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ABSTRACT

We study the problem of exact community recovery in general, two-community
block models, in the presence of node-attributed side information. We allow for a
very general side information channel for node attributes, and for pairwise (edge)
observations, consider both Bernoulli and Gaussian matrix models, capturing the
Stochastic Block Model, Submatrix Localization, and Z2-Synchronization as spe-
cial cases. A recent work of Dreveton et al. (2024) characterized the information-
theoretic limit of a very general exact recovery problem with side information. In
this paper, we show algorithmic achievability in the above important cases by de-
signing a simple but optimal spectral algorithm that incorporates side information
(when present) along with the eigenvectors of the pairwise observation matrix.
Using the powerful tool of entrywise eigenvector analysis (Abbe et al., 2020), we
show that our spectral algorithm can mimic the so called genie-aided estimators,
where the ith genie-aided estimator optimally computes the estimate of the ith la-
bel, when all remaining labels are revealed by a genie. This perspective provides
a unified understanding of the optimality of spectral algorithms for various exact
recovery problems in a recent line of work.

1 INTRODUCTION

In this paper, we consider inference problems of the following form: there is an unknown partition
of the set [n] := {1, 2, . . . , n} into two communities, denoted (C+, C−) with (ρ, 1 − ρ) fraction
of vertices respectively for ρ ∈ (0, 1). The community assignments are encoded by a vector σ∗ ∈
{±1}n. We observe a symmetric matrix A ∈ Rn×n, which is specified by three distributions: P+,
P−, and Q. The entries of A are independent (up to symmetry), such that Aij ∼ P+ if i, j ∈ C+,
Aij ∼ P− if i, j ∈ C−, and Aij ∼ Q otherwise. One famous example is the Stochastic Block
Model (SBM), where P+ ≡ Bern(p1), P− ≡ Bern(p2), and Q ≡ Bern(q). Other prominent
examples include Z2-synchronization and submatrix localization, in which P+,P−,Q are Gaussian
distributions. Given the observation A, the goal is to exactly recover the unknown σ∗.
After a long line of research (Decelle et al., 2011; Mossel et al., 2015; Abbe et al., 2016; Hajek et al.,
2016; Abbe, 2017; Bandeira et al., 2017; Javanmard et al., 2016; Cai et al., 2017), a fairly complete
picture of the fundamental limits of exact recovery and algorithmic acheivability is known. In recent
years, with practical considerations, exact recovery has also been studied in different variants such as
node-attributed side information (Saad & Nosratinia, 2018; 2020; Deshpande et al., 2018; Dreveton
et al., 2024), partially censored edges (Abbe et al., 2014; Hajek et al., 2015; Moghaddam et al.,
2022; Dhara et al., 2022a; 2023), multiple correlated networks (Racz & Sridhar, 2021; Gaudio et al.,
2022), spatially embedded networks (Abbe et al., 2021; Gaudio et al., 2024b;a), etc. See Section
1.2 for different variants considered more broadly in community detection literature beyond exact
recovery.
In this paper, similar to Dreveton et al. (2024), we consider the setting of node-attributed side infor-
mation, where we are given a side information vector y ∈ Yn, in addition to the pairwise observation
matrix A. The side information is drawn according to a pair of distributions (S+,S−), where for
each i ∈ [n], we obtain

yi ∼ S+ if i ∈ C+, or yi ∼ S− if i ∈ C−,

where the observations are independent, conditioned on the communities. The setup captures several
interesting special cases:
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1. Gaussain Features (GF): For each node, we have a vector of d real-valued attributes. This
is modeled as Y = Rd and both S+ and S− are parameterized multivariate Gaussians in d
dimensions.

2. Binary Erasure Channel (BEC): The true community assignment of some subset of ver-
tices are known (partially observed labels), modeled as Y = {−1, 0,+1} and y is formed
by passing σ∗ through a binary erasure channel.

3. Binary Symmetric Channel (BSC): We have a “guess” on community assignment of
each vertex (partially correct labels) and interested in recovering the true assignment. This
is modeled as passing σ∗ through a binary symmetric channel with Y ∈ {−1,+1}.

Exact recovery under BEC and BSC side information channels was first studied by Saad & Nos-
ratinia (2018; 2020) for two special cases of Bernoulli pairwise observations; symmetric SBM
(P+ ≡ P−, ρ = 1/2) and Planted Dense Subgraph (PDS) (P− ≡ Q). The work of Dreveton et al.
(2024) recently studied a very general recovery problem, allowing generic distributions (P+,P−,Q)
and side information laws (S+,S−), satisfying certain technical assumptions. They derived sharp
information theoretic thresholds for exact recovery under side information in a unified way, and
showed that the optimal Maximum A Posterior (MAP) estimator succeeds down to this threshold.
However, naı̈ve MAP estimation requires a brute-force computation, and thus it is not efficiently
(poly-time) computable in the worst case. Therefore, it remains important to design efficient algo-
rithms. We note that Dreveton et al. also proposed an efficient, iterative likelihood maximization
algorithm when node and edge observations are from an exponential family of distributions, though
without theoretical guarantees on the performance. In this work, our primary goal is:

Objective 1: To design efficient algorithms that are provably optimal i.e. succeed down to the
information theoretic threshold.

We note that the work of Saad & Nosratinia (2018; 2020) designed provably optimal algorithms only
for the two special cases they studied (symmetric SBM and PDS), and only under BEC and BSC
channels. They use a two-stage strategy that first determines almost exactly correct labels, followed
by a refinement step achieving exact recovery. In this work, our focus will be on designing a single-
stage spectral algorithm that directly achieves exact recovery and in much greater generality. In
particular, we consider any side information channel with distributions (S+,S−) but restrict to the
following pairwise distribution laws1:

1. Rank One Spike (ROS): The distributions P+, P−, and Q are Gaussian distributions,
capturing Z2-synchronization and submatrix localization as special cases.

2. SBM: The general two community stochastic block model where P+, P−, and Q are any
Bernoulli distributions.

Background on spectral algorithms for exact recovery. Spectral algorithms were popularized
by classical works such as McSherry’s algorithm for community detection (McSherry, 2001) and
the planted clique recovery algorithm of Alon, Krivilevich, and Sudakov (Alon et al., 1998). In
recent years, attention has shifted to spectral algorithms without the need of a combinatorial cleanup
phase. This line of work was initiated by the influential work of Abbe, Fan, Wang, and Zhong (Abbe
et al., 2020), who showed that in the symmetric, balanced SBM, simply thresholding the second
leading eigenvector u2 of the adjacency matrix at 0 gives the correct community partition with high
probability. In order to analyze the vector u2, Abbe et al. developed the technique of entrywise
eigenvector analysis, which characterizes the entrywise behavior of eigenvectors of matrices whose
expectations are low-rank.
Following Abbe et al. (2020), a series of papers used the entrywise eigenvector technique to give
strong guarantees for spectral algorithms. For example, Deng et al. (2021) showed that, in the
symmetric SBM, using the Laplacian instead of the adjacency matrix also yields an optimal al-
gorithm. Another line of work Dhara et al. (2022a; 2023) considered the censored variant of the
problem, where the status of some edges is unknown. Even for the censored variant, they show that

1While our side information channel laws are general, we note that the information theoretic limits of
Dreveton et al. (2024) are in even more generality. Namely, they consider (i) more general distribution families
(P+,P−,Q), and (ii) the case of more than two communities. In Appendix A.1, we shall describe how our
spectral algorithms can be further generalized to (i) any (P+,P−,Q) coming from exponential families (with
additional requirements), and (ii) more than two communities.
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spectral algorithms are optimal, where the encoding of the unknown edges is chosen carefully to
achieve optimaliy. Perhaps surprisingly, Dhara et al. (2023) showed that for this censored variant
of the problem, to handle cases beyond the symmetric SBM (P+ ≡ P−, ρ = 1/2) and the PDS
(P− ≡ Q), any clustering algorithm based on a single adjacency matrix does not succeed down to
the information-theoretic threshold. Instead, the authors devised a spectral algorithm which forms
two matrix representations of the same network and takes a carefully chosen linear combination of
their eigenvectors to achieve optimaliy. All these results at their core rely on the entrywise behavior
of eigenvectors (Abbe et al., 2020).
This raises several closely related questions: what governs the optimality of these seemingly differ-
ent problem specific choices? Is there some principle behind designing new algorithms in related
settings? For example, for the standard uncensored variant as we study here, the spectral algorithm
for general two community SBM is unknown even when there is no side information. Do we need
two matrices like its censored counterpart (Dhara et al., 2023)? To answer these questions, another
auxiliary goal of this work:

Objective 2: To develop a unified perspective on the optimality of these spectral algorithms.

1.1 OUR CONTRIBUTION

Spectral Algorithms. We propose a simple spectral strategy of computing the top eigenvectors
(top one for ROS and top two for SBM) of the observation matrix A and take an appropriate linear
combination. When side information y is also available, we incorporate it by shifing the eigenvector
combination by the log-likelihood ratio vector of side information:

log

(
S+

S−
(y)

)
∈ (R ∪ {±∞})n such that

[
log

(
S+

S−
(y)

)]
i

:= log

(
S+(yi)

S−(yi)

)
, (1)

followed by a prescribed thresholding. Our algorithm is highly efficient with nearly linear runtime
for the respective setting.
The main technical novelty lies in establishing a rigorous connection between the spectral estimator
and the so-called genie-aided estimators, where ith genie-aided estimator optimally computes the
ith label, where the rest of them, denoted by σ∗

−i, are revealed by a genie. Using the entrywise
eigenvector technique (Abbe et al., 2020), we show that taking an appropriately weighted sum of
the leading eigenvectors of A (along with side information use prescribed above when they are
available) produces a vector whose ith entry is well-approximated by the statistic computed by these
genie-aided estimators in each of the settings. Thus, the spectral algorithm without any clean-up step
is able to mimic the genie, and therefore achieves exact recovery down to the information-theoretic
limits.

Models without Side Information. We note that even in the case of no side information, deter-
mining when a single stage spectral algorithm without any clean up stage can succeed is of interest
to the learning theory community. Our results fill the complete picture in important remaining cases
such as the general SBM (beyond the symmetric case with P+ ≡ P−, ρ = 1/2 (Abbe et al., 2020)
and the Planted Dense Subgraph (PDS) with P− ≡ Q (Dhara et al., 2022a)). Most notably, unlike its
censored counterpart (Dhara et al., 2023), one does not need two matrix representations to achieve
optimality. In fact, the strategies of Abbe et al. (2020); Deng et al. (2021); Dhara et al. (2022a;b;
2023) are essentially mimicking the genie in their respective settings.

1.2 RELATIONSHIP TO PRIOR WORK

Local to global amplification and two stage algorithms. The SBM is known to exhibit local-
to-global amplification, in the sense that whenever (local) recovery of a single vertex label given
the labels of all other vertices is possible with probability 1 − o(1/n), then (global) exact recovery
is possible with probability 1 − o(1) (see e.g., Abbe (2017)). Two-stage algorithms, which are
prevalent in the literature (Abbe et al., 2016; Coja-Oghlan, 2006; Vu, 2018; Yun & Proutiere, 2014;
2016; Gaudio et al., 2024a), essentially leverage this statistical property.

Unsupervised vs Semi-supervised Learning. The presence of side information turns commu-
nity recovery from an unsupervised learning problem into a semi-supervised learning problem.
Therefore, another related perspective is to investigate the effectiveness semi-supervised learning
approaches over unsupervised ones e.g. (Jiang & Ke, 2023; Wu et al., 2022; Ni et al., 2024). We
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note that, from this perspective, investigating other relaxed goals such as weak or almost exact re-
covery could provide a more satisfying picture, as the exact recovery is very demanding criterion.
The primary message of our work is that, for exact recovery goal, there are simple extensions of the
spectral algorithm that optimally combines the signal from A and the side information y, achieving
the new sharp information-theoretic limit.

1.3 ORGANIZATION

Section 2 contains our models and other preliminary setup. Our main results are stated in Section
3. The genie-aided estimators are introduced in Section 4, which we show how to mimic using a
spectral strategy in Section 5. Future directions are proposed in Section 6. The proofs are postponed
to the appendices.

2 PRELIMINARIES

2.1 MODELS

We first introduce the General Two Community Block Model (GBM), which captures the two special
cases that we consider.
Definition 2.1 (General Two Community Block Model (GBM)). For any ρ ∈ (0, 1) and distribu-
tions P+,P−, and Q, we say that (A, σ∗) ∼ GBMn(ρ,P+,P−,Q), where A ∈ Rn×n and σ∗ ∈
{±1}n are sampled as follows. Each coordinate of σ∗ is sampled i.i.d. such that P(σ∗

i = +1) = ρ
and P(σ∗

i = −1) = 1 − ρ. Moreover, we will use the notation C+ := {i : σ∗
i = +1} and

C− := {i : σ∗
i = +1}. Conditioned on σ∗, we sample A, a zero diagonal symmetric matrix with

independent entries, such that for 1 ≤ i < j ≤ n, we have

Aij ∼


P+, if i, j ∈ C+;

P−, if i, j ∈ C−;

Q, otherwise.

In the above definition, we restrict to distributions which are either (i) a continuous distribution or
(ii) a finite, discrete distribution. In the above definition, we restrict ourselves to settings where dis-
tributions P+(·),P−(·),Q(·) identify the corresponding probability density function or probability
mass function, respectively. We will consider special cases where the distributions (P+,P−,Q) are
either all Gaussian or Bernoulli distributions. The specialized definitions are given below.
Definition 2.2 (Rank One Spike (ROS)). Fix any ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} >
0. We say that (A, σ∗) ∼ ROSn(ρ, a, b) if they are sampled as follows. First sample σ∗ as mentioned
for GBM. Conditioned on σ∗ consider the vector v∗ ∈ {a, b}n such that for i ∈ [n]

v∗i = a · 1[σ∗
i = +1] + b · 1[σ∗

i = −1]. (2)

Finally, conditioned on σ∗, we get independent noisy measurements for every i < j of the following
form.

