontology.

• Pancreatic Cancer: Predict whether the patient will have her first diagnosis of pancreatic
cancer within the next year. We define pancreatic cancer as an occurrence of the code
SNOMED/372003004, as well as its children codes in our ontology.

• Celiac: Predict whether the patient will have her first diagnosis of celiac disease within the
next year. We define celiac disease as an occurrence of the code SNOMED/396331005, as
well as its children codes in our ontology.

• Lupus: Predict whether the patient will have her first diagnosis of lupus within the next
year. We define lupus as an occurrence of the code SNOMED/55464009, as well as its
children codes in our ontology.

• Acute MI: Predict whether the patient will have her first diagnosis of an acute myocardial
infarction within the next year. We define myocardial infarction as an occurrence of the
code SNOMED/57054005, as well as its children codes in our ontology.
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B.2 EVALUATION PROCEDURE

Each model m 2 M outputs an embedding for each token in its input sequence. Our goal is
to aggregate these outputs into a unified representation Ri for each patient i which captures key
patterns in their disease trajectory. We will then use this representation Ri to finetune a logistic
regression head for our downstream binary classification prediction tasks.

We define two functions. First, we define S : Rn⇥d ! Rk⇥d to select a subset of k vectors from a
set of n vectors. Second, we define A : Rn⇥d ! Rd to aggregate a set of n d-dimensional vectors
into a single vector. Thus:

Ri = A(S(m({Tik, ..., Ti(k+L)})))

Initial experiments indicated that setting A to simply return the last vector in the sequence (i.e. the
most recent token in a patient’s timeline) and S to the most recent L tokens in a patient’s timeline
prior to the timepoint at which the prediction for a task is made performed the best. Thus, we have:

Ri = mean(m({Ti,|Ti|�L, ..., Ti|Ti|}))

Finally, we fit a logistic regression head H on top of these representations in order to apply them to
binary prediction tasks. This yields a final prediction Pi of:

Pi = H(Ri)

which provides the model’s estimate for the probability that a specific clinical event occurs within a
task-defined window of time for this patient i based on their current representation Ri.

B.3 PATIENT STATISTICS

In Appendix Figure 6, we plot the CDF of the number of raw clinical events and tokens preceding
each prediction time for a given task across train/val/test splits. The blue line represents all prediction
times, the orange line corresponds to only predictions associated with a positive label. Note that not
every clinical event corresponds to a token in our vocabulary, hence many events are dropped during
the tokenization process.

B.4 TASK-LEVEL RESULTS

We present plots of each model’s performance on the 14 individual EHRSHOT tasks in Appendix
Figure 9. Additionally, we provide raw numbers on the AUROC differences between each model
and the prior SOTA model, CLMBR-t-base, for each task in Appendix Tables 7, 8, 9, 10. We
report bootstrapped 95% confidence intervals over 1,000 resamples of the test set for each AUROC
difference. Across all context lengths, our results for Mamba are shown in Appendix Table 7, Llama
in Appendix Table 8, GPT in Appendix Table 9, and Hyena in Appendix Table 10.

C MODEL ARCHITECTURES

In this section, we present the mathematical formulations and detailed architectural descriptions of
the four models used in our experiments: GPT, Mamba, Llama, and Hyena.

C.1 GPT

GPT (Generative Pre-trained Transformer) is a transformer-based autoregressive model that uses
self-attention to process input sequences. (Brown et al., 2020) The main operation is the scaled
dot-product attention:

Attention(Q,K, V ) = softmax
✓
QK>
p
dk

◆
V (1)

18



Published as a conference paper at ICLR 2025

(a) Train (raw clinical events) (b) Train (tokens)

(c) Val (raw clinical events) (d) Val (tokens)

(e) Test (raw clinical events) (f) Test (tokens)

Figure 6: For each EHRSHOT task, we plot the CDF of the number of raw clinical events (left
column) and tokens (right column) available to the model when making its prediction. In other
words, the number of events/tokens preceding each label’s prediction time point. The blue line
represents all prediction times, while the orange line represents only predictions associated with a
positive label. Note that unlike the raw event counts, all token counts are capped at the maximum
context length of the models we test (16k), hence the spike at the end of the CDF.
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Here, Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimensionality
of the key vectors. The transformer block consists of multi-head attention and a position-wise feed-
forward network:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

headi = Attention(QWQ

i
,KWK

i
, V WV

i
) (3)

where WQ

i
, WK

i
, WV

i
, and WO are learned projection matrices. After attention, GPT applies a

position-wise feed-forward network consisting of two fully connected layers with ReLU activations:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (4)

The quadratic complexity of self-attention with respect to input length makes it challenging to scale
GPT to long context lengths. In our experiments, we use GPT variants with context lengths up to
4096 tokens.

C.2 LLAMA

Llama is a transformer-based model that shares the core structure of GPT but incorporates opti-
mizations for training efficiency and scalability (Team, 2024). The model uses the same attention
mechanism as GPT, but with several architectural modifications, such as an increased hidden state
dimension, fewer normalization layers, and relative positional embeddings to improve its perfor-
mance.

The forward pass for each transformer block in Llama follows the same formulation as GPT, com-
bining self-attention with a feed-forward network:

ht+1 = LayerNorm(ht + MultiHead(ht,ht,ht)) (5)
ht+2 = LayerNorm(ht+1 + FFN(ht+1)) (6)

Llama utilizes rotary positional embeddings (RoPE) (Su et al., 2024), which encode relative posi-
tional information directly into the self-attention mechanism without requiring absolute positional
encodings:

RoPE(q, k, i) = cos(i✓)q + sin(i✓)k (7)

Here, q and k are the query and key vectors, and ✓ is a frequency parameter. We evaluate Llama on
context lengths of up to 4096 tokens.

C.3 MAMBA

Mamba is a state-space model (SSM)-based architecture designed to handle long sequences effi-
ciently. It replaces self-attention with state-space layers, which provide linear scaling with respect
to input length. Mamba leverages the continuous-time state-space model to capture long-range de-
pendencies:

xt+1 = Axt +But (8)
yt = Cxt +Dut (9)

where xt is the hidden state, ut is the input at time t, yt is the output, and A, B, C, and D are
learned matrices. This allows Mamba to model long sequences with linear complexity, making it
ideal for processing the lengthy and complex event streams in EHR data.

In our experiments, we evaluate Mamba with context lengths of up to 16k tokens. Mamba’s effi-
ciency allows it to process long patient histories without the computational overhead of traditional
transformer models.
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C.4 HYENA

The Hyena architecture introduces an efficient mechanism for handling long sequences by utilizing
implicit long convolutions and multiplicative gating (Poli et al., 2023a).