Aij = v∗i v
∗
j

√
log n

n
+Wij , where Wij

i.i.d.∼ N (0, 1).

Note that the model ROSn(ρ, a, b) is a special case of GBMn(ρ,P+,P−,Q), by taking

P+ ≡ N

(
a2
√

log n

n
, 1

)
,P− ≡ N

(
b2
√

log n

n
, 1

)
, and Q ≡ N

(
ab

√
log n

n
, 1

)
.

Taking b = 0 yields a version of the Gaussian submatrix localization problem Hajek et al. (2018),
for which the goal is to recover a submatrix of elevated mean (corresponding to the entries in C+).
Taking a = −b yields the Z2-synchronization problem Bandeira et al. (2017) after rescaling; see
Remark A.1. Our scaling choice allows both submatrix localization and Z2-synchronization to
be handled under a unified model. We also consider the Stochastic Block Model (SBM) in the
logarithmic-degree regime, which is the relevant regime for exact recovery.
Definition 2.3 (Stochastic Block Model (SBM)). Fix any ρ ∈ (0, 1) and a1, a2, b > 0. Then the
model SBMn(ρ, a1, a2, b) is a special case of GBMn(ρ,P+,P−,Q) with

P+ ≡ Bern
(
a1 log n

n

)
,P− ≡ Bern

(
a2 log n

n

)
, and Q ≡ Bern

(
b log n

n

)
.
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Finally, we consider a generic side information channel.
Definition 2.4 (Side Information (SI)). For any domain Y , distributions (S+,S−) supported on Y ,
and σ∗ ∈ {±1}n, we say that y ∼ SI(σ∗,S+,S−), where y ∈ Yn such that for any i ∈ [n],

yi ∼ S+, if σ∗
i = +1 and yi ∼ S− if σ∗

i = −1.

The entries {yi}i∈[n] are independent conditional on σ∗. We assume that the likelihoods S+(yi) and
S−(yi) are computable in O(1) time.
Definition 2.5 (Gaussian Features (GF)). The model y ∼ GF(σ∗, υ+, υ−, σ

2) for υ+, υ− ∈ Rd and
σ2 > 0 is a special case of SI with Y = Rd and S+ ≡ N (υ+, σ

2Id) and S− ≡ N (υ−, σ
2Id).

Definition 2.6 (Binary Erasure Channel (BEC)). For any σ∗ ∈ {±1}n and ϵ ∈ (0, 1], we say
y ∼ BEC(σ∗, ϵ) where each entry of σ∗ is erased to 0, independently with probability ϵ, to form
y ∈ {−1, 0,+1}n.
Definition 2.7 (Binary Symmetric Channel (BSC)). For any σ∗ ∈ {±1}n and α ∈ (0, 1/2], we
say y ∼ BSC(σ∗, α) where each entry of σ∗ is flipped independently with probability α, to form
y ∈ {±1}n.

(a) BEC side information (b) BSC side information

Figure 1: Visualization of BSC and BEC side information. The red-colored, blue-colored, and uncolored
vertices have side information labels of +1,−1, and 0 respectively.

2.2 EXACT RECOVERY.

Our goal is to exactly recover the community labels σ∗ given the observation matrix A and the side
information y when available, as formalized below.
Definition 2.8 (Exact Recovery). We say that an estimator σ̂ succeeds if

(i) σ̂ ∈ {±σ∗} when P+ ≡ P−, ρ = 1/2 and there is no side information (the symmetric
case);

(ii) σ̂ = σ∗, when P+ ̸≡ P− or ρ ̸= 1/2 or side information is present (non-symmetric case).

Otherwise, we say σ̂ fails. We say that σ̂ achieves exact recovery if lim
n→∞

P(σ̂ succeeds) = 1.

Note that in the symmetric setting described in Definition 2.8, it is not possible to recover σ∗ with
high probability, and we can only hope to recover the partition. In all other cases, we wish to recover
the labels and not just the partition. All our positive results will demonstrate recovery in this strong
sense, while our negative results will show that even recovering the partition is impossible below the
threshold. The optimal predictor for any model and side information is the one which has maximum
posterior probability given the observation matrix A and the side information y, when it is present.
Definition 2.9 (MAP Estimator). Consider the observation matrix A and the side information y
(either BSC or BEC). We define the Maximum A Posteriori (MAP) estimator as

σ̂MAP = argmax
σ∈{±1}n

P(σ∗ = σ | A, y).

When no side information is present, define σ̂MAP = argmaxσ∈{±1}n P(σ∗ = σ | A).

3 MAIN RESULTS

Before stating our algorithmic result, we describe the information-theoretic limit due to Dreveton
et al. (2024) in our notation.
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3.1 INFORMATION THEORETIC THRESHOLD FROM DREVETON ET AL. (2024)

Define the Chernoff coefficient across the pair of communities as

CHt(+,−) = (1− t)

[
ρDt(P+∥Q) + (1− ρ)Dt(Q∥P−) +

1

n
Dt(S+∥S−).

]
Here Dt(A∥B) is the is the Rényi divergence of order t between any two laws (A,B), such that they
are both continuous or discrete, is given by

Dt(A∥B) := 1

(t− 1)
log E

x∼B

[(
A(x)

B(x)

)t
]
. (3)

Define the limit L : (0, 1) → R≥0 ∪ {+∞} by

L(t) = lim
n→∞

n

log n
CHt(+,−). (4)

We restrict ourselves to the laws such that L(t) is well defined. Then the information theoretic limit
is characterized by

I∗ = sup
t∈(0,1)

L(t), (5)

where by convention, we consider the supremum to be +∞ if L(t) is unbounded in t ∈ (0, 1) or
there exists t ∈ (0, 1) such that L(t) = +∞. Then following proposition is a minor variant of the
two community case of (Dreveton et al., 2024, Theorem 1), characterizing the fundamental limit for
exact recovery for the GBM.

Proposition 3.1 (Dreveton et al. (2024)). Let ρ ∈ (0, 1) and (P+,P−,Q) be probability laws.
Let (A, σ∗) ∼ GBMn(ρ,P+,P−,Q) and we observe A. Optionally, for side information laws
(S+,S−), we observe y ∼ SI(σ∗,S+,S−). We assume the laws are such that I∗ in (5) is well-
defined. Then

1. If I∗ > 1, then the Maximum A Posteriori estimator σ̂MAP achieves exact recovery.

2. Additionally, if I∗ < 1 and the function L(t) is strictly concave then no estimator σ̂
achieves exact recovery.

This variant follows from (Dreveton et al., 2024, Theorem 1) by observing that the success of MAP
proof does not rely on the strict concavity of L(t) and the proof goes through even if I∗ = +∞.
The impossibility result is completely equivalent to theirs. We discuss the necessary proof changes
in Appendix A.3. We note that the case of no side information can be realized by considering side
information laws (S+,S−) that always deterministically output 0; in this case Dt(S+∥S−) = 0.

3.2 ALGORITHMIC ACHIEVABILITY FOR ROS AND SBM

The main results of the paper is to design an optimal spectral algorithm for ROS and SBM.

Theorem 1. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b).
Optionally, consider a side information channel y ∼ SI(σ∗,S+,S−) such that I∗ in (5) is well-
defined. Then there is a spectral algorithm (Algorithm 2) that returns the estimator σ̂spec which
achieves exact recovery, whenever I∗ > 1.

Theorem 2. Let ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Optionally,
consider a side information channel y ∼ SI(σ∗,S+,S−) such that I∗ in (5) is well-defined. Then
there is a spectral algorithm (Algorithms 5 and 6) that returns the estimator σ̂spec which achieves
exact recovery, whenever I∗ > 1.

In Appendix C, we will verify that for both SBM and ROS, the function L(t) (and thus also I∗)
is well-defined and L(t) is strictly concave for each (i) no side information (ii) GF,BEC, and BSC
channels. This along with Theorems 1, 2 and Proposition 3.1 establishes that the spectral algorithm
succeeds up to the information-theoretic limit in these settings.
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4 GENIE-AIDED ESTIMATORS

We begin our analysis by defining the framework of genie-aided estimation (see e.g., Abbe (2017)).
Our contribution is a systematic method of connecting spectral algorithms to genie estimators. In
the genie-aided setting, we suppose that all labels but the ith are known, and the goal is to determine
the ith label. More formally, let σ∗

−i denote the true labels, apart from σ∗
i . The optimal estimator for

the ith label is given by

σ̂Gen,i =

{
+1, if P(σ∗

i = +1 | A, y, σ∗
−i) ≥ P(σ∗

i = −1 | A, y, σ∗
−i).

−1, otherwise.
(6)

(where the conditioning on y is omitted when there is no side information present). Moreover, we
say that σ̂Gen,i fails on an instance if the posterior probability of the incorrect label is strictly greater
than the posterior probability of the correct label. The following lemma rigorously establishes the
intuitive claim that the failure of some genie-aided estimator implies the global MAP also fails.
Lemma 4.1. Let ρ ∈ (0, 1) and P+,P−,Q be any distributions. Let (A, σ∗) ∼
GBMn(ρ,P+,P−,Q). Optionally, let y ∼ SI(σ∗,S+,S−) in Yn where y ∈ Yn is the side in-
formation for any laws (S+,S−) over Y . Define the genie-aided estimators {σ̂Gen,i : i ∈ [n]} and
σ̂MAP for the respective model. Then

P(∃i ∈ [n] : σ̂Gen,i fails) ≤ P(σ̂MAP fails).

Genie scores. We form a vector z∗ ∈ (R ∪ {±∞})n, called the genie score vector, where z∗i
records the log of the ratio of posterior probabilities of the label σ∗

i given σ∗
−i by a genie. That is,

z∗i = log

(
P(σ∗

i = +1 | A, y, σ∗
−i)

P(σ∗
i = −1 | A, y, σ∗

−i)

)
or z∗i = log

(
P(σ∗

i = +1 | A, σ∗
−i)

P(σ∗
i = −1 | A, σ∗

−i)

)
, (7)

in the cases of side information and no side information respectively. Then the optimal genie-
based estimator corresponds to σ̂Gen,i = sgn(z∗i ). Throughout the paper, we treat log as function
from [0,∞] to the extended real line and implicitly use standard conventions of extended real line
algebra. See Appendix B.1. The following lemma gives the form of the genie scores without or with
node-attributed side information. Here we define C−i

+ := C+ \ {i} and C−i
− := C− \ {i}.

Lemma 4.2. Consider any ρ ∈ (0, 1) and laws P+,P− and Q. Let (A, σ∗) ∼
GBMn(ρ,P+,P−,Q). Optionally, let y ∼ SI(σ∗,S+,S−) where y ∈ Yn is the side informa-
tion for any laws (S+,S−) over Y . Then for any i ∈ [n], the genie score for the ith label is given by

• No side information:

z∗i =
∑

j∈C−i
+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
ρ

1− ρ

)
.

• Side information:

z∗i =
∑

j∈C−i
+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+log

(
ρ

1− ρ

)
+log

(
S+(yi)

S−(yi)

)
.

Due to the independence of A and y, conditioned on σ∗, the genie score z∗i under side information
is simply the score without side information with the addition of the log-likelihood ratio of the node
attribute yi. Intuitively, we devise a principled method for determining the weights of the eigenvector
combination and threshold value in our spectral algorithm such that ith entry of the vector formed
approximates the the genie score z∗i under no side information. Observe that the statistic z∗i only
depends on the ith row of A. Remarkably, the spectral algorithm will approximate this statistic from
eigenvectors of A, despite not knowing C−i

+ and C−i
− . In light of Lemma 4.2, it is also immediate

to see the motivation behind the use of side information prescribed in Section 1.1. In particular, the
genie scores undergo exactly the same transformation when the side information becomes available
according to Lemma 4.2.
Lemma 4.3. For any i ∈ [n], the log-likelihood ratio of side information label is given by
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• GF (Gaussian features): When y ∼ GF(σ∗, υ+, υ−, σ
2) for υ+, υ− ∈ Rd and σ2 > 0,

log

(
S+(yi)

S−(yi)

)
=

∥yi − υ−∥22 − ∥yi − υ+∥22
2σ2

.

• BEC channel: When y ∼ BEC(σ∗, ϵ) for ϵ ∈ (0, 1],

log

(
S+(yi)

S−(yi)

)
=


+∞, if σ∗

i = +1;

−∞, if σ∗
i = −1;

0, otherwise.

• BSC channel: When y ∼ BSC(σ∗, α) for α ∈ (0, 0.5],

log

(
S+(yi)

S−(yi)

)
= log

(
1− α

α

)
yi

Genie Success with Margin above the IT Limit: We start by a crucial observation about the
genie scores, which will be important in analyzing the spectral algorithm. We show that above the
information-theoretic limit, the genie score have the correct sign corresponding to the true label,
but with a sufficient margin. We show the for any model GBM and optionally a side information
channel, whenever I∗ > 1, there exists a constant δ > 0 such that with high probability

min
i∈[n]

σ∗
i z

∗
i > δ log n, (8)

formalized in Lemma D.1.