The input sequence is denoted by x(t), where t represents the sequence position. The convolution
operation applied in Hyena can be described by the following equation:

y(t) =
L�1X

i=0

h(i) · x(t� i)

where x(t) is the input at time step t, h(i) is the convolution filter of length L, y(t) is the output at
time step t,and L is the length of the filter.

The key difference between Hyena and traditional attention mechanisms is the use of implicit con-
volutions, which avoid the quadratic complexity of the attention mechanism.

To further enhance the expressivity of the model, Hyena applies multiplicative gating after the con-
volution operation. This gating mechanism can be expressed as:

z(t) = �(W1 · y(t))�W2 · y(t)

where:

• z(t) is the gated output,
• � is a non-linear activation function (e.g., sigmoid),
• W1 and W2 are learnable weight matrices,
• � represents element-wise multiplication.

This combination of implicit long convolutions and multiplicative gating allows the Hyena model to
process sequences with log-linear complexity in their length.

D TOKENIZATION

We follow the tokenization strategy used by the CLMBR-t-base model which had achieved the
highest average AUROCs on the EHRSHOT benchmark (Wornow et al., 2023). This tokenization
strategy is described in detail in (Steinberg et al., 2021).

Given a patient timeline Xi, our goal is to convert it into a sequence of tokens Ti that our models can
ingest. Thus, we must map each Xij = (tij , cij , vij) to some set of token(s) Tij = {Tij1, ..., Tijk}
where Tijk 2 T.

For encoding the tij component of each clinical event Xij , we utilize positional encodings based on
the token position j, as prior studies have shown minimal benefits from directly embedding absolute
time information (Yang et al., 2023).

For handling the vij component of Xij , we define the following function g to map clinical events
to tokens by handling each of the three possible cases for the types of values that vij can take on
separately:

g(Xij) =

8
<

:

gv(cij) if vij 2 ;,
gc(cij , vij) if vij 2 Vc,
gn(cij , vij) if vij 2 Vn.

Thus, the same clinical event (e.g. a lab test for anemia) can be mapped to an arbitrary large set of
finer-grained tokens (e.g. one token for all lab tests, one each for mild/moderate/severe, one each
for a 10-point scale, etc.).
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Following (Steinberg et al., 2021) we choose to employ a deciling strategy for all numerical vij , and
we map each unique categorical vij to its own token.

Let D : C ⇥ Vn ! {x 2 Z | 0  x  9} be a function that maps vij to the decile it belongs to
when considering all possible values that cij is associated with in the training set. And let G(·) be a
function that maps its input to some unique integer in the domain of our tokenizer’s vocabulary.

Thus, we have that:

gv(cij) = G(cij)

gc(cij , vij) = G(cij , vij)

gn(cij , vij) = G(cij , D(cij , vij))

Within our dataset, employing this tokenization strategy results in hundreds of thousands of potential
unique codes. Many such codes, however, occur very infrequently. Thus, we select the top k =
39811 frequently occurring codes, following the same procedure outlined in (Steinberg et al., 2021).
In addition, seven special tokens — [BOS], [EOS], [UNK], [SEP], [PAD], [CLS], and [MASK] —
are included, resulting in a total vocabulary size of 39818 tokens. This yields an identical vocabulary
to the one used by CLMBR-t-base in the original EHRSHOT benchmark (Wornow et al., 2023).

For positional embeddings, we use the default strategies for the various architectures we evaluate
– e.g. absolute positional embeddings for GPT, rotary positional embeddings for Llama, none for
Hyena beyond the Hyena positional embedding, and none for Mamba.

For completeness, we also evaluate the impact of injecting explicit temporal information into the
patient timeline via Artificial Time Tokens (ATTs), as proposed in CEHR-BERT Pang et al., 2021
and used in other works (Pang et al., 2024; Renc et al., 2024). In brief, we create artificial tokens
to represent various time intervals (days, weeks, months, etc.) and inject these tokens between
consecutive visits to represent the interval of time between them:

ATT =

8
>><

>>:

Dn if gap < 7 days (e.g., D1, ..., D6),
Wn if 7 days  gap < 28 days (e.g., W1, ...,W4),
Mn if 28 days  gap < 365 days (e.g., M1, ...,M12),
LT if gap � 365.

Furthermore, to clearly define the start and end of each visit, we enclose each visit Vi with special
tokens VS (Visit Start) and VE (Visit End). This approach allows us to represent a patient timeline
as a structured sequence:

P = {VS, v1,VE,ATT,VS, v2,VE,ATT, . . . ,VS, vi,VE}

This enhancement directly embeds temporal patterns within the token sequence, providing con-
textual information about the intervals between clinical events. The results of these models trained
using ATT tokens are shown in Appendix Figure 12. The figure shows that this tokenization strategy
actually tended to reduce the performance of our models, and our best performing model remains
Mamba-16k without ATTs.

E TRAINING

In this section, we describe the training of models used in our experiments. All model base config-
uration were taken from Huggingface, and can be found uder:

• GPT: https://huggingface.co/openai-community/gpt2
• Hyena: https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf
• Mamba: https://huggingface.co/state-spaces/mamba-130m-hf
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Figure 7: A high-level overview of our experimental pipeline, from data generation to final evalua-
tion results.

• Llama: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Their base configurations were modified to standardize in terms of parameter count to make a fair
comparison between them. These configuration changes are shown in Table 6.

Model Configuration Value
GPT

n positions {512, 1k, 2k, 4k }
learning rate 2e-4
dim model 768
num layers 12
num heads 12

Total Parameters 116M
Hyena

max seq len { 1k, 4k, 8k, 16k }
learning rate 2e-4
dim model 768
num layers 16

Total Parameters 125M
Mamba

max seq len { 1k, 4k, 8k, 16k }
learning rate 2e-4
dim model 768
num layers 24

num hidden layers 24
state size 16

Total Parameters 121M
Llama

max position embeddings {512, 1k, 2k, 4k }
learning rate 2e-4
hidden size 768

intermediate size 2688
num attention heads 12
num hidden layers 8

num key value heads 4
Total Parameters 123M

Table 6: Model configurations used for training. All models are designed to be roughly 120 million
parameters. We use the same tokenizer and vocabulary size for all models.

For the pretraining of our models, we randomly sample a patient timeline of length equal to the
lesser of the timeline length of the model’s context length. To improve training stability and ensure
GPU memory optimization, we employed gradient accumulation across multiple batches with a total
number of tokens per step of 65,536.

All models were trained using the AdamW optimizer with the following parameters: �1 = 0.9,
�2 = 0.95, � = 0.1. We performed a hyperparameter sweep over learning rates between 1e � 6
and 1e � 3 for each model architecture before settling on the learning rates shown in Appendix
Table 6. We employed a learning rate warm-up for the first 40,000 steps, after which the learning
rate decayed to 1e � 5 as training progressed. This approach ensured smooth convergence while
avoiding abrupt changes in training dynamics. Perplexity stabilized after one epoch, and we trained
all models for 2 billion total tokens.
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The training was conducted on a PHI-compliant shared cluster equipped with a heterogeneous mix
of GPUs.The majority of experiments in this work were conducted on a set of V100s, with limited
access to another 4 NVIDIA H100s and 16 NVIDIA A100s. The use of a secure, PHI-compliant en-
vironment ensured that all patient health information remained confidential and protected throughout
the training process, adhering to stringent data privacy regulations.

F EHR-SPECIFIC PROPERTY METRICS

We define several metrics for quantifying the specific properties of longitudinal EHR data, such as
the irregularity of inter-event time intervals, the repetitiveness of event sequences, and the complex-
ity of tokens due to disease progression. These metrics help us understand the challenges posed by
EHR data when used in predictive models.

F.1 REPETITIVENESS

Due to liability, documentation requirements, billing practices, and other administrative processes,
EHR data tends to have a high prevalence of “copy-forwarded” information – i.e. data that is copied-
and-pasted from one visit to the next (Thornton et al., 2013; Calder et al., 2024; Weis & Levy, 2014).
To quantify the level of “copy-forwarding” within a sequence, we calculate the n-gram repetition
rate (RR) for each EHR sequence in our dataset using n = 1, 2, 3, 4.

We define the n-gram repetition rate as the proportion of n-grams in a given sequence that are
repeated at least once. A higher repetition rate means a sequence is more repetitive. Formally, we
define the n-gram repetition rate as follows:

RRn(x) =

P
u2U(x) I[C(u, x) > 1]

|U(x)|

where U(§) is the set of unique n-grams in the sequence x and C(u, x) 2 R is the count of occur-
rences of the n-gram u 2 U in the sequence x. We define I[·] as the indicator random variable that
is 1 if the condition inside the brackets is true, and 0 otherwise.

We calculate n-gram repetition rates for n = 1, 2, 3, 4 across all 0.5M patients in our EHR-OMOP
validation dataset. In Figure 8, we compare the observed repetition rate in our EHR dataset to the
repetition rates observed in the WikiText-103 corpus to demonstrate the higher levels of repetition
in EHR sequence data. We repeat our analysis in Appendix Figure 8, but first remove patients with
less than 20 total clinical events in order to give a more accurate picture of the level of repetition
seen in the timelines of patients with “meaningful” levels of engagement with the healthcare system.

F.2 IRREGULARITY

Irregularity in EHR data arises from uneven time intervals between clinical events for each patient
(McDermott et al., 2023). We define three metrics to quantify the irregularity of a given patient’s
EHR sequence. These metrics help to capture the variability in timing between events, which is
critical for models dealing with irregular time intervals.

Standard deviation of inter-event times: Let Xi represent the sequence of clinical events for
patient i. Let tij represent the timestamp of the j-th event in Xi. Then the irregularity I(i)� of patient
i using the standard deviation of inter-event times is given by:

�tij = ti(j+1) � tij , 8j 2 {1, . . . , |Xi|� 1}

µi =
1

|Xi|� 1

|Xi|�1X

j=1

�tij

I(i)
�

=

vuut 1

|Xi|� 1

|Xi|�1X

j=1

(�tij � µi)2
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Figure 8: Distribution of n-gram repetition rates across patients in the EHR-OMOP validation set.
We repeat our analysis from Figure 3 in the main text (reproduced in the bottom row in orange), but
also include a version in which we first filter out all patients with less than 20 total events before
generating our plots (top row in blue). This helps to clearly show that patients with “meaningful”-
length encounters with the healthcare system tend to have highly repetitive EHR timelines. The
x-axis represents the n-gram repetition rate (i.e. percentage of n-grams that are repeated at least
once within a patient’s EHR), and the y-axis shows the number of patients in each bin.

Mean inter-event time: We can also estimate irregularity as I(i)µ , which represents the mean time
between events and is given by:

I(i)
µ

=
1

|Xi|� 1

|Xi|�1X

j=1

�tij

Interquartile range (IQR): We can also estimate irregularity as I(i)
IQR

, which represents the in-
terquartile range of the time intervals between events and is given by:

I(i)
IQR

= Q75(�ti1, . . . ,�ti(|Xi|�1))�Q25(�ti1, . . . ,�ti(|Xi|�1))

where Qn(·) returns the n-th percentile of its arguments.

F.3 INCREASED TOKEN COMPLEXITY DUE TO DISEASE PROGRESSION

As patients age, their diseases become more complex and varied. Thus, we should expect to see
tokens later in a patient’s timeline to have higher perlexity than tokens earlier in a patient’s timeline.
In natural language, the uncertainty of later tokens in a document is reduced by conditioning on all
prior tokens, such that later tokens in a prompt typically exhibit substantially lower perplexity than
earlier words (Kaplan et al., 2020). We found that this trend did not hold with EHR data, per the
experimental set-up described below.

To quantify how the complexity of disease changes over time, we used the median perplexity mea-
sured at each token position across patient EHRs. Under our hypothesis of disease progression, later
tokens should have higher perplexities, even when conditioning on all prior tokens in a patient’s
medical history.

Perplexity measures the uncertainty in a model’s predictions and is computed as:
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Perplexity(x) = exp

 
� 1

N

NX

i=1

logP (xi | x<i)

!

Where xi is the current token and P (xi | x<i) is the predicted probability of the token given the
preceding tokens.

More specifically, we start by sampling 20,000 patients from the EHR-OMOP validation set and
tokenizing their full timelines. We use this set of patients for all of our subsequent evaluations.

We then select one of our trained models (e.g. Llama with a context length of 512). We use this
model to run inference on the full length of each of these 20,000 patients’ timelines. This yields
a perplexity score for every token. For patient timelines that are longer than the model’s context
window, we use a sliding window of 32 tokens.