5 GENIE TO SPECTRAL ALGORITHM (FOR ROS AND SBM)

In light of (8), if an algorithm can approximate the genie score up to an additive error of o(log n),
then sign thresholding will correctly recover all the labels. We first establish that for both ROS and
SBM the genie score vector takes a special form

z∗ ≈ Aw + γ1n,

where the approximation is in the ℓ∞ norm, for a certain γ ∈ R and w ∈ Rn with entries (w+, w−) ∈
R2 in the locations of C+ and C− respectively. See Lemmas F.1 (ROS) and G.2 (SBM) for precise
statements. Note that (w+, w−, γ) are just scalars that can be calculated from the model parameters
and do not depend on σ∗. The main power of the genie lies in forming the vector w, which requires
knowing the locations C+ and C−. Then the question that remains is how one may come up with a
proxy for w such that the genie score is well-approximated.

5.1 WARM-UP: DEGREE PROFILING ALGORITHM FOR BEC AND BSC CHANNELS

Under BEC and BSC channel, a natural question is then what if we simply trust the side information
labels y ∈ {−1, 0,+1}n and y ∈ {−1,+1}n respectively. In particular, we use the proxy for w
where we just trust the side information on the face value and use the locations of S+ := {i ∈ [n] :
yi = +1} and S− := {i ∈ [n] : yi = −1} instead of C+ and C−.
It is known that the asymptotic information-theoretic threshold does not shift for the BEC and BSC
channels unless ϵ = O(n−β) and α = O(n−β) for some β > 0 (Dreveton et al., 2024; Saad &
Nosratinia, 2018). Therefore, the side information y already satisfies almost exact recovery criterion,
recovering (1 − o(1)) labels correctly. Hence, we have |C+∆S+|, |C−∆S−| = o(n) with high
probability. We then show that for this proxy choice of scores zdp, we indeed have

∥∥zdp − z∗
∥∥
∞ =

o(log n), and thus, the degree-profiling algorithm succeeds down to the shifted threshold. The formal
theorems and algorithms can be found in Appendix F.3 and G.3.
Remark 5.1. We emphasize that the degree profiling algorithm has an important caveat that it
would fail to recover labels exactly from a tuple (A, y), when side information strength is “weak”
or completely absent, even though the recovery was possible just from A. To overcome this, one has
to rely on the signal from A to get preliminary almost exactly correct labels, rather than just trusting
the side information y. This exactly corresponds to the two-stage strategies described in Section 1.2.
Our spectral algorithm in just one stage recover all the labels correctly from (A, y) (including no
side information), whenever it is possible to do so, and that too for any side information channel
(under the technical assumption that I∗ in (5) is well-defined which is also needed for the MAP
success).
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5.2 SPECTRAL ALGORITHM

Spectral Algorithm. The spectral algorithm affords a significantly more versatility than the
degree-profiling algorithm, as it emulates the genie score z∗ without any clean-up step with more
general or even no side information. The design of our spectral algorithm is informed by the en-
trywise eigenvector analysis result of Abbe et al. (2020), which allows us to say that the leading K
eigenvectors of A satisfy

ui ≈
Au∗

i

λ∗
i

,

where (λ∗
i , u

∗
i ) is the corresponding eigenvector of the expectation matrix E[A | σ∗], and the ap-

proximation is in the ℓ∞ norm. Here K = 1 for ROS and K = 2 for SBM. For both models, the
matrix E[A | σ∗] has a block structure, so do its top eigenvectors as well. Thus, we can find an
appropriate linear combination coefficients (ci)i∈[K] such that

w ≈
K∑
i=1

ci
λ∗
i

u∗
i .

It is important to note that computing (ci)i∈[K] does not require knowing the ground-truth σ∗.

Algorithm 1 An informal sketch of the spectral algorithm

Input: An observation matrix A ∈ Rn×n and the model parameters. Optionally, the side informa-
tion y ∈ Yn.

Output: An estimate of community assignments σ̂spec.

1: Compute coefficients (ci)i∈[K] from the model parameters such that w ≈
∑K

i=1
ci
λ∗
i
u∗
i .

2: Compute the top K eigenpairs of A denoted by (ui, λi).
3: Form the spectral score vector:

• No side information:

zspec = γ1n +

K∑
i=1

ciui.

• Side information: If side information is present, further update

zspec = zspec + log

(
S+

S−
(y)

)
.

4: σ̂spec = sgn(zspec).

Then the spectral score vector when the side information is absent given by

zspec = γ1n +

K∑
i=1

ciui ≈ γ1n +

K∑
i=1

ci
Au∗

i

λ∗
i

≈ γ1n +Aw ≈ z∗.

This achieves an ℓ∞ approximation of the genie score under no side information using eigenvectors
of A. When side information is present, due to Lemma 4.2 , it suffices to add the log-likelihood ratio
vector from (1). The approximations are tight enough such that we achieve

∥zspec − z∗∥∞ = o(log n).

Recalling that the genie scores succeed with margin of Ω(log n) by (8) above the IT threshold
immediately gives us optimality of spectral algorithm.
Remark 5.2. We remark that, to show the impossibility of recovery, due to the optimality of MAP,
Dreveton et al. (2024) shows that the MAP estimator (Definition 2.9) fails below the threshold.
However, their proof indeed shows even stronger statement that below the threshold, even the genie-
aided estimators fail. Both their impossibility and our achievability of spectral algorithm results
are driven by the genie-aided estimators, so it comes as no surprise that there is a certain threshold
collapse: the genie-aided estimators, spectral estimator, and MAP estimator all achieve the same
recovery threshold. The entire discussion can be summarized in Figure 2.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

spec MAP
Gen,

Figure 2: Summary of our unified proof framework. Our spectral algorithm is designed such that (a) holds.
Note that: (b) follows from the optimality of σ̂MAP and (c) follows from Lemma 4.1. Finally, we get the
threshold collapse phenomenon because below the IT threshold, the event in the fourth block happens with
probability o(1), and above the IT threshold, the event in the first block happens with high probability (8).

6 DISCUSSION AND FUTURE WORK

In this paper, we provide a systematic treatment of designing optimal spectral algorithms for two-
community matrix inference problems under side information, focused on the Bernoulli and Gaus-
sian cases. From a technical standpoint, our work makes a rigorous connection between spectral
algorithms and genie-aided estimators, characterizing their effectiveness in achieving sharp thresh-
olds for various exact recovery problems in a recent line of work. We refer the reader to Appendix
A.1 for a detailed discussion on this. Understanding the capabilities of such vanilla spectral algo-
rithms, without any clean-up stage, is of fundamental interest; we hope this perspective will guide
the design and analysis of spectral algorithms for exact community recovery problems moving for-
ward. Some directions for future work include:

• Exact recovery in Gaussian Mixture Block Model: In a recent work, Li & Schramm
(2023) proposed an alternative model to better capture real-world networks and sketched
out the general landscape for recovery by studying almost exact recovery. What about exact
recovery? Interestingly, Li & Schramm (2023) proposed exactly the same vanilla spectral
algorithm and showed it achieves almost exact recovery. Does it also succeed for exact
recovery?

• More general degree-profiling: A natural analogue of degree-profiling algorithm for more
general side information beyond BEC and BSC is to sign threshold the log-likelihood ratio
vector log

(
S+

S−
(y)
)

to compute preliminary labeling. We conjecture that, whenever such
side information is sufficient to shift the exact recovery threshold, the preliminary assign-
ment will already correctly compute (1− o(1))-faction of labels. Emulating the genie then
using this labeling as a proxy should succeed in exact recovery. We again emphasize that
the degree-profiling algorithm has limitations (Remark 5.1), however, it can be seen as a
good alternative of the spectral algorithms in the limited scope when side information is
guaranteed to be enormous.

• More general settings: To design spectral algorithms for more than two communities and
more general observation distributions (P+,P−,Q) from a class of exponential families
(also see details in Appendix A.1).
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A DEFERRED DISCUSSIONS

A.1 FUTURE EXTENSIONS AND PRIOR WORKS ON SPECTRAL ALGORITHMS

Future Extensions. We now describe, how we can generalize the spectral algorithm to more than
two communities and more general distribution families. The entire framework of genie-aided esti-
mation naturally generalizes to the multi-community case. We note that the entrywise eigenvectors
behaviors of Abbe et al. (2020) for top eigenvectors continue to hold. Despite this, (Abbe et al.,
2020, Appendix C.4) noted difficulties in designing spectral algorithms for more than two blocks
due to the multiplicity of eigenvalues and eigenvectors being only computed up to a rotation. But
we note that, except for these degenerate cases (some measure zero subset of parameters where ex-
act recovery is possible), the algorithm should be able to emulate the genie-aided estimation and
achieve optimality. For the degenerate cases noted in Abbe et al. (2020), it remains an interesting
open question if we can design a spectral estimator.
We expect that more general distribution families for pairwise observation matrix could be possible
to handle. In particular, we first summarize the key technical properties we relied on for designing
the spectral algorithms for ROS and SBM.

1. The genie-score vector takes a special form where it is an affine function of the entries of
the matrices.

z∗ ≈ Aw + γ1n.

2. The optimal genie linear combination vector w is in the span of eigenvectors of E[A | σ∗].

3. Lastly, the eigenvector u of A, and its corresponding eigenvector u∗ of E[A | σ∗], by Abbe
et al. (2016) we have

u ≈ Au∗

λ∗ ,

which allows us to emulate the genie using eigenvectors of A.

Property 1 holds more generally for any exponential family of distributions. The linear combinations
in Property 2 needs to be designed for specific distribution families, but we expect this to be possible
in great generality due to the block structure of the expectation matrices. Finally, one needs to verify
the entrywise behavior of eigenvector A holds. Abbe et al. has general conditions under which this
behavior holds, however, verifying the technical conditions for the distribution families remains to
be the main challenge.

Prior Works. We note that prior works on spectral algorithms mentioned in Section 1 are all
essentially emulating the genie and the model satisfies the aforementioned three properties. For
example, prior works have used weighted adjacency matrices (Dhara et al., 2022a), and even mul-
tiple adjacency matrices (Dhara et al., 2023; Gaudio & Liu, 2024) in order to bring out “helpful”
eigenvectors that can be used to mimic the genie estimators.
Interestingly, for the exact recovery problem in the hypergraph SBM from the similarity matrix W
(counting the hyperedges involving each pair of vertices), Gaudio & Joshi (2023) devised the same
spectral strategy of computing the signs of the second eigenvector in the symmetric case and ana-
lyzed it by proving the ℓ∞ behavior of eigenvectors. However, this strategy is known to be strictly
suboptimal (Bresler et al., 2024) for this setting. This is because the genie scores are not affine
functions of the entries of the matrices W due to internal dependencies. However, it is interesting
to note that the algorithm achieves the threshold of the min-bisection estimator (also not efficiently
computable), which is the first order approximation of MAP. In other words, the eigenvector ap-
proximated the first order terms of the genie scores. This suggests that even when the likelihood is
not a linear function of the entries of the observation matrix, while the spectral algorithm may be
suboptimal, it could be still possible to get a non-trivial performance guarantee.

A.2 ADDITIONAL RELATED WORK

Community recovery under side information. Community detection problems with side infor-
mation have been studied in numerous settings. Saad and Nosratinia Saad & Nosratinia (2018)
considered exact recovery in the symmetric, balanced SBM, under the BEC, BSC, and more general
side information with K features, where K may grow with n. Additionally, an efficient two-stage
exact recovery algorithm was proposed. Vector-valued side information was also studied in Saad
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& Nosratinia (2020), in the recovery of a planted dense subgraph of size o(n). Community detec-
tion in the sparse setting under side information has received significant attention- see for example
Mossel & Xu (2016); Cai et al. (2016); Kadavankandy et al. (2017); Kanade et al. (2016); Desh-
pande et al. (2018); Braun et al. (2022); we note that Deshpande et al. (2018) considers Gaussian
side information with either Bernoulli or Gaussian pairwise observations. See also Zhang et al.
(2014) which includes statistical physics conjectures for recovery thresholds derived from the cavity
method. Numerous approaches for clustering have been proposed in the network science literature,
such as Newman & Clauset (2016); Zanghi et al. (2010); Yang et al. (2009); Xu et al. (2012); Yang
et al. (2013); Zhang et al. (2016); Gibert et al. (2012); Zhou et al. (2009); Günnemann et al. (2013);
Cheng et al. (2011); Binkiewicz et al. (2017); see Bothorel et al. (2015) for a survey.

Other inference problems with side information Related problems in the literature include doc-
ument classification Krithara et al. (2008); Chang & Blei (2010) and text classification Balasubra-
manyan & Cohen (2011). A recent line of work studies the problem of community detection from
correlated graphs Racz & Sridhar (2021); Gaudio et al. (2022), so that the additional graph plays the
role of side information. See also Zhang et al. (2021), which considers attributed graph alignment.
More broadly, inference with side information falls under the area of semi-supervised learning (see
e.g. Van Engelen & Hoos (2020); Chapelle et al. (2002); Bair (2013); Basu et al. (2004); Newman
& Clauset (2016)).

Remark A.1 (Z2-synchronization as rescaled ROS). We remark that the Z2-synchronization prob-
lem is typically formulated as Aij = x∗

i x
∗
j + σWij , where x∗ is an unknown vector is chosen

uniformly at random from the set {±1}n, W is a zero-diagonal symmetric matrix with independent
entries sampled from N (0, 1) (Bandeira et al., 2017). In that case, the relevant parameterization of
σ is σ = c

√
n

logn , as σ =
√

n
2 logn is the threshold value for exact recovery Bandeira et al. (2017).

Thus, taking a = 1/
√
c, b = −1/

√
c and ρ = 1/2 in our ROS model (Definition 2.2) produces a

matrix A such that

Aij =
1

c

√
log n

n
x∗
i x

∗
j +W, x∗ ∼ Uniform({±1}n).

After scaling A by c
√

n/logn, we achieve the standard model x∗x∗⊤ + σW (with zero diagonal).