After running inference on all 20,000 patients with this model, we then calculate the median per-
plexity output by the model at each token positions. We use median rather than mean to reduce the
influence of outliers, which we found to be problematic in early testing. We use these median per-
plexity scores as our official measurement for that token position’s perplexity under that model. For
our plots, we apply an exponential moving average over the past 250 token positions for smoothing.

F.4 EHRSHOT STRATIFICATION

To stratify model performance on EHRSHOT by the repetitiveness of the underlying patient, we first
calculate the 1-gram repetition rate (RR) for each patient in the EHRSHOT test set. After grouping
the EHRSHOT test patients by the tasks they belong to, we then stratify the patients within each
task by their associated 1-gram RR. We sort patients into 4 quartiles, with Q1 containing patients
with the lowest RRs (i.e. the least repetitive patients) and Q4 containg patients with the highest
RRs (i.e. the most repetitive patients). For each model and each quartile, we then calculate the
average Brier score achieved by that model on all patients within the quartile. This yields one Brier
score per quartile per model per task. We chose the Brier score as our performance metric because
certain strata exhibited uniform labels, which rendered AUROC calculations infeasible. We repeat
this process across all tasks and models.

To obtain a single “Q1” Brier Score for a specific model, we take an unweighted average of the
previously calculated mean Brier score for the Q1 patients for each task. We repeat this process for
Q2/Q3/Q4 to fill out the full row in the table for a specific model.

For testing the statistical significance of whether two models achieve different Brier scores for the
same quartile, we perform 1,000 bootstrap samples over the EHRSHOT test set.

G FEW-SHOT LEARNING ON EHRSHOT

We define k-shot evaluation of a model M on a specific task T as follows:

1. Training: For each task T , we sample k positive and k negative examples from the training
split of T to train the model M .

2. Validation: An additional k positive and k negative examples are sampled from T ’s vali-
dation split to tune hyperparameters for M on T .

3. Testing: The best-performing version of M , based on validation results, is evaluated on
the entire held-out test split of T . AUROC is recorded as the performance metric.

For tasks where the total number of unique positive examples is fewer than k, all positive examples
are included in the training set, and positive examples are randomly resampled until k training
examples are achieved.

G.1 EXPERIMENTAL SETUP

We considered values of k 2 {8, 16, 32, 64, 128} for all 14 EHRSHOT tasks, with one exception:
for the Celiac prediction task, we limited k  64 due to the dataset’s constraint of only 62 posi-
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tive training examples. This approach ensures fairness in evaluating performance across tasks with
varying dataset sizes and class imbalances.

G.2 RESULTS

As shown in Appendix Tables 13, 11, and 12 and Appendix Figure 10, our few-shot learning results
indicate that model performance, as measured by AUROC, improves consistently as k increases.
Longer-context models, particularly Mamba, demonstrated notable gains even at lower values of
k, underscoring their robustness in data-limited scenarios. This trend was consistent across most
benchmark tasks, underscoring the utility of long-context architectures in low-resource settings.
Our key observations are as follows:

• Performance Gains with Context Length: Longer context lengths generally led to better
performance, with Mamba models achieving the highest AUROC scores across several k-
shot settings, especially at 16,384 tokens.

• Impact of Few-Shot Sample Size (k): All models showed improved performance with
increasing k, but Mamba and Llama benefited more significantly at higher values of k (64
and 128), consistently outperforming other models across tasks.

H ZERO-SHOT LEARNING ON EHRSHOT

We also evaluate a subset of our models under the zero-shot setting, i.e we simply run inference on
each model without any finetuning. This offers the practical benefit of not having to train or store
any fine-tuned task-specific model heads.

H.1 EXPERIMENTAL SETUP

We follow the procedure outlined in the ETHOS paper (Renc et al., 2024) for making our zero-shot
predictions. In brief, we generate 20 synthetic timelines for each patient at the prediction time,
measure the percentage of timelines in which the positive event for a task occurs, and then use
that percentage as the probability that the patient experiences that positive event. For our zero-shot
evaluations, we choose our two strongest models (Mamba and Llama) at their minimum and max-
imum context lengths, and evaluate them on three representative EHRSHOT tasks – new diagnosis
of hypertension, 30-day readmission, and new diagnosis of acute MI.

H.2 RESULTS

As shown in Appendix Table 15, our zero-shot results significantly lag behind the performance
of our few-shot and finetuned models. None of the zero-shot models beat the prior SOTA model
(CLMBR-t-base) on any of the three tasks evaluated. Additionally, results across context lengths
appear mixed. This underscores the importance of finetuning for clinical prediction making, and
suggests that our training pipeline is not optimally designed for zero-shot evaluations.
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Figure 9: AUROC by context length and architecture across all 14 tasks evaluated from EHRSHOT. The
highest scoring model for each task is listed above its plot. Note that the “Prior SOTA” is selected on a task-
by-task basis, and thus is not necessarily the same model across plots.
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Model Context Length Task � over CLMBR-t-base 95% CI Significant