A.3 PROOF REVIEW OF DREVETON ET AL. (2024) FOR PROPOSITION 3.1

We first argue that the impossibility result in Proposition 3.1 is just a special case of the correspond-
ing result in (Dreveton et al., 2024)[Theorem 1]. Note that we have only one pair of communities
(C+, C−), which is responsible for determining the threshold. Exactly as in Dreveton et al. (2024),
we require the limit L(t) = limn→∞

n
lognCHt(+,−) to exist and be strictly concave.

For the MAP’s success, we note that the only change is that we relax the requirement in two ways:
(i) we do not require L(t) is strictly concave, (ii) we do not require that L(t) always exists, and are
fine when the limit does not exist while diverging to +∞. Dreveton et al. prove the MAP success in
two parts, by first bounding the probability of the event that an assignment vector σ with hamming
distance of m has higher likelihood than the ground truth σ∗ (see their Lemma 3). In the second
step (see their Appendix A.4), they do a union bound argument over all such possible vectors with
the Hamming distance of m, and all varying 1 ≤ m ≤ n/2.
We first note that that their Lemma 3 statement as well as its proof do not make use of the condition
that L(t) is strictly concave. In Appendix A.4, the union bound argument also does not require L(t)
is strictly concave (it only uses supt∈(0,1) L(t) > 1), and the strict concavity was only required
to show the impossibility direction. To justify the second relaxation where we allow the cases of
infinite limit L(t), we first note that their Lemma 3 is non-asymptotic anyway and derived for any
finite n. Later, in Appendix A.4, we observe that the existence of the constants ϵ > 0 and κ > 0
holds true, even when the limit L(t) = +∞. In particular, the purpose behind the requirement was
to exclude the cases when L(t) does not converge but neither approaches +∞.
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B NOTATION AND PROBABILITY FACTS

B.1 NOTATION

Throughout the paper, we extensively use the standard extended real line algebra on R̄ := R ∪
{−∞,+∞}, where +∞ and −∞ are respectively greater and less than any other real number.
Moreover, for any two a, b ∈ R̄, we will define a−b = 0 when a = b. We also view log : R̄≥0 → R̄
where log(0) = −∞ and log(+∞) = +∞, and use 0 log 0 = 0 log(+∞) = 0, following the
convention in the information-theory literature.
For any two vectors of random variables X and Y , we write X ⊥ Y if entries of one are independent
from the others. For any real numbers a, b ∈ R, we denote a∨b = max{a, b} and a∧b = min{a, b}.
Let sgn : R → {±1} be the function defined by sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.
We also extend the definition to vectors; let sgn : Rn → {±1}n be the map defined by applying the
sign function componentwise. We define R+ = [0,∞). For n ∈ N, we write [n] = {1, 2, . . . , n}.
We use the standard notation o(.), O(.), ω(.), Ω(.), Θ(.) etc. throughout the paper. For non-negative
sequences (an)n≥1 and (bn)n≥1, we write an ≲ bn to mean an ≤ Cbn for some constant C > 0.
The notation ≍ is similar, hiding two constants in upper and lower bounds. Moreover, we denote
an ≈ bn as a shorthand for limn→∞

an

bn
= 1.

For a vector x ∈ Rn, we define ∥x∥2 = (
∑n

i=1 x
2
i )

1/2, ∥x∥1 =
∑n

i=1 |xi|, and ∥x∥∞ = maxi |xi|.
Additionally, for any i ∈ [n], we define x−i as the vector in Rn such that (x−i)j = xj for j ̸= i
and (x−i)i = 0. For any matrix M ∈ Rn×n, Mi· refers to its ith row, which is a row vector,
and M·i refers to its ith column, which is a column vector. The matrix spectral norm is ∥M∥2 =
sup∥x∥2=1 ∥Mx∥2, the matrix 2 → ∞ norm is ∥M∥2→∞ = sup∥x∥2=1 ∥Mx∥∞ = supi ∥Mi·∥2.
Let zd : Rn×n → Rn×n be the zero-diagonal mapping, where for any A ∈ Rn×n, zd(A)ij = Aij if
i ̸= j and 0 otherwise.

B.2 STANDARD PROBABILITY LEMMAS

Lemma B.1 (Rényi Divergence Formula). For any two probability laws (A,B), either both discrete
or continuous, we have that

e(t−1)Dt(A∥B) = E
x∼B

[(
A(x)

B(x)

)t
]
.

Proof. By rearrangement the terms from the definition in (3).

Lemma B.2. Let Z ∼ N (0, 1). The for any t > 0,(
1

t
− 1

t3

)
1√
2π

e−t2/2 ≤ P(Z ≥ t) ≤ 1

t
√
2π

e−t2/2.

We next show that the sampling procedure of the community assignment vector σ∗ in any of the
models leads to communities with roughly ρ and (1− ρ) fraction of vertices.
Lemma B.3. Let σ∗ ∈ {±1}n be a vector whose coordinates are i.i.d. with P(σ∗

i = +1) = ρ.
Then, let C+ := {i : σ∗

i = +1} and C− := {i : σ∗
i = −1}. Define the event E as follow.

E := {||C+| − ρn| ≤ ρn2/3 and ||C−| − (1− ρ)n| ≤ ρn2/3}. (9)
Then P(E) ≥ 1− o(1).

Proof. For each 1 ≤ i ≤ n, since P(σ∗
i ) = ρ i.i.d., we have that |C+| = |{i : σ∗

i = +1}| fol-
lows Bin(n, ρ). The Chernoff bound for binomial random variables (Mitzenmacher & Upfal, 2017,
Theorem 4.4, Theorem 4.5) implies that for any δ ∈ (0, 1),

P(||C+| − E[|C+|]| ≤ δn) ≥ 1− 2 exp
(
−δ2 E[|C+|]/3

)
.

Note that E[|C+|] = ρn. Choosing δ = ρn−1/3 = o(1) (as ρ > 0 is a constant)

P(||C+| − ρn| ≤ ρn2/3) ≥ 1− 2 exp
(
−n−2/3ρ3n/3

)
= 1− 2 exp

(
−ρ3n1/3/3

)
.

Since n1/3 = ω(log n) and ρ > 0 is a constant,

P
(
(1− n−1/3) ρn ≤ |C+| ≤

(
1 + n−1/3

)
ρn
)
≥ 1−O( exp (−10 log n/3)) = 1−O(n−3),

which implies the lemma.
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C VERIFICATION FOR INFORMATION THEORETIC LIMITS

In this section, we will verify the function L(t) is well defined and is strictly concave for both ROS
and SBM and in the cases of no side information, or the special cases of GF,BEC and BSC side
information channels. As a result, even I∗ is well-defined for these settings and sharply characterizes
the information-theoretic limits in these settings, making our spectral algorithms in Theorem 1 and
Theorem 2 optimal, when combined with the impossibility direction of Proposition 3.1. In order
to verify these technical conditions, we will use a well-established closed form expression of Rényi
divergence of two Gaussian random variables, e.g. see Gil et al. (2013).

Lemma C.1. Let A ≡ N (µ1, σ
2Id) and B ≡ N (µ2, σ

2Id) for µ1, µ2 ∈ Rd and σ2 > 0, then

Dt(A∥B) = t

2σ2
∥µ1 − µ2∥22 .

Side Information Terms. We start by analyzing the additive terms that come in L(t) due to the
presence of each example of side information channels.

Lemma C.2. Consider the side information laws S+ ≡ N (υ+, σ
2Id) and S− ≡ N (υ−, σ

2Id), for
constant σ2 > 0 and υ+ = β+

√
log n and υ− = β−

√
log n for β+,β− ∈ Rd. Then

lim
n→∞

n

log n
· (1− t)

n
Dt(S+∥S−) =

t(1− t)
∥∥β+ − β−

∥∥2
2

2σ2
,

which is well-defined. Note that this as a function of t ∈ (0, 1) is strictly concave when β+ ̸= β−
or it is 0 otherwise.

Proof. The lemma follows from a straighforward simplification and the use of Lemma C.1

lim
n→∞

n

log n
· (1− t)

n
Dt(S+∥S−) = lim

n→∞

(1− t)

log n

t ∥υ+ − υ−∥22
2σ2

= lim
n→∞

t(1− t)

log n

∥∥β+ − β−
∥∥2
2
log n

2σ2

=
t(1− t)

∥∥β+ − β−
∥∥2
2

2σ2
.

Lemma C.3. Consider the side information laws (S+,S−) as in the BEC channel with ϵ such that
limn→∞

log(1/ϵ)
logn = β for β ≥ 0, i.e. ϵ = n−β+o(1) Then

lim
n→∞

n

log n
× (1− t)

n
Dt(S+∥S−) = β.

Proof. By definition of Rényi divergence in (3)

lim
n→∞

n

log n
· (1− t)

n
Dt(S+∥S−) = lim

n→∞

(1− t)

log n

1

(t− 1)
log E

yi∼S−

[(
S+(yi)

S−(yi)

)t
]

= lim
n→∞

− log ϵ

log n
= lim

n→∞

log(1/ϵ)

log n
= β.

Lemma C.4. Consider the side information laws (S+,S−) as in the BSC channel with α such that

limn→∞
log( 1−α

α )

logn = β for β ≥ 0, i.e. α = n−β+o(1) Then

lim
n→∞

n

log n
× (1− t)

n
Dt(S+∥S−) = βmin{t, 1− t}.

Note that this is a concave function of t ∈ (0, 1).
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Proof. By definition of Rényi divergence in (3)

lim
n→∞

n

log n
· (1− t)

n
Dt(S+∥S−) = lim

n→∞

(1− t)

log n

1

(t− 1)
log E

yi∼S−

[(
S+(yi)

S−(yi)

)t
]

= lim
n→∞

− log(αt(1− α)1−t + α1−t(1− α)t)

log n

= − lim
n→∞

−min{βt, β(1− t)} log n
log n

= βmin{t, 1− t}.

Deriving Threshold for ROS and SBM Finally, we will derive the expression of L(t) and show
that it is strictly concave.

Lemma C.5. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Consider the distribution
(P+,P−,Q) as defined in the ROS model (Definition 2.2). Then in the absence of side information,
L(t) is well-defined and given by

L(t) = t(1− t)
(a− b)2(ρa2 + (1− ρ)b2)

2
.

Moreover, L(t) is strictly concave. Additionally, under GF,BEC,BSC channels described in Lem-
mas C.2, C.3, and C.4 respectively, L(t) continues to be well-defined and strictly concave.

Proof. In the absence of side information

L(t) = lim
n→∞

n

log n
CHt(+,−) = lim

n→∞

n(1− t)

log n
[ρDt(P+∥Q) + (1− ρ)Dt(Q∥P−)]

= lim
n→∞

n(1− t)

log n

[
ρ · t(a

2 − ab)2

2

log n

n
+ (1− ρ) · t(ab− b2)2

2

log n

n

]
(using Lemma B.1)

= t(1− t)

(
ρ(a2 − ab)2 + (1− ρ)(ab− b2)2

)
2

= t(1− t)
(a− b)2(ρa2 + (1− ρ)b2)

2
.

Note that when max{|a|, |b|} > 0, the multiplicative coefficient of t(1 − t) is positive. Therefore,
L(t) is strictly concave function in (0, 1).
Under side information, L(t) is given by adding another term based on the channel as derived in
Lemmas C.2, C.3, and C.4. Therefore, L(t) continues to be well-defined. Moreover, L(t) still
remains strictly concave because the addition of a strictly concave function with another concave
function (including just constant) is strictly concave.

Lemma C.6. Fix ρ ∈ (0, 1) and a1, a2, b > 0. Consider the distribution (P+,P−,Q) as defined in
the SBM model (Definition 2.3). Then in the absence of side information, L(t) is well-defined and
given by

L(t) = tρa1 + (1− t)ρb+ t(1− ρ)b+ (1− t)(1− ρ)a2 − ρat1b
1−t − (1− ρ)bta1−t

2 .

Moreover, except the degenerate case a1 = a2 = b, we have that L(t) is strictly concave. Addi-
tionally, under GF,BEC,BSC channels described in Lemmas C.2, C.3, and C.4 respectively, L(t)
continues to be well-defined and strictly concave.

Proof. This is just a special case of the expression derived by (Dreveton et al., 2024, Example 1)
but for two communities. Note that L(t) is twice differentiable, and

L′′(t) = −ρ
(a1
b

)t
b log2

(a1
b

)
− (1− ρ)

(
b

a2

)t

a2 log
2

(
b

a2

)
< 0,

unless a1 = a2 = b, and thus, L(t) is strictly concave. Similar to Lemma C.5, even for SBM, after
adding another side information channel-specific term to L(t), derived in Lemmas C.2, C.3, and
C.4, the function L(t) is well-defined and strictly concave.
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D OMITTED PROOFS FROM SECTION 4

In this section, we prove all the genie-aided estimation related lemmas. We start with the proof of
Lemma 4.1, which establishes that the failure of some genie-aided estimator implies that the global
MAP estimator also fails.

Proof of Lemma 4.1. We first consider the case when side information y (either BEC or BSC) is
provided. Let S1 = {(A, σ, y) : ∃i ∈ [n] such that σ̂Gen,i fails}. Similarly, S2 = {(A, σ, y) :
σ̂MAP fails}. To show the desired claim, it suffices to show that S1 ⊆ S2.

To this end, fix any instance (A, σ, y) ∈ S1 of (A, σ∗, y). Then by definition of the failure of the
genie-aided estimators give below Equation (6), there exists i ∈ [n] such that

P(σ∗
i = −σi | A, y, σ−i) > P(σ∗

i = σi | A, y, σ−i). (10)

We now consider the community assignment vector σ′ ∈ {±1}n whose labeling agrees with σ
except for the ith label, for which σ′

i = −σi. Then

P(σ∗ = σ′ | A, y) = P(σ∗
−i = σ′

−i, σ
∗
i = σ′

i | A, y)

= P(σ∗
−i = σ′

−i | A, y) · P(σ∗
i = σ′

i | A, y, σ∗
−i = σ′

−i)

= P(σ∗
−i = σ−i | A, y) · P(σ∗

i = −σi | A, y, σ∗
−i = σ−i)

(as σ′
−i = σ−i but σ′

i = −σi)

> P(σ∗
−i = σ−i | A, y) · P(σ∗ = σi | A, y, σ∗

−i = σ−i) (using (10))

= P(σ∗
−i = σ−i, σ

∗
i = σi | A, y)

= P(σ∗ = σ | A, y). (11)

By the definition of the MAP estimator σ̂MAP = argmaxσ∈{±1}n P(σ∗ = σ|A, y) ̸= σ, which
implies (A, σ, y) ∈ S2.
Finally, we consider the case when there is no side information. Define S1 and S2 similarly, but
after dropping y.

• Case P+ ̸≡ P− or ρ ̸= 1/2. Consider any (A, σ) ∈ S1 and follow exactly the same
argument used in in deriving (11) (after dropping the conditioning on y). This will lead to
the conclusion that (A, σ) ∈ S2, yielding S1 ⊆ S2.

• Case P+ ≡ P− and ρ = 1/2. Consider any (A, σ) ∈ S1. Follow exactly the same
argument as in (11) and conclude that P(σ∗ = σ′ | A) > P(σ∗ = σ | A). Additionally,
due to the symmetry, P(σ∗ = σ | A) = P(σ∗ = −σ|A). Combining these two, we obtain
that σ̂MAP /∈ {±σ∗}, which implies σ̂MAP fails by Definition 2.8. Conclude (A, σ) ∈ S2, as
desired.

We now derive the expressions for genie scores given by Lemma 4.2, without or with side informa-
tion.

Proof of Lemma 4.2. We first recall the definition of genie scores from (7). For any i ∈ [n], we do
the following analysis in each model of side information.
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No side information:

z∗i = log

(
P(σ∗

i = +1 | A, σ∗
−i)

P(σ∗
i = −1 | A, σ∗

−i)

)
= log

(
P(σ∗

i = +1) · L(A, σ∗
−i | σ∗

i = +1)

P(σ∗
i = −1) · L(A, σ∗

−i | σ∗
i = −1)

)
= log

(
P(σ∗

i = +1) · L(A | σ∗
i = +1, σ∗

−i)

P(σ∗
i = −1) · L(A | σ∗

i = −1, σ∗
−i)

)
(σ∗

−i is independent of σ∗
i )

= log

(
P(σ∗

i = +1) · L(Ai· | σ∗
i = +1, σ∗

−i)

P(σ∗
i = −1) · L(Ai· | σ∗

i = −1, σ∗
−i)

)
(the likelihood of all but the ith row is same conditioned under σ∗

−i irrespective of σ∗
i )

= log

ρ ·
∏

j∈C−i
+

P+(Aij) ·
∏

j∈C−i
−

Q(Aij)

/
(1− ρ) ·

∏
j∈C−i

+

Q(Aij) ·
∏

j∈C−i
−

P−(Aij)


(due to the conditional independence of the entries and the law of GBM)

=
∑

j∈C−i
+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
ρ

1− ρ

)
.

Side information: Again by (7), we have

z∗i = log

(
P(σ∗

i = +1 | A, y, σ∗
−i)

P(σ∗
i = −1 | A, y, σ∗

−i)

)
= log

(
P(σ∗

i = +1 | A, yi, σ
∗
−i)

P(σ∗
i = −1 | A, yi, σ∗

−i)

)
(conditioned on σ∗

−i, we have σ∗
i ⊥ y−i)

= log

(
P(σ∗

i = +1) · L(A, yi, σ
∗
−i | σ∗

i = +1)

P(σ∗
i = −1) · L(A, yi, σ∗

−i | σ∗
i = −1)

)
= log

(
P(σ∗

i = +1) · L(A, σ∗
−i | σ∗

i = +1) · P(yi | σ∗
i = +1)

P(σ∗
i = −1) · L(A, σ∗

−i | σ∗
i = −1) · P(yi | σ∗

i = −1)

)
(conditioned on σ∗

i , we have yi ⊥ A and yi ⊥ σ∗
−i)

= log

(
P(σ∗

i = +1 | A, σ∗
−i) · P(yi | σ∗

i = +1)

P(σ∗
i = −1 | A, σ∗

−i) · P(yi | σ∗
i = −1)

)
= log

(
P(σ∗

i = +1 | A, σ∗
−i)

P(σ∗
i = −1 | A, σ∗

−i)

)
+ log

(
P(yi | σ∗

i = +1)

P(yi | σ∗
i = −1)

)
(12)

Note that

log

(
P(yi | σ∗

i = +1)

P(yi | σ∗
i = −1)

)
= log

(
S+(yi)

S−(yi)

)
.

Substituting this in (12) along with the definition of genie score without side information (7) and
using the expression from the case without side information, we obtain

z∗i =
∑

j∈C−i
+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
ρ

1− ρ

)
+ log

(
S+(yi)

S−(yi)

)
.

We now show the proof of Lemma 4.3, where we explicitly derive the closed form of the addi-
tive factor under side information for the special cases of Gaussian Features (GF), Binary Erasure
Channel (BEC), and Binary Symmetric Channel (BSC).

Proof of Lemma 4.3. We break into cases.

• Gaussian Features (GF):

log

(
S+(yi)

S−(yi)

)
= log

e−
∥yi−υ+∥2

2
2σ2

e−
∥yi−υ−∥2

2
2σ2

 = log

[
exp

(
∥yi − υ−∥22 − ∥yi − υ+∥22

2σ2

)]

=
∥yi − υ−∥22 − ∥yi − υ+∥22

2σ2
.
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• Binary Erasure Channel (BEC): If yi = 0, then S+(yi) = S−(yi) = ϵ. If yi = +1,
then S+(yi) = 1 − ϵ but S−(yi) = 0, and similarly, if yi = −1, then S+(yi) = 0 but
S−(yi) = 1− ϵ.

log

(
S+(yi)

S−(yi)

)
=


+∞, if σ∗

i = +1;

−∞, if σ∗
i = −1;

0, otherwise.

• Binary Symmetric Channel (BSC):

log

(
S+(yi)

S−(yi)

)
= log

(
1− α

α

)
1[yi = +1]+log

(
α

1− α

)
1[yi = −1] = log

(
1− α

α

)
yi .

D.1 GENIE SUCCESS WITH MARGIN ABOVE THE IT THRESHOLD.

We now give a formal version of the claim that above the information-theoretic limit, all the genie
scores succeed with a margin of Ω(log n), formalized in the following lemma.
Lemma D.1. Fix ρ ∈ (0, 1) and consider probability laws (P+,P−,Q). Let (A, σ∗) ∼
GBMn(ρ,P+,P−,Q) and we observe A. Condition on σ∗ such that the event E from (9) holds.
Optionally, for side information laws (S+,S−), we observe y ∼ SI(σ∗,S+,S−). Let z∗ be the ge-
nie score vector for the corresponding model given by (7). Let I∗ be defined according to (5). Then
if I∗ > 1 then there exists some constant δ > 0 such that for any i ∈ [n]:

P(σ∗
i z

∗
i < δ log n) = o(n−1).

Proof. By Lemma 4.2, for any i ∈ [n], the genie score z∗i is given by

z∗i =
∑

j∈C−i
+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
ρ

1− ρ

)
+ log

(
S+(yi)

S−(yi)

)
.

For convenience, we define Xi := z∗i − log
(

ρ
1−ρ

)
. For any i ∈ C+ and any ε, t > 0,

P(σ∗
i z

∗
i < ε log n) = P(z∗i < ε log n) = P (Xi < (1 + o(1))ε log n) = P

(
etXi < et(1+o(1))ε logn

)
≤ etε logn E

[
e−tXi

]
.

We now analyze

E
[
e−tXi

]
= E

exp
−t

 ∑
j∈C−i

+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
S+(yi)

S−(yi)

)



= E

exp
t

 ∑
j∈C−i

+

log

(
Q(Aij)

P+(Aij)

)
+
∑

j∈C−i
−

log

(
P−(Aij)

Q(Aij)

)
+ log

(
S−(yi)

S+(yi)

)



= E

 ∏
j∈C−i

+

e
t log

( Q(Aij)

P+(Aij)

) ∏
j∈C−i

−

e
t log

(P−(Aij)

Q+(Aij)

)
· et log

(S−(yi)

S+(yi)

)
=

∏
j∈C−i

+

E

[(
Q(Aij)

P+(Aij)

)t
] ∏

j∈C−i
−

E

[(
P−(Aij)

Q(Aij)

)t
]
E

[(
S−(yi)

S+(yi)

)t
]

= e(1+o(1))(t−1)(ρnDt(Q∥P+)+(1−ρ)nDt(P−∥Q)+Dt(S−∥S+))

(using Lemma B.1 and using community sizes conditioned on E)

= e−(1+o(1))tn(ρD1−t(P+∥Q)+(1−ρ)D1−t(Q∥P+)+ 1
n D1−t(S+∥S−))

(since (t− 1)Dt(A∥B) = −tD1−t(B∥A))

= e−(1+o(1))nCH1−t(+,−)
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Substituting this in our Chernoff-style bound, we obtain for any i ∈ C+

P(σ∗
i z

∗
i < ε log n) ≤ e−(1+o(1))(nCH1−t(+,−)−tε logn)

When I∗ > 1, we have there exists t∗ ∈ (0, 1) such that L(1−t∗) = limn→∞
n

lognCH1−t∗(+,−) >

1. Thus, there exists a constant ϵ > 0, and t∗ ∈ (0, 1) such that for sufficient large n:

P(σ∗
i z

∗
i < ε log n) ≤ e−((1+ϵ) logn−t∗ε logn).

Therefore, one can choose δ1 := δ1(t
∗, ϵ) > 0 small enough such that

P(σ∗
i z

∗
i < δ1 log n) ≤ e−((1+ϵ/2) logn) = o(n−1).

We carry out exactly similar calculation for the community C−. For any i ∈ C− and t, ε > 0,

P(σ∗
i z

∗
i < ε log n) = P(z∗i > −ε log n) = P (Xi > −(1 + o(1))ε log n) = P

(
etXi > e−t(1+o(1))ε logn

)
≤ etε logn E

[
etXi

]
.

Simplifying

E
[
etXi

]
= E

exp
t

 ∑
j∈C−i

+

log

(
P+(Aij)

Q(Aij)

)
+
∑

j∈C−i
−

log

(
Q(Aij)

P−(Aij)

)
+ log

(
S+(yi)

S−(yi)

)



=
∏

j∈C−i
+

E

[(
P+(Aij)

Q(Aij)

)t
] ∏

j∈C−i
−

E

[(
Q(Aij)

P−(Aij)

)t
]
E

[(
S+(yi)

S−(yi)

)t
]

= e(1+o(1))(t−1)(ρnDt(P+∥Q)+(1−ρ)nDt(Q∥P−)+Dt(S+∥S−))

(using Lemma B.1 and using community sizes conditioned on E)

= e−(1+o(1))nCHt(+,−)

Overall, we obtain for any i ∈ C+

P(σ∗
i z

∗
i < ε log n) ≤ e−(1+o(1))(nCHt(+,−)−tε logn)

If I∗ > 1 , then there exists t∗ ∈ (0, 1) such that L(t∗) = limn→∞
n

lognCHt(+,−) > 1 and thus,
there exists a constant ϵ > 0, and t∗ ∈ (0, 1) such that for sufficient large n:

P(σ∗
i z

∗
i < ε log n) ≤ e−((1+ϵ) logn−t∗ε logn).

Therefore, choosing δ2 := δ2(t
∗, ϵ) > 0 small enough such that

P(σ∗
i z

∗
i < δ2 log n) ≤ e−((1+ϵ/2) logn) = o(n−1).

Finally, choosing δ = min{δ1, δ2} > 0, we obtain for i ∈ [n]

P(σ∗
i z

∗
i < δ log n) = o(n−1),

concluding the proof of the lemma.

E ENTRYWISE BEHAVIOR OF EIGENVECTORS.

Abbe, Fan, Wang, and Zhong Abbe et al. (2020) showed the powerful entrywise behavior of eigen-
vectors for a general ensemble of random matrices under certain assumptions. Their result (Abbe
et al., 2020, Theorem 2.1) applies more generally to eigenspaces; below we note a special case of
their result when the eigenspace has a single eigenvalue.
Suppose A ∈ Rn×n is a symmetric random matrix and A∗ = E[A]. Let the eigenvalues of A
be |λ1| ≥ · · · ≥ |λn|, and their associated eigenvectors be {uj}j∈[n] (defined up to rotation if
eigenvalues are repeated). Analogously for A∗, the eigenvalues and eigenvectors are |λ∗

1| ≥ · · · ≥
|λ∗

n| and {u∗
j}j∈[n], respectively. For any fixed (λ∗

i , u
∗
i ), define the eigengap quantity

∆∗ := |λ∗
i | ∧ min

j∈[n]\{i}
|λ∗

i − λ∗
j |. (13)

Here we define the eigengap for the special case of (Abbe et al., 2020, Theorem 2.1) applied to
a single eigenvector, rather than for an eigenspace associated with consecutive eigenvalues. For
more general definition when the eigenspace contains multiple eigenvalues, see (Abbe et al., 2020,
Equation (2.1)). We define κ := |λ∗

i |/∆∗, which is always bounded from below by 1. For a
parameter γ ≥ 0, consider the following four assumptions.
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A1 (Incoherence). ∥A∗∥2→∞ ≤ γ∆∗.