mamba 1024 ICU Admission -0.009 (-0.039, 0.019)
mamba 1024 Long LOS -0.003 (-0.018, 0.010)
mamba 1024 30-day Readmission 0.001 (-0.010, 0.013)
mamba 1024 Anemia 0.000 (-0.001, 0.001)
mamba 1024 Hyperkalemia 0.003 (-0.006, 0.013)
mamba 1024 Hypoglycemia 0.001 (-0.011, 0.013)
mamba 1024 Hyponatremia 0.014 (0.007, 0.022) X
mamba 1024 Thrombocytopenia -0.005 (-0.010, -0.001) X
mamba 1024 Acute MI 0.017 (-0.007, 0.040)
mamba 1024 Celiac 0.102 (-0.076, 0.262)
mamba 1024 Hyperlipidemia 0.020 (-0.010, 0.050)
mamba 1024 Hypertension -0.011 (-0.034, 0.011)
mamba 1024 Lupus -0.030 (-0.115, 0.052)
mamba 1024 Pancreatic Cancer 0.032 (-0.008, 0.071)
mamba 4096 ICU Admission 0.004 (-0.024, 0.029)
mamba 4096 Long LOS 0.005 (-0.010, 0.021)
mamba 4096 30-day Readmission 0.006 (-0.006, 0.017)
mamba 4096 Anemia 0.002 (0.001, 0.003) X
mamba 4096 Hyperkalemia 0.024 (0.014, 0.034) X
mamba 4096 Hypoglycemia 0.001 (-0.012, 0.013)
mamba 4096 Hyponatremia 0.066 (0.057, 0.075) X
mamba 4096 Thrombocytopenia 0.007 (0.002, 0.011) X
mamba 4096 Acute MI 0.014 (-0.009, 0.036)
mamba 4096 Celiac 0.198 (0.115, 0.288) X
mamba 4096 Hyperlipidemia 0.015 (-0.034, 0.057)
mamba 4096 Hypertension -0.010 (-0.033, 0.010)
mamba 4096 Lupus -0.003 (-0.091, 0.086)
mamba 4096 Pancreatic Cancer 0.049 (0.017, 0.081) X
mamba 8192 ICU Admission -0.007 (-0.033, 0.018)
mamba 8192 Long LOS 0.009 (-0.006, 0.024)
mamba 8192 30-day Readmission 0.003 (-0.010, 0.016)
mamba 8192 Anemia 0.001 (0.000, 0.002) X
mamba 8192 Hyperkalemia 0.018 (0.008, 0.029) X
mamba 8192 Hypoglycemia -0.002 (-0.014, 0.010)
mamba 8192 Hyponatremia 0.063 (0.053, 0.072) X
mamba 8192 Thrombocytopenia 0.004 (-0.001, 0.008)
mamba 8192 Acute MI 0.014 (-0.008, 0.036)
mamba 8192 Celiac 0.173 (0.083, 0.312) X
mamba 8192 Hyperlipidemia 0.030 (-0.011, 0.068)
mamba 8192 Hypertension -0.016 (-0.036, 0.003)
mamba 8192 Lupus 0.038 (-0.029, 0.113)
mamba 8192 Pancreatic Cancer 0.027 (-0.010, 0.062)
mamba 16384 ICU Admission 0.007 (-0.028, 0.040)
mamba 16384 Long LOS 0.013 (-0.005, 0.029)
mamba 16384 30-day Readmission 0.005 (-0.008, 0.017)
mamba 16384 Anemia 0.002 (0.001, 0.003) X
mamba 16384 Hyperkalemia 0.030 (0.019, 0.042) X
mamba 16384 Hypoglycemia 0.006 (-0.006, 0.019)
mamba 16384 Hyponatremia 0.070 (0.061, 0.079) X
mamba 16384 Thrombocytopenia 0.008 (0.004, 0.013) X
mamba 16384 Acute MI 0.016 (-0.005, 0.036)
mamba 16384 Celiac 0.194 (0.108, 0.333) X
mamba 16384 Hyperlipidemia 0.023 (-0.013, 0.058)
mamba 16384 Hypertension 0.003 (-0.018, 0.023)
mamba 16384 Lupus 0.037 (-0.056, 0.132)
mamba 16384 Pancreatic Cancer 0.053 (0.024, 0.087) X

Table 7: Performance of Mamba across all context lengths on the 14 EHRSHOT tasks. The column “�
over CLMBR-t-base” contains the increase in AUROC relative to CLMBR-t-base, the prior SOTA model on
EHRSHOT. The column “95% CI” contains a bootstrapped confidence interval calculated over 1,000 samples
of the test set. The column “Significant” contains a checkmark if the CI does not intersect with 0.
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Model Context Length Task � over CLMBR-t-base 95% CI Significant

llama 512 ICU Admission -0.018 (-0.052, 0.015)
llama 512 Long LOS 0.002 (-0.014, 0.017)
llama 512 30-day Readmission 0.012 (0.000, 0.024) X
llama 512 Anemia -0.004 (-0.005, -0.003) X
llama 512 Hyperkalemia 0.012 (0.004, 0.020) X
llama 512 Hypoglycemia -0.011 (-0.022, 0.001)
llama 512 Hyponatremia -0.010 (-0.016, -0.004) X
llama 512 Thrombocytopenia -0.001 (-0.006, 0.004)
llama 512 Acute MI 0.015 (-0.006, 0.037)
llama 512 Celiac 0.227 (0.111, 0.356) X
llama 512 Hyperlipidemia 0.001 (-0.018, 0.020)
llama 512 Hypertension -0.035 (-0.057, -0.012) X
llama 512 Lupus 0.005 (-0.084, 0.095)
llama 512 Pancreatic Cancer 0.001 (-0.044, 0.046)
llama 1024 ICU Admission -0.005 (-0.042, 0.032)
llama 1024 Long LOS -0.013 (-0.034, 0.005)
llama 1024 30-day Readmission 0.010 (-0.002, 0.024)
llama 1024 Anemia -0.004 (-0.005, -0.003) X
llama 1024 Hyperkalemia 0.010 (0.002, 0.019) X
llama 1024 Hypoglycemia -0.003 (-0.014, 0.008)
llama 1024 Hyponatremia -0.004 (-0.010, 0.001)
llama 1024 Thrombocytopenia -0.005 (-0.009, -0.000) X
llama 1024 Acute MI 0.007 (-0.014, 0.029)
llama 1024 Celiac 0.250 (0.149, 0.359) X
llama 1024 Hyperlipidemia 0.003 (-0.016, 0.021)
llama 1024 Hypertension -0.014 (-0.033, 0.003)
llama 1024 Lupus -0.014 (-0.102, 0.079)
llama 1024 Pancreatic Cancer -0.007 (-0.053, 0.037)
llama 2048 ICU Admission 0.005 (-0.023, 0.033)
llama 2048 Long LOS 0.014 (-0.003, 0.029)
llama 2048 30-day Readmission 0.010 (-0.003, 0.023)
llama 2048 Anemia -0.002 (-0.003, -0.001) X
llama 2048 Hyperkalemia 0.015 (0.005, 0.025) X
llama 2048 Hypoglycemia 0.011 (-0.002, 0.023)
llama 2048 Hyponatremia 0.013 (0.005, 0.020) X
llama 2048 Thrombocytopenia -0.000 (-0.006, 0.004)
llama 2048 Acute MI 0.022 (-0.001, 0.044)
llama 2048 Celiac 0.212 (0.083, 0.343) X
llama 2048 Hyperlipidemia 0.021 (-0.005, 0.049)
llama 2048 Hypertension -0.003 (-0.025, 0.018)
llama 2048 Lupus 0.031 (-0.049, 0.119)
llama 2048 Pancreatic Cancer 0.007 (-0.042, 0.053)
llama 4096 ICU Admission -0.003 (-0.026, 0.021)
llama 4096 Long LOS -0.004 (-0.018, 0.010)
llama 4096 30-day Readmission 0.013 (0.002, 0.026) X
llama 4096 Anemia 0.001 (0.000, 0.002) X
llama 4096 Hyperkalemia 0.024 (0.016, 0.033) X
llama 4096 Hypoglycemia 0.012 (-0.000, 0.022)
llama 4096 Hyponatremia 0.036 (0.028, 0.046) X
llama 4096 Thrombocytopenia 0.000 (-0.004, 0.005)
llama 4096 Acute MI 0.015 (-0.008, 0.038)
llama 4096 Celiac 0.226 (0.097, 0.365) X
llama 4096 Hyperlipidemia 0.016 (-0.002, 0.036)
llama 4096 Hypertension 0.004 (-0.013, 0.021)
llama 4096 Lupus -0.023 (-0.097, 0.049)
llama 4096 Pancreatic Cancer -0.008 (-0.056, 0.033)