A2 (Row- and column-wise independence). For any m ∈ [n], the entries in the mth row and column
of A are independent from others, i.e. {Aij : i = m or j = m} ⊥ {Aij : i ̸= m, j ̸= m}.
A3 (Spectral norm concentration). For some δ0 ∈ (0, 1), suppose P(∥A−A∗∥2 ≤ γ∆∗) ≥ 1− δ0.

A4 (Row concentration). Suppose φ(x) is continuous and non-decreasing in R+ and φ(x)/x is
non-increasing for x > 0. Additionally φ(0) = 0 and 32κmax{γ, φ(γ)} ≤ 1. Let there be some
δ1 ∈ (0, 1) such that for any m ∈ [n] and w ∈ Rn

P
(
|(A−A∗)m·w| ≤ ∆∗ ∥w∥∞ φ

(
∥w∥2√
n ∥w∥∞

))
≥ 1− δ1

n
.

Lemma E.1 (Theorem 2.1 Abbe et al. (2020)). Under Assumptions 1 to 4, with probability at least
1− δ0 − 2δ1, we have

min
s∈{±1}

∥∥∥∥sui −
Au∗

i

λ∗
i

∥∥∥∥
∞

≲ κ(κ+ φ(1))(γ + φ(γ)) ∥u∗
i ∥∞ +

γ ∥A∗∥2→∞
∆∗ .

E.1 ENTRYWISE ANALYSIS FOR EIGENVECTORS FOR ROS.

In this subsection, we will show that the top eigenvector of A sampled from ROS exhibits the
entrywise behavior discussed above. More formally, we show the following lemma.
Lemma E.2. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b).
Condition on σ∗ satisfying E from (9). Let A∗ := E[A | σ∗]. Define (λ1, u1) and (λ∗

1, u
∗
1) as above.

Then with probability 1− o(1)

min
s∈{±1}

∥∥∥∥su1 −
Au∗

1

λ∗
1

∥∥∥∥
∞

≤ C√
n log n

,

for some constant C := C(ρ, a, b) > 0.

According to the definition of the ROS model, we have A = zd

(√
logn
n v∗v∗⊤ +W

)
. The entire

analysis is done conditioned on σ∗, so the only randomness in this analysis is from the added noise
matrix W . We verify Assumptions 1-4 required to apply Lemma E.1 using similar ideas as (Abbe
et al., 2020, Theorem 3.1).

First, observe that A∗ = zd(v∗v∗⊤
√

logn/n). Let (λ∗
1, u

∗
1) be the top eigenpair. The corresponding

eigengap quantity defined in (13) is ∆∗ := |λ∗
1| ∧min2≤i≤n |λ∗

1 − λ∗
i |. We begin by characterizing

u∗
1, λ∗

1, and ∆∗.
Lemma E.3. Let (λ∗

1, u
∗
1) be the top eigenpair of A∗. Then

u∗
1 =

(1 + o(1))v∗

∥v∗∥2
λ∗
1 = (1 + o(1))

√
log n

n
∥v∗∥22 , ∆∗ ≈ |λ∗

1| = Θ(
√

n log n).

Proof. Note that v∗v∗⊤
√

logn/n is a rank-1 matrix. Let |λ̃1| ≥ · · · ≥ |λ̃n| be its eigenvalues. Then

we have that only non-zero eigenvalue is λ̃1 =
√

logn
n ∥v∗∥22 = Θ(

√
n log n) and the corresponding

normalized eigenvector is v∗/ ∥v∗∥2 and λ̃2 = · · · = λ̃n = 0. After zeroing out the diagonal, the
entries of the corresponding eigenvector v∗/ ∥v∗∥2 will be perturbed by a factor of (1 + o(1)) since
the diagonal correction is of the order of O(

√
logn/n). Hence, we obtain u∗

1 = (1+o(1))v∗/ ∥v∗∥2.
By Weyl’s inequality, we calculate the effect of zeroing out the diagonal on the eigenvalue:

|λ∗
1 − λ̃1| ≤

∥∥∥v∗v∗⊤√logn/n − zd
(
v∗v∗⊤

√
logn/n

)∥∥∥
2
= O

(√
log n

n

)
.

Therefore,

λ∗
1 = λ̃1+O(

√
logn/n) =

√
log n

n
∥v∗∥22+O(

√
logn/n) = (1+ o(1))

√
log n

n
∥v∗∥22 ≍

√
n log n.

Applying Weyl’s inequality, for 2 ≤ i ≤ n, we get |λ∗
i | = O(

√
logn/n). Hence, ∆∗ ≈ |λ∗

1| ≍√
n log n.
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Proof of Lemma E.2. We will let γ := 3
√
n

∆∗ = 1/Θ(
√
log n), due to Lemma E.3. Let us now verify

Assumption 1. For any i ∈ C+

∥A∗
i·∥2 =

√
|C−i

+ | · a4 log n
n

+ |C−| · a2b2
log n

n

=

√
(1 + o(1))ρn · a4 log n

n
+ (1 + o(1))(1− ρ)n · a2b2 log n

n
= Θ(

√
log n),

where the second step follows from using Lemma B.3. Similarly, also for any i ∈ C−

∥A∗
i·∥2 =

√
|C+| · a2b2

log n

n
+ |C−i

− | · b4 log n
n

= Θ(
√
log n).

Overall, combining these two we obtain ∥A∗∥2→∞ = Θ(
√
log n) ≤ 3

√
n = γ∆∗, verifying As-

sumption 1. Assumption 2 on row and column-wise independence trivially holds due to the i.i.d.
noise matrix W (up to symmetry).
To verify Assumption 3 on spectral norm concentration, first observe that A − A∗ = W , where W
is the zero diagonal symmetric matrix with i.i.d. N (0, 1) entries. Applying (Bandeira et al., 2017,
Proposition 3.3), we have that with probability at least 1− e−n/2,

∥A−A∗∥2 = ∥W∥2 ≤ 3
√
n = γ∆∗,

Therefore, Assumption 3 holds with δ0 = e−n/2. We now turn our attention to Assumption 4. Let
us choose φ(x) = cx for some constant c > 0 which we will decide later. Clearly, φ is continuous,
non-decreasing in R+ with φ(0) = 0, and φ(x)/x = c is also non-increasing in (0,∞). Letting
κ = 1, it is straightforward to see that 32κmax{γ, φ(γ)} = 32γmax{1, c} = o(1) ≤ 1, as
γ = o(1).
We now verify the row concentration part of the assumption. Using Lemma E.3, we have ∆∗ ≈
|λ∗

1| ≥ max{ρa2, (1 − ρ)b2}
√
n log n. Therefore, it holds that for any ϵ > 0, there is a sufficiently

large n such that ∆∗ ≥ (1 − ϵ)max{ρa2, (1 − ρ)b2}
√
n log n. Moreover, for any fixed w ∈ Rn,

one can say that

∆∗ ∥w∥∞ φ

(
∥w∥2√
n ∥w∥∞

)
≥

(1− ϵ)max{ρa2, (1− ρ)b2}
√
n log n · ∥w∥∞ · c ∥w∥2√

n ∥w∥∞
= (1− ϵ)cmax{ρa2, (1− ρ)b2}

√
log n ∥w∥2 .

Additionally, for any fixed m ∈ [n], (A−A∗)m·w ∼ N (0, ∥w−m∥22). Therefore,

P
(
|(A−A∗)m·w| ≤ ∆∗ ∥w∥∞ φ

(
∥w∥2√
n ∥w∥∞

))
≥ P

(
|(A−A∗)m·w| ≤ (1− ϵ)cmax{ρa2, (1− ρ)b2}

√
log n ∥w∥2

)
= P

(
|N (0, ∥w−m∥22)| ≤ (1− ϵ)cmax{ρa2, (1− ρ)b2}

√
log n ∥w∥2

)
≥ P

(
|N (0, ∥w∥22)| ≤ (1− ϵ)cmax{ρa2, (1− ρ)b2}

√
log n ∥w∥2

)
= P

(
|N (0, 1)| ≤ (1− ϵ)cmax{ρa2, (1− ρ)b2}

√
log n

)
≥ 1− 2e−(1−ϵ)2c2 max{ρa2,(1−ρ)b2}2 logn/2

(1− ϵ)cmax{ρa2, (1− ρ)b2}
√
log n

√
2π

(using Lemma B.2)

= 1− 2n−(1−ϵ)2c2 max{ρa2,(1−ρ)b2}2/2

(1− ϵ)cmax{ρa2, (1− ρ)b2}
√
2π log n

.

Therefore, letting

δ1 =
2n1−(1−ϵ)2c2 max{ρa2,(1−ρ)b2}2/2

(1− ϵ)cmax{ρa2, (1− ρ)b2}
√
2π log n

, and setting c =
2

(1− ϵ)max{ρa2, (1− ρ)b2}
,
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we get δ1 = o(1). Finally, applying Lemma E.1, we obtain that with probability 1 − δ0 − 2δ1 =
1− o(1)

min
s∈{±1}

∥∥∥∥u1 −
Au∗

1

λ∗
1

∥∥∥∥
∞

≲ κ(κ+ φ(1))(γ + φ(γ)) ∥u∗
1∥∞ +

γ ∥A∗∥2→∞
∆∗

≤ (1 + c)(1 + c)γ ∥u∗
1∥∞ +

γ ∥A∗∥2→∞
∆∗ (since κ = 1 and φ(x) = cx)

=
1

Θ(
√
n log n)

.

We used γ = 1
Θ(

√
logn)

, ∥u∗
1∥∞ = O( 1√

n
), ∥A∗∥2→∞ =

√
log n, and ∆∗ =

√
n log n.

E.2 ENTRYWISE ANALYSIS OF EIGENVECTORS FOR SBM.

In this subsection, we show that the similar behavior also holds for eigenvectors of A sampled from
the SBM. More specifically, we restrict ourselves to the case when the expectation A∗ (after the
appropriate diagonal correction) has rank 2. This is achieved when

a1
b

̸= b

a2
.

In this case, the eigenvectors that correspond to the top two leading eigenvalues (in magnitude)
exhibit the entrywise behavior, which is formalized in the following lemma.

Lemma E.4. Let ρ ∈ (0, 1) and a1, a2, b > 0 such that a1a2 ̸= b2. Let (A, σ∗) ∼
SBMn(ρ, a1, a2, b). Condition on σ∗ such that the event E from (9) holds and let A := E[A | σ∗].
Define {(λi, ui)}i∈[n] and {(λ∗

i , u
∗
i )}i∈[n] as above. Then with probability 1−O(n−3)

min
s1∈{±1}

∥∥∥∥s1u1 −
Au∗

1

λ∗
1

∥∥∥∥
∞

≤ C√
n log log n

and min
s2∈{±1}

∥∥∥∥s2u2 −
Au∗

2

λ∗
2

∥∥∥∥
∞

≤ C√
n log log n

,

for some constant C := C(ρ, a1, a2, b).

This again requires verifying Assumptions 1-4 for the top two eigenpairs. We note that Dhara et al.
(2022b) showed a similar lemma for the special case of Planted Dense Subgraph (PDS), and our
proof just generalizes their results. In order to do this, we first note down a couple of important
lemmas. The first one directly establishes the spectral norm concentration (Assumption 3).

Lemma E.5. Let ρ ∈ (0, 1) and a1, a2, b > 0. Sample (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Condition
on σ∗ such that the event E from (9) holds. Let A∗ := E[A | σ∗], then there exists a constant
c1 = c1(ρ, a1, a2, b) > 0 such that

P(∥A−A∗∥2 ≤ c1
√

log n) ≥ 1− n−3.

Proof. The lemma is a special case of (Hajek et al., 2016, Theorem 5), invoking the theorem with
c = 3.

The next lemma establishes that the leading two eigenvalues of A∗, in the rank-2 case, are different
in the following sense.

Lemma E.6. Consider ρ ∈ (0, 1) and a1, a2, b > 0 such that a1a2 ̸= b2. Let (A, σ∗) ∼
SBMn(ρ, a1, a2, b). Condition on a labelling σ∗ such that the event E from (9) holds. Let
A∗ := E[A | σ∗]. Then the top two eigenvalues in magnitude are given by λ∗

1 = (1 + o(1))θ1 log n
and λ∗

2 = (1 + o(1))θ2 log n, for some non-zero constants θ1 ̸= θ2 in terms of (ρ, a1, a2, b). As a
consequence, |λ∗

1 − λ∗
2| = Θ(log n).

Proof. The proof follows similar arguments as the proof of (Dhara et al., 2022b, Lemma 3.2). We
note that they prove the special case of the PDS when a2 = b, but the same argument directly
generalizes as long as a1a2 ̸= b2.

Proof of Lemma E.4. The entire analysis is done conditioned on σ∗ such that E holds. We will
verify Assumptions 1-4 for the leading two eigenpairs. First note that after adding a diagonal matrix
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D, whose entries are O( logn
n ), the matrix A∗ +D has rank 2, and its remaining eigenvalues satisfy

λ̃3 = · · · = λ̃n = 0, where |λ̃1| ≥ . . . |λ̃n|. Applying Weyl’s inequality for 3 ≤ i ≤ n,

|λ∗
i − λ̃i| = |λ∗

i | ≤ ∥D∥2 = O(logn/n). (14)

By the definition of the eigengap quantity in (13) for both the eigenvalues respectively

∆∗
1 := |λ∗

1| ∧min
i ̸=1

|λ∗
i − λ∗

1| = Θ(log n) and ∆∗
2 := |λ∗

2| ∧min
i̸=2

|λ∗
i − λ∗

2| = Θ(log n),

where we used (14) and Lemma E.6. We also define κ1 :=
|λ∗

1 |
∆∗

1
and κ2 :=

|λ∗
2 |

∆∗
2

. We first make
an inportant observation, that to verify Assumptions 1-4 for both eigenpairs separately, it suffices to
just verify them with ∆∗ and κ such that

∆∗ := min{∆∗
1,∆

∗
2} = Θ(log n) and κ := max{κ1, κ2}

To verify Assumption 1, first let τ = 2max{a1, a2, b}. Fixing any i ∈ C+,

∥Ai·∥2 =

√
|C−i

+ |
(
a1 log n

n

)2

+ |C−|
(
b log n

n

)2

=

√
(1 + o(1))ρ

(
a21 log

2 n

n

)
+ (1 + o(1))(1− ρ)

(
b2 log2 n

n

)
≤ τ log n√

n
.

Similarly, even for i ∈ C−

∥Ai·∥2 =

√
|C+|

(
b log n

n

)2

+ |C−i
− |
(
a2 log n

n

)2

≤ τ log n√
n

Combining both bounds, we obtain

∥A∗∥2→∞ ≤ τ log n√
n

.

We now define the parameter γ in terms of ∆∗ and the constant c1 from Lemma E.5:

γ ≜
c1
√
log n

∆∗ =
c1
√
log n

Θ(log n)
= o(1).

Then γ∆∗ = c1
√
log n = Ω(

√
log n), which dominates τ logn/

√
n. This implies ∥A∗∥2→∞ ≤ γ∆∗,

verifying Assumption 1. Assumption 2 trivially holds due to the conditional independence of the
entries of A, conditioned on σ∗. By Lemma E.5, Assumption 3 holds with δ0 = n−3

P(∥A−A∗∥2 ≤ γ∆∗) ≥ 1− n−3.

To verify Assumption 4, we let

φ(x) ≜
(2τ + 4) log n

∆∗(1 ∨ log(1/x))
for x > 0 and φ(0) = 0.

It is straightforward to verify that φ satisfies the desired property stated in Assumption 4 and φ(γ) =
O (1/log logn). Also, κ = O(1) since both ∆∗

1 ≍ ∆∗
2 ≍ log n, and by Lemma E.6, also |λ∗

1| ≍ |λ∗
2| ≍

log n. This implies 32κmax{γ, φ(γ)} = o(1) verifying the first part of the assumption.
To verify the row concentration part, we simply apply (Abbe et al., 2020, Lemma 7) with p =
τ logn/n and α = 4/τ . We obtain that for a fixed vector w ∈ Rn and m ∈ [n],

P

|(A−A∗)m·w| ≤
(2τ + 4) log n

max
{
1, log

(√
n∥w∥∞
∥w∥2

)} ∥w∥∞

 ≥ 1− 2n−4.

Substituting the definition of ∆∗ and φ(·),

P
(
|(A−A∗)m·w| ≤ ∆∗ ∥w∥∞ φ

(
∥w∥2√
n ∥w∥∞

))
≥ 1− 2n−4,
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which verifies Assumption 4 with δ1 = 2n−3. Finally, applying Lemma E.1, with probability
1− δ0 − 2δ1 = 1−O(n−3),

min
s1∈{±1}

∥∥∥∥s1u1 −
Au∗

1

λ∗
1

∥∥∥∥
∞

≲ κ(κ+ φ(1))(γ + φ(γ)) ∥u∗
1∥∞ +

γ ∥A∗∥2→∞
∆∗ = O

(
1√

n log log n

)
.

We used γ= 1
Θ(

√
logn)

, φ(γ)=O( 1
log logn ), ∥u

∗
1∥∞ = O( 1√

n
), ∥A∗∥2→∞ = O

(
logn√

n

)
, and ∆∗ =

Θ(log n).
Similarly, with probability 1−O(n−3), we have

min
s2∈{±1}

∥∥∥∥s2u2 −
Au∗

2

λ∗
2

∥∥∥∥
∞

= O

(
1√

n log log n

)
.

The proof is complete by a union bound.

F PROOFS AND ALGORITHMS FOR ROS.

In Appendix F.1, we first derive the form of genie scores. In Appendices F.2 we give our spectral
algorithm formally and prove Theorem 1. Finally, in Appendix F.3, we provide degree-profiling
algorithm under enormous BEC and BSC channel.

F.1 GENIE SCORES’ FORMULA WHEN NO SIDE INFORMATION

We start by noting the form of genie scores when no side information is present.

Lemma F.1. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b).
Then for any i ∈ [n]

z∗i =(a− b)

√
log n

n

a
∑

j∈C−i
+

Aij + b
∑

j∈C−i
−

Aij

+
log n

2n
(|C−i

+ |(a2b2 − a4) + |C−i
− |(b4 − a2b2))

+ log

(
ρ

1− ρ

)
.

Moreover, conditioned on the event E from (9), the genie score vector z∗ ∈ Rn can be written as

z∗ = (a− b)

√
log n

n
Av∗ +

(
γ + log

(
ρ

1− ρ

))
1n + o(1),

where γ =
(
ρ(a2b2 − a4) + (1− ρ)(b4 − a2b2)

)
log n/2 and v∗ is given by (2).

Proof. For ease of notation, we denote f(n) =
√

logn/n. First, note that ROS is a special case of
GBM with P+ = N (a2f(n), 1),P− = N (b2f(n), 1) and Q = N (abf(n), 1). Applying Lemma
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4.2 for this special case, we obtain the Genie score expressions; for any i ∈ [n],

z∗i =
∑

j∈C−i
+

log

(
e−

(Aij−a2f(n))2

2

/
e−

(Aij−abf(n))2

2

)

+
∑

j∈C−i
−

log

(
e−

(Aij−abf(n))2

2

/
e−

(Aij−b2f(n))2

2

)
+ log

(
ρ

1− ρ

)

=
∑

j∈C−i
+

(
(Aij − abf(n))2

2
− (Aij − a2f(n))2

2

)

+
∑

j∈C−i
−

(
(Aij − b2f(n))2

2
− (Aij − abf(n))2

2

)
+ log

(
ρ

1− ρ

)
= (a2 − ab)f(n)

∑
j∈C−i

+

Aij + (ab− b2)f(n)
∑

j∈C−i
−

Aij

+
f2(n)

2
(|C−i

+ |(a2b2 − a4) + |C−i
− |(b4 − a2b2)) + log

(
ρ

1− ρ

)

= (a− b)

√
log n

n

a
∑

j∈C−i
+

Aij + b
∑

j∈C−i
−

Aij


+

log n

2n
(|C−i

+ |(a2b2 − a4) + |C−i
− |(b4 − a2b2)) + log

(
ρ

1− ρ

)
. (15)

Conditioned on E, simplifying a term from (15)
log n

2n
(|C−i

+ |(a2b2 − a4) + |C−i
− |(b4 − a2b2))

=
log n

2n

(
ρn(a2b2 − a4) + (1− ρ)n · (b4 − a2b2)

)
+ o(1)

=
(
ρ(a2b2 − a4) + (1− ρ)(b4 − a2b2)

)
log n/2 + o(1)

= γ + o(1).

Therefore, substituting this in (15), we obtain that for any i ∈ [n]:

z∗i = (a− b)

√
log n

n

a
∑

j∈C−i
+

Aij + b
∑

j∈C−i
−

Aij

+ γ + log

(
ρ

1− ρ

)
+ o(1).

= (a− b)

√
log n

n
Ai·v

∗ + γ + log

(
ρ

1− ρ

)
+ o(1).

Writing the same for all i ∈ [n] in vector notation, we obtain

z∗ = (a− b)

√
log n

n
Av∗ +

(
γ + log

(
ρ

1− ρ

))
1n + o(1).

Roughly speaking, these genie scores in absolute value are on a log n scale for both ROS and SBM.
This is when the exact recovery becomes statistically possible and explains the scaling choices for
both models.

F.2 SPECTRAL ALGORITHM AND PROOF OF THEOREM 1

Below is our spectral algorithm which takes A (and optionally y when available) as input along
with the parameters and returns an estimator σ̂spec. One of the (two) score vectors formed by the
algorithm approximates the genie score z∗.
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Algorithm 2 Spectral recovery algorithm for ROS, without or with side information.

Input: An n×n observation matrix A and parameters (ρ, a, b). Optionally, side information y ∈ Yn

such that we can compute likelihoods of laws S+ and S−.

Output: An estimate of community assignments σ̂spec.

1: Compute leading eigenpairs. Compute the top eigenpair of A, denoted by (λ1, u1), where
|λ1| ≥ · · · ≥ |λn|.

2: Compute coefficients of linear combination.

c1 :=
√
n log n·(a−b)·(ρa2+(1−ρ)b2)3/2 and γ :=

(
ρ(a2b2 − a4) + (1− ρ)(b4 − a2b2)

) log n
2

.

3: Compute spectral scores. For any s ∈ {±1}, prepare the spectral score vectors as follows.
• No side information:

z(s) = sc1u1 + γ1n.

• Side information:

z(s) = sc1u1 + γ1n + log

(
S+

S−
(y)

)
4: Remove sign ambiguity. For each s ∈ {±1}, let σ̂(s) = sgn(z(s)).

• No side information: Return σ̂spec = argmax{σ̂(s):s∈{±1}} P(σ∗ = σ̂(s) | A).

• BEC or BSC side information: Return σ̂spec = argmax{σ̂(s):s∈{±1}} P(σ∗ = σ̂(s) | A, y).

The values c1 and γ are carefully designed to emulate the genie score. Since the eigenvectors are
only recovered up to a global direction flip, we need to keep both candidates in the algorithm. One
of them is approximating the genie score well. Finally, whichever one has the higher posterior
probability is picked in step 4. To show the proof of the score approximation guarantee, we need the
following lemma, whose proof is included at the end of this subsection.
Lemma F.2. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b).
Condition on σ∗ satisfying E from (9) holds for it. Then there exists a constant c := c(ρ, a, b) such
that with probability 1−O(n−3), the following event holds

E1 :=

{√
log n

n
∥Av∗∥∞ ≤ c log n

}
. (16)

Below is our primary lemma which shows the spectral and genie score vector approximation in ℓ∞
norm.
Lemma F.3. Fix ρ ∈ (0, 1) and a, b such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b)
and condition on σ∗ such that E from (9) holds. Optionally, let y ∼ SI(σ∗,S+,S−) for the channel
laws (S+,S−). Let z∗ and z(s) be the genie score and the spectral score vectors respectively for the
corresponding model. Then with probability 1− o(1),

min
s∈{±1}

∥∥∥z∗ − z(s)
∥∥∥
∞
= o(log n).

Proof. First of all, note that conditioned on E, we have λ∗
1 = (1 + o(1))

√
logn
n ∥v∗∥22 , and u∗

1 =

(1 + o(1)) v∗

∥v∗∥2
. Additionally, ∥v∗∥2 =

√
|C+|a2 + |C−|b2 = (1 + o(1))

√
n
√
ρa2 + (1− ρ)b2.

Using these, one can simplify

c1Au
∗
1

λ∗
1

=
(1 + o(1))c1Av∗

λ∗
1 ∥v∗∥2

≈
√
n log n(a− b)(ρa2 + (1− ρ)b2)3/2Av∗√

logn/n ∥v∗∥32
≈
√

log n

n
(a− b)Av∗,

(17)
where in the last step we substitute ∥v∗∥2.
Now the high probability event in this lemma is such that (i) the behavior of eigenvectors as stated
in Lemma E.4 and (ii) the event E1 from (16) hold. By Lemma E.2 and F.2, they both happen with
probability 1 − o(1). Additionally, let s be the sign for which the conclusion of Lemma E.2 holds.
We now analyze the three models separately.
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• No side information: For every i ∈ [n]

|z(s) − z∗i | = |c1s(u1)i + γ − z∗i | , (recall Algorithm 2)

=

∣∣∣∣c1(Au∗
1)i

λ∗
1

+ γ − z∗i

∣∣∣∣+O

(
c1√

n log n

)
(by Lemma E.4 and the triangle inequality)

=

∣∣∣∣∣(1 + o(1))

√
log n

n
(a− b)(Av∗)i + γ − z∗i

∣∣∣∣∣+O(
√
log n)

(using (17) and c1 ≍
√
n log n)

=

∣∣∣∣∣(1 + o(1))

√
log n

n
(a− b)(Av∗)i + γ −

√
log n

n
(a− b)Ai·v

∗ − γ −O(1)

∣∣∣∣∣
+O(

√
log n) (putting z∗i from Lemma F.1)

= o(1)

√
log n

n
|(Av∗)i|+O(

√
log n) = o(log n), (recall E1 from (16))

• Side information: By Lemma 4.2 and Algorithm 2 (step 3), when side information is pro-
vided, both the genie score vector z∗ and the spectral score vector z(s) are achieved by
adding ln

(
S+

S−
(y)
)

to their counterpart when no side information is provided. Therefore,
the triangle inequality along with the analysis in the no side information case gives us that
for every i ∈ [n], we have |z(s)i − z∗i | = o(log n).

In either case, one can equivalently write conclusions for all i ∈ [n] together in vector notation

min
s∈{±1}

∥∥∥z(s) − z∗
∥∥∥
∞

= o(log n).

We are finally set to prove our first main result in Theorem 1.

Proof of Theorem 1. We note that step 4 of Algorithm 2 keeps two candidates {σ̂(s) : s ∈ {±1}}
and chooses the one which has maximum posterior probability. Therefore, to show that σ̂spec
achieves exact recovery above the IT threshold, it suffices to show that one of the two candidates
achieves exact recovery, and σ̂MAP also succeeds above the IT threshold, which ensures that the
algorithm selects the correct vector by maximizing the posterior probability. The MAP estimator
achieves exact recovery whenever I∗ > is already shown in Proposition 3.1. It remains to show that
one of {σ̂(s) : s ∈ {±1}} succeeds. To this end, recall Lemma F.3 that with probability 1− o(1),

min
s∈{±1}

∥∥∥z∗ − z(s)
∥∥∥
∞

= o(log n).