Table 8: Performance of Llama across all context lengths on the 14 EHRSHOT tasks. The column “�
over CLMBR-t-base” contains the increase in AUROC relative to CLMBR-t-base, the prior SOTA model on
EHRSHOT. The column “95% CI” contains a bootstrapped confidence interval calculated over 1,000 samples
of the test set. The column “Significant” contains a checkmark if the CI does not intersect with 0.
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Model Context Length Task � over CLMBR-t-base 95% CI Significant

gpt2 512 ICU Admission 0.022 (-0.005, 0.050)
gpt2 512 Long LOS -0.002 (-0.017, 0.012)
gpt2 512 30-day Readmission -0.002 (-0.013, 0.009)
gpt2 512 Anemia -0.003 (-0.004, -0.002) X
gpt2 512 Hyperkalemia 0.011 (0.001, 0.021) X
gpt2 512 Hypoglycemia -0.001 (-0.014, 0.012)
gpt2 512 Hyponatremia 0.037 (0.028, 0.046) X
gpt2 512 Thrombocytopenia 0.020 (0.015, 0.025) X
gpt2 512 Acute MI 0.001 (-0.022, 0.027)
gpt2 512 Celiac 0.181 (0.063, 0.295) X
gpt2 512 Hyperlipidemia -0.004 (-0.047, 0.043)
gpt2 512 Hypertension -0.003 (-0.021, 0.014)
gpt2 512 Lupus -0.031 (-0.110, 0.050)
gpt2 512 Pancreatic Cancer 0.014 (-0.028, 0.054)
gpt2 1024 ICU Admission -0.021 (-0.052, 0.009)
gpt2 1024 Long LOS -0.014 (-0.032, 0.004)
gpt2 1024 30-day Readmission 0.004 (-0.009, 0.015)
gpt2 1024 Anemia -0.011 (-0.012, -0.009) X
gpt2 1024 Hyperkalemia 0.022 (0.011, 0.033) X
gpt2 1024 Hypoglycemia -0.009 (-0.022, 0.004)
gpt2 1024 Hyponatremia 0.037 (0.028, 0.046) X
gpt2 1024 Thrombocytopenia 0.013 (0.009, 0.019) X
gpt2 1024 Acute MI -0.003 (-0.027, 0.021)
gpt2 1024 Celiac 0.125 (0.007, 0.274) X
gpt2 1024 Hyperlipidemia -0.008 (-0.053, 0.036)
gpt2 1024 Hypertension -0.026 (-0.049, -0.005) X
gpt2 1024 Lupus -0.016 (-0.090, 0.062)
gpt2 1024 Pancreatic Cancer 0.022 (-0.009, 0.050)
gpt2 2048 ICU Admission -0.010 (-0.040, 0.021)
gpt2 2048 Long LOS -0.008 (-0.022, 0.006)
gpt2 2048 30-day Readmission 0.002 (-0.011, 0.014)
gpt2 2048 Anemia -0.004 (-0.005, -0.003) X
gpt2 2048 Hyperkalemia 0.007 (-0.003, 0.017)
gpt2 2048 Hypoglycemia 0.001 (-0.013, 0.013)
gpt2 2048 Hyponatremia 0.023 (0.015, 0.029) X
gpt2 2048 Thrombocytopenia 0.021 (0.016, 0.027) X
gpt2 2048 Acute MI -0.003 (-0.030, 0.024)
gpt2 2048 Celiac 0.227 (0.037, 0.433) X
gpt2 2048 Hyperlipidemia 0.005 (-0.014, 0.025)
gpt2 2048 Hypertension -0.002 (-0.021, 0.017)
gpt2 2048 Lupus 0.085 (0.005, 0.165) X
gpt2 2048 Pancreatic Cancer 0.004 (-0.032, 0.037)
gpt2 4096 ICU Admission 0.011 (-0.021, 0.044)
gpt2 4096 Long LOS -0.001 (-0.014, 0.014)
gpt2 4096 30-day Readmission 0.004 (-0.009, 0.015)
gpt2 4096 Anemia -0.005 (-0.006, -0.004) X
gpt2 4096 Hyperkalemia 0.011 (0.001, 0.021) X
gpt2 4096 Hypoglycemia 0.003 (-0.011, 0.015)
gpt2 4096 Hyponatremia 0.046 (0.036, 0.055) X
gpt2 4096 Thrombocytopenia 0.014 (0.009, 0.018) X
gpt2 4096 Acute MI 0.006 (-0.022, 0.033)
gpt2 4096 Celiac 0.149 (0.041, 0.278) X
gpt2 4096 Hyperlipidemia 0.012 (-0.018, 0.043)
gpt2 4096 Hypertension 0.004 (-0.015, 0.024)
gpt2 4096 Lupus -0.008 (-0.095, 0.088)
gpt2 4096 Pancreatic Cancer 0.027 (-0.008, 0.062)

Table 9: Performance of GPT across all context lengths on the 14 EHRSHOT tasks. The column “�
over CLMBR-t-base” contains the increase in AUROC relative to CLMBR-t-base, the prior SOTA model on
EHRSHOT. The column “95% CI” contains a bootstrapped confidence interval calculated over 1,000 samples
of the test set. The column “Significant” contains a checkmark if the CI does not intersect with 0.
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Model Context Length Task � over CLMBR-t-base 95% CI Significant

hyena 1024 ICU Admission -0.026 (-0.064, 0.013)
hyena 1024 Long LOS -0.006 (-0.020, 0.011)
hyena 1024 30-day Readmission -0.001 (-0.012, 0.010)
hyena 1024 Anemia -0.002 (-0.003, -0.001) X
hyena 1024 Hyperkalemia 0.026 (0.015, 0.036) X
hyena 1024 Hypoglycemia -0.004 (-0.015, 0.008)
hyena 1024 Hyponatremia 0.045 (0.036, 0.055) X
hyena 1024 Thrombocytopenia 0.019 (0.014, 0.024) X
hyena 1024 Acute MI 0.011 (-0.015, 0.038)
hyena 1024 Celiac 0.224 (0.095, 0.367) X
hyena 1024 Hyperlipidemia 0.018 (-0.000, 0.037)
hyena 1024 Hypertension -0.026 (-0.053, -0.003) X
hyena 1024 Lupus -0.026 (-0.116, 0.055)
hyena 1024 Pancreatic Cancer 0.019 (-0.022, 0.060)
hyena 4096 ICU Admission -0.026 (-0.058, 0.004)
hyena 4096 Long LOS -0.012 (-0.030, 0.006)
hyena 4096 30-day Readmission 0.002 (-0.012, 0.013)
hyena 4096 Anemia -0.005 (-0.006, -0.004) X
hyena 4096 Hyperkalemia 0.022 (0.013, 0.033) X
hyena 4096 Hypoglycemia -0.013 (-0.027, 0.001)
hyena 4096 Hyponatremia 0.066 (0.056, 0.078) X
hyena 4096 Thrombocytopenia 0.018 (0.013, 0.023) X
hyena 4096 Acute MI 0.013 (-0.013, 0.040)
hyena 4096 Celiac 0.216 (0.077, 0.370) X
hyena 4096 Hyperlipidemia 0.023 (-0.012, 0.057)
hyena 4096 Hypertension -0.023 (-0.050, 0.002)
hyena 4096 Lupus -0.019 (-0.110, 0.056)
hyena 4096 Pancreatic Cancer 0.038 (-0.011, 0.092)
hyena 8192 ICU Admission -0.069 (-0.106, -0.032) X
hyena 8192 Long LOS -0.023 (-0.041, -0.004) X
hyena 8192 30-day Readmission -0.017 (-0.033, -0.002) X
hyena 8192 Anemia -0.016 (-0.018, -0.014) X
hyena 8192 Hyperkalemia 0.010 (0.000, 0.022) X
hyena 8192 Hypoglycemia -0.041 (-0.056, -0.025) X
hyena 8192 Hyponatremia 0.049 (0.039, 0.059) X
hyena 8192 Thrombocytopenia 0.005 (-0.001, 0.010)
hyena 8192 Acute MI -0.009 (-0.038, 0.022)
hyena 8192 Celiac 0.154 (-0.013, 0.352)
hyena 8192 Hyperlipidemia 0.014 (-0.026, 0.052)
hyena 8192 Hypertension -0.066 (-0.108, -0.030) X
hyena 8192 Lupus -0.073 (-0.189, 0.025)
hyena 8192 Pancreatic Cancer -0.033 (-0.088, 0.018)
hyena 16384 ICU Admission -0.110 (-0.147, -0.075) X
hyena 16384 Long LOS -0.048 (-0.068, -0.029) X
hyena 16384 30-day Readmission -0.048 (-0.067, -0.026) X
hyena 16384 Anemia -0.047 (-0.051, -0.043) X
hyena 16384 Hyperkalemia -0.038 (-0.054, -0.023) X
hyena 16384 Hypoglycemia -0.093 (-0.109, -0.075) X
hyena 16384 Hyponatremia 0.010 (-0.002, 0.021)
hyena 16384 Thrombocytopenia 0.003 (-0.005, 0.011)
hyena 16384 Acute MI -0.100 (-0.145, -0.053) X
hyena 16384 Celiac 0.176 (0.029, 0.318) X
hyena 16384 Hyperlipidemia -0.016 (-0.069, 0.034)
hyena 16384 Hypertension -0.071 (-0.125, -0.023) X
hyena 16384 Lupus -0.145 (-0.268, -0.017) X
hyena 16384 Pancreatic Cancer -0.073 (-0.148, 0.006)

Table 10: Performance of Hyena across all context lengths on the 14 EHRSHOT tasks. The column “�
over CLMBR-t-base” contains the increase in AUROC relative to CLMBR-t-base, the prior SOTA model on
EHRSHOT. The column “95% CI” contains a bootstrapped confidence interval calculated over 1,000 samples
of the test set. The column “Significant” contains a checkmark if the CI does not intersect with 0.
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Model Context Length k

8 16 32 64 128 All

gpt2 512 0.661 0.714 0.747 0.779 0.794 0.830
gpt2 1024 0.634 0.697 0.732 0.758 0.774 0.813
gpt2 2048 0.654 0.704 0.743 0.771 0.792 0.818
gpt2 4096 0.657 0.706 0.742 0.769 0.791 0.828

llama 512 0.672 0.716 0.741 0.767 0.786 0.822
llama 1024 0.662 0.707 0.737 0.769 0.788 0.821
llama 2048 0.674 0.714 0.757 0.784 0.799 0.833
llama 4096 0.665 0.709 0.756 0.782 0.800 0.826

mamba 1024 0.668 0.719 0.745 0.774 0.786 0.820
mamba 4096 0.681 0.730 0.754 0.784 0.796 0.828
mamba 8192 0.676 0.728 0.753 0.782 0.800 0.826
mamba 16384 0.685 0.734 0.761 0.791 0.804 0.831

hyena 1024 0.655 0.705 0.739 0.761 0.778 0.813
hyena 4096 0.631 0.681 0.725 0.747 0.773 0.811
hyena 8192 0.622 0.669 0.698 0.727 0.750 0.788
hyena 16384 0.587 0.629 0.651 0.676 0.705 0.755

Table 11: Few-Shot Evaluation: Average AUROC score for each model and context length across all
Operational Outcomes tasks and k-shot settings. The highest AUROC across all models for each k is
bolded underlined, and the maximum value within each model across context lengths for each k is bolded.

Model Context Length k

8 16 32 64 128 All

gpt2 512 0.603 0.634 0.670 0.695 0.713 0.730
gpt2 1024 0.610 0.644 0.672 0.691 0.711 0.719
gpt2 2048 0.621 0.654 0.684 0.709 0.726 0.756
gpt2 4096 0.616 0.642 0.678 0.700 0.722 0.734

llama 512 0.606 0.635 0.665 0.687 0.721 0.739
llama 1024 0.615 0.644 0.670 0.692 0.708 0.740
llama 2048 0.624 0.653 0.675 0.694 0.728 0.751
llama 4096 0.621 0.646 0.679 0.695 0.721 0.741

mamba 1024 0.628 0.652 0.682 0.698 0.716 0.725
mamba 4096 0.630 0.658 0.689 0.704 0.726 0.747
mamba 8192 0.633 0.657 0.690 0.706 0.723 0.747
mamba 16384 0.647 0.668 0.698 0.711 0.732 0.756

hyena 1024 0.621 0.651 0.682 0.697 0.717 0.740
hyena 4096 0.608 0.638 0.666 0.680 0.709 0.745
hyena 8192 0.585 0.608 0.638 0.657 0.671 0.699
hyena 16384 0.540 0.553 0.578 0.597 0.636 0.664

Table 12: Few-Shot Evaluation: Average AUROC score for each model and context length across all As-
signment of New Diagnoses tasks and k-shot settings. The highest AUROC across all models for each k is
bolded underlined, and the maximum value within each model across context lengths for each k is bolded.

33



Published as a conference paper at ICLR 2025

Figure 10: Few-Shot Evaluation: Average AUROC scores for each model and context length across all
few-shot settings, aggregated for each EHRSHOT clinical prediction task group: Operational Outcomes, An-
ticipating Lab Test Results, and Assignment of New Diagnoses. Each row is a different model (from top to
bottom: Mamba, Llama, GPT, Hyena) and each column is a task group. The x-axis shows the number of
few-shot examples (k-shot), while the y-axis displays AUROC. Each line represents a different context length.
Solid lines are AUROCs average across all subtasks within a task group, while lighter lines are the few-shot
results for each individual subtask.
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Figure 11: Reproduction of Figure 4 for the GPT architecture, but with rotary positional embeddings (ROPE)
instead of absolute positional embeddings. All other aspects of the GPT architecture are kept the same. With
ROPE, the perplexity curves appear more stable and do not exhibit the 10+ point perplexity spikes seen in
Figure 4, but still mirror the trend of increased perplexity with increased sequence length.

Figure 12: Reproduction of Figure 1b, but with models trained using Artificial Time Tokens (ATTs) (as
defined in CEHR-BERT (Pang et al., 2021)) shown in dotted lines, and models trained without ATTs in solid
lines. Overall, we see better performance without using ATT tokens. While the dotted lines closely follow the
solid lines for Mamba and Hyena, the transformer models appear to have less stable performance at smaller
contexts, potentially due to the injection of more tokens within each patient’s timeline.
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Model Context Length k

8 16 32 64 128 All

gpt2 512 0.649 0.669 0.704 0.733 0.766 0.845
gpt2 1024 0.639 0.665 0.694 0.730 0.763 0.843
gpt2 2048 0.643 0.667 0.696 0.726 0.761 0.841
gpt2 4096 0.631 0.659 0.690 0.723 0.760 0.845

llama 512 0.647 0.672 0.704 0.733 0.767 0.829
llama 1024 0.635 0.665 0.696 0.728 0.762 0.831
llama 2048 0.643 0.669 0.707 0.741 0.772 0.839
llama 4096 0.647 0.670 0.709 0.742 0.773 0.847

mamba 1024 0.633 0.656 0.698 0.726 0.760 0.835
mamba 4096 0.640 0.669 0.706 0.734 0.770 0.852
mamba 8192 0.638 0.666 0.701 0.733 0.768 0.849
mamba 16384 0.644 0.666 0.705 0.738 0.776 0.855

hyena 1024 0.647 0.669 0.707 0.737 0.768 0.849
hyena 4096 0.632 0.655 0.688 0.725 0.759 0.850
hyena 8192 0.615 0.642 0.672 0.697 0.737 0.833
hyena 16384 0.575 0.594 0.615 0.634 0.668 0.799

Table 13: Few-Shot Evaluation: Average AUROC score for each model and context length across all An-
ticipating Lab Test Results tasks and k-shot settings. The highest AUROC across all models for each k is
bolded underlined, and the maximum value within each model across context lengths for each k is bolded.

Metric Model Context
Length Q1 Q2 Q3 Q4

Repetitiveness Mamba 1k 0.0644 0.0737 0.0744 0.0790
(1-gram RR) 16k 0.0605 0.0670 0.0700 0.0746

Llama 512 0.0640 0.0710 0.0743 0.0792
4k 0.0627 0.0687 0.0721 0.0770

GPT 512 0.0619 0.0691 0.0710 0.0765
4k 0.0643 0.0692 0.0711 0.0765

Hyena 1k 0.0636 0.0681 0.0718 0.0776
16k 0.0733 0.0759 0.0780 0.0822

CLMBR-t-base 512 0.0647 0.0719 0.0751 0.0805

Irregularity Mamba 1k 0.0693 0.0729 0.0731 0.0764
(Standard Deviation) 16k 0.0641 0.0678 0.0679 0.0723

Llama 512 0.0694 0.0730 0.0713 0.0749
4k 0.0664 0.0705 0.0694 0.0740

GPT 512 0.0654 0.0693 0.0703 0.0736
4k 0.0653 0.0699 0.0701 0.0759

Hyena 1k 0.0666 0.0702 0.0692 0.0751
16k 0.0698 0.0755 0.0788 0.0853

CLMBR-t-base 512 0.0683 0.0741 0.0721 0.0777

Table 14: Comparison of average Brier scores for all models across all 14 EHRSHOT tasks. Patients are
bucketed by repetitiveness (top) and irregularity (bottom). Q1/Q2/Q3/Q4 are the 1st through 4th quartiles of
patients ranked by each metric. For example, Q1 contains the least repetitive / least irregular patients while Q4
contains the most repetitive / most irregular patients. Bolded values show a statistically significant win rate of
at least 50% of the longer context model over the shorter context model at a specific quartile. This is identical
to Table 2, but with all models shown.

.
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Model Context Length AUROC

Hypertension
CLMBR-t-base 512 0.718
Mamba 1024 0.660
Llama 512 0.642
Llama 4096 0.609
Mamba 16384 0.563

30-day Readmission
CLMBR-t-base 512 0.810
Mamba 1024 0.720
Llama 4096 0.710
Llama 512 0.705
Mamba 16384 0.643

Acute MI
CLMBR-t-base 512 0.729
Mamba 16384 0.531
Mamba 1024 0.525
Llama 4096 0.52
Llama 512 0.51

Table 15: Zero-Shot Evaluation: AUROC scores for each model and context length for zero-shot evaluations
across three EHRSHOT clinical prediction tasks. The zero-shot evaluations followed the procedure outlined
in (Renc et al., 2024). Namely, 20 synthetic timelines were generated for each patient at each prediction
timepoint. The probability that a patient experienced a positive event was calculated as the percentage of
generated timelines that contained that positive event within the appropriate time horizon as defined by the
relevant task.

.
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