Moreover, whenever I∗ > 1, by Lemma D.1 and union bound over i ∈ [n], there exists δ > 0 such
that

P
(
min
i∈[n]

σ∗
i z

∗
i > δ log n

)
= 1− o(1).

Taking a union bound over these two events, there exists ς > 0 and s∗ ∈ {±1} such that

P
(
min
i∈[n]

σ∗
i z

(s∗)
i > ς log n

)
= 1− o(1).

Since σ̂(s∗) = sgn(z(s
∗)) in step 4, we obtain σ̂(s∗) achieves exact recovery. As a consequence, even

σ̂spec achieves exact recovery above the IT threshold. In other words,

lim
n→∞

P (σ̂spec succeeds) = 1.
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We finally return to the proof of the lemma already mentioned.

Proof of Lemma F.2. For each i ∈ [n], first define Yi =
√

logn
n (Av∗)i. We first note that Yi is

a Gaussian random variable as it is the sum of at most n independent Gaussian random variables.
Therefore, we have Yi ∼ N (µi, σ

2
i ) for certain µi and σ2

i , which we will calculate later. Applying
Lemma B.2 for any Yi (after normalizing) yields

P
(
|Yi − µi|

σi
≥ 4
√

log n

)
≤ e−8 logn = n−8.

Rearrangement of the terms using the triangle inequality along with a union bound over all i ∈ [n]
gives us

P
(
∀i ∈ [n] : |Yi| ≤ |µi|+ 4σi

√
log n

)
≥ 1− n−7.

Therefore it simply suffices to show that for every i ∈ [n], the quantity |µi|+4σi

√
log n = O(log n).

To this end, we first observe that (Av∗)i is the sum of n−1 independent Gaussian random variables

all with means whose absolute values are O

(√
logn
n

)
. Thus,

|µi| =
√

log n

n
E[(Av∗)i] =

√
log n

n
(n− 1) ·O

(√
log n

n

)
= O(log n).

Similarly, (Av∗)i is the sum of n− 1 independent Gaussian random variables with variances O(1).
This gives us

σ2
i = Var

[√
log n

n
(Av∗)i

]
=

log n · Var [(Av∗)i]

n
=

log n ·O(n)

n
= O(log n),

which also implies
4σi

√
log n = O(log n).

F.3 DEGREE-PROFILING ALGORITHM FOR BEC AND BSC CHANNELS

The following is a simple degree-profiling algorithm that tries to mimic the genie naı̈vely and
achieves exact recovery if side information is substantial to shift the thresholds of exact recovery.

Algorithm 3 Degree-Profiling algorithm for ROS in the presence of BEC or BSC side information.

Input: An n × n observation matrix A and parameters (ρ, a, b). The BEC side information y with
parameter ϵ or BSC side information y with parameter α.

Output: An estimate of community assignments σ̂dp.

1: Let S+ := {i : yi = +1}, S− := {i : yi = −1}, and

γ :=
(
ρ(a2b2 − a4) + (1− ρ)(b4 − a2b2)

)
log n/2.

Compute z ∈ Rn such that, for every i ∈ [n]

zi = a(a− b)

√
log n

n

∑
j∈S+

Aij + b(a− b)

√
log n

n

∑
j∈S−

Aij + γ.

2: Prepare the degree-profile score vector zdp as follows.
• BEC side information: For any i ∈ [n],

zdp
i =


zi if yi = 0;

+∞, if yi = +1;

−∞ if yi = −1;
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• BSC side information:

zdp = z + ln

(
1− α

α

)
y

3: Return σ̂dp = sgn(zdp).

The following is our formal theorem.
Theorem 3. Fix ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b).
Let y ∼ BEC(σ∗, ϵ) or y ∼ BSC(σ∗, α), where

lim
n→∞

log(1/ϵ)

log n
= β and lim

n→∞

log( 1−α
α )

log n
= β

for some β > 0. Then I∗ from (5) is well-defined and there is a degree-profiling algorithm (Algo-
rithm 3) that returns the estimator σ̂dp which achieves exact recovery whenever I∗ > 1.

The following lemma plays a crucial role in the analysis of our degree profiling algorithm which
formalizes the notion of receiving most of the labels correct.
Lemma F.4. Let σ∗ ∈ {±1}n be sampled such that each entry is i.i.d. with P(σ∗

i = +1) = ρ.
Condition on σ∗ such that the event E from (9) holds. For any β > 0, we let y ∼ BEC(σ∗, ϵn) or
y ∼ BSC(σ∗, αn) for ϵn and αn scales as described in Theorem 3. Define S+ = {i : yi = +1} and
S− = {i : yi = −1}. Then with probability 1− o(1)

max {|C+ \ S+| , |C− \ S−|} = O

(
n

log10 n

)
.

Proof. First, recall that conditioned on the even E about σ∗, we have |C+| = Θ(n) and |C−| =
Θ(n). We now consider the two types of side information.

• BEC side information: Observe that

E[|C+ \ S+|] =
∑
i∈C+

P(yi = 0) = |C+|ϵn = n−β |C+| ≤ n1−β .

Then Markov’s inequality immediately implies that, with probability 1 − O(n−β/2), we
have

|C+ \ S+| ≤ n1−β/2 = O (n/log10 n) .

Similarly, we also have E[|C− \ S−|] = n−β |C−| ≤ n1−β . Thus, applying Markov’s
inequality again implies |C− \ S−| = O(n/log10 n) with probability 1 − O(n−β/2). A
simple union bound over these two events implies, with probability 1 − O(n−β/2) = 1 −
o(1)

max {|C+ \ S+| , |C− \ S−|} = O

(
n

log10 n

)
.

• BSC side information: Under BSC side information, E[|C+ \ S+|] = αn|C+| ≤ n1−β

and E[|C− \ S−|] = αn|C−| ≤ n1−β . Therefore, using the Markov’s inequality for
both of these sets along with a union bound immediately implies that with probability
1−O(n−β/2) = 1− o(1),

max {|C+ \ S+| , |C− \ S−|} = O

(
n

log10 n

)
.

To bound the effect of the error terms when we make zdp approximation to z∗, we need another
technical lemma whose proof we include at the end of this section.
Lemma F.5. Consider ρ ∈ (0, 1) and a, b ∈ R such that max{|a|, |b|} > 0 Let (A, σ∗) ∼
ROSn(ρ, a, b). Condition on σ∗ such that the event E holds. Fix any set T ⊂ C+ or T ⊂ C−

such that |T | = O(n/ log10 n). Then for any i ∈ [n], let us define Yi =
√

logn
n

∑
j∈T Aij .

P(∀i ∈ [n] : |Yi| ≤ 1) ≥ 1−O(n−3).
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Using this lemma, we now show that the degree profiling vector zdp is a good approximation to the
genie score vector z∗ in ℓ∞ norm.

Lemma F.6. Fix ρ ∈ (0, 1) and a, b such that max{|a|, |b|} > 0. Let (A, σ∗) ∼ ROSn(ρ, a, b) and
condition on σ∗ such that E from (9) holds. For β > 0, let y ∼ BEC(σ∗, ϵn) or y ∼ BSC(σ∗, αn)
where ϵn and αn scales as described in Theorem 3. Let z∗ and zdp respectively be the genie score
vector and the degree-profiling score vector produced by Algorithm 3 for the corresponding model
of side information. Then (irrespective of the parameter values), with probability 1− o(1),

∥∥z∗ − zdp
∥∥
∞= O(1).

Proof. We first start by observing, in the case of BEC side information zdp is just formed by overrid-
ing the entries of z from step 1 of Algorithm 3 with +∞ or −∞ depending on the side information
label being +1 or −1. Also, for BSC side information, zdp = z + log

(
1−αn

αn

)
y. By Lemmas 4.2,

this is precisely how the genie score vector z∗ in the respective model of side information relates to
the genie score vector without side information which we denote by z′.
Therefore, to show the lemma, it suffices to show that, with probability 1− o(1),

∥z′ − z∥∞ = O(1).

• BEC side information:

∥z′ − z∥∞ = max
i∈[n]

|z′i − zi|

= max
i∈[n]

∣∣∣∣∣∣a(a− b)

√
log n

n

∑
j∈C+\S+

Aij + b(a− b)

√
log n

n

∑
j∈C−\S−

Aij + log

(
ρ

1− ρ

)
+ o(1)

∣∣∣∣∣∣
(substituting z′ from Lemma F.1 and z from Algorithm 3)

≤ max
i∈[n]

∣∣∣∣∣∣a(a− b)

√
log n

n

∑
j∈C+\S+

Aij

∣∣∣∣∣∣+
∣∣∣∣∣∣b(a− b)

√
log n

n

∑
j∈C−\S−

Aij

∣∣∣∣∣∣+O(1), (18)

where the last step follows from the triangle inequality. By Lemma F.4, both |C+ \S+| and
|C− \ S−| are bounded by O(n/ log10 n) with probability 1 − o(1). Moreover, these sets
are chosen only based on the side information y and hence independent of A, conditioned
on σ∗. Using Lemma F.5 for these set C+\S+ and C−\S− as T , and using a union bound,
we obtain that with probability 1− o(1)

max
i∈[n]

∣∣∣∣∣∣a(a− b)

√
log n

n

∑
j∈C+\S+

Aij

∣∣∣∣∣∣ = O(1) and max
i∈[n]

∣∣∣∣∣∣b(a− b)

√
log n

n

∑
j∈C−\S−

Aij

∣∣∣∣∣∣ = O(1).

Substituting these bounds in (18), with probability 1− o(1)

∥z′ − z∥∞ = O(1).
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• BSC side information:

∥z′ − z∥∞ = max
i∈[n]

|z′i − zi|

= max
i∈[n]

∣∣∣∣∣a(a− b)

√
log n

n

∑
j∈C+\S+

Aij − a(a− b)

√
log n

n

∑
j∈S+\C+

Aij

+ b(a− b)

√
log n

n

∑
j∈C−\S−

Aij − b(a− b)

√
log n

n

∑
j∈S−\C−

Aij + log

(
ρ

1− ρ

)
+ o(1)

∣∣∣∣∣
(substituting z′ from Lemma F.1 and z from Algorithm 3)

= max
i∈[n]

∣∣∣∣∣(a− b)2
√

log n

n

∑
j∈C+\S+

Aij − (a− b)2
√

log n

n

∑
j∈C−\S−

Aij + log

(
ρ

1− ρ

)
+ o(1)

∣∣∣∣∣
(since S+ \ C+ = C− \ S− and S− \ C− = C+ \ S+)

≤ max
i∈[n]

∣∣∣∣∣∣(a− b)2
√

log n

n

∑
j∈C+\S+

Aij

∣∣∣∣∣∣+
∣∣∣∣∣∣(a− b)2

√
log n

n

∑
j∈C−\S−

Aij

∣∣∣∣∣∣+O(1), (19)

where in the last step, we used the triangle inequality. Again by similar arguments, first
using Lemma F.4, both |C+\S+| and |C−\S−| is O(n/ log10 n) with probability 1−o(1).
Using Lemma F.5 for these set C+ \S+ and C− \S− further implies that, with probability
1− o(1)

max
i∈[n]

∣∣∣∣∣∣(a− b)2
√

log n

n

∑
j∈C+\S+

Aij

∣∣∣∣∣∣ = O(1) and max
i∈[n]

∣∣∣∣∣∣(a− b)2
√

log n

n

∑
j∈C−\S−

Aij

∣∣∣∣∣∣ = O(1).

Substituting these bounds in (19), with probability 1− o(1)

∥z′ − z∥∞ = O(1).

Finally, we prove Theorem 3.

Proof of Theorem 3. We have already verified in Appendix C that I∗ well-defined for BEC and BSC
channels where ϵ and α scales as described in the theorem statements. When β > 0, by Lemma F.6
that with probability 1− o(1), ∥∥z∗ − zdp

∥∥
∞ = O(1).

Above the IT threshold by Lemma D.1 and union bound over i ∈ [n], there exists δ > 0 such that

P
(
min
i∈[n]

σ∗
i z

∗
i > δ log n

)
= 1− o(1).

Taking a union bound, there exists ς > 0 such that

P
(
min
i∈[n]

σ∗
i z

dp
i > ς log n

)
= 1− o(1).

Observing σ̂dp = sgn(zdp), we obtain σ̂dp achieves exact recovery, i.e.

lim
n→∞

P (σ̂dp succeeds) = 1.

We now return to the deferred proof.
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Proof of Lemma F.5. First of all, observe that Yi is a Gaussian random variable. Let us say Yi ∼
N (µi, σ

2
i ), for some µi and σ2

i > 0. Applying Lemma B.2 for any Yi (after renormalizing) yields

P
(
|Yi − µi|

σi
≥ 4
√

log n

)
≤ e−8 logn = n−8.

Rearrangement of the terms using the triangle inequality along with a union bound over all i ∈ [n]
gives us

P
(
∃i ∈ [n] : |Yi| ≥ |µi|+ 4σi

√
log n

)
≤ n−7.

Therefore it simply suffices to show that for every i ∈ [n], we have |µi| + 4σi

√
log n ≤ 1. Indeed,

we will show that these terms are o(1). To this end, first consider the term 4σi

√
log n for any i ∈ [n].

Recall that Yi is the sum of at most |T | i.i.d. Gaussian random variables, all with variance 1, scaled
by
√

logn/n. Therefore,

σ2
i ≤ log n

n
|T | = O

(
1

log9 n

)
=⇒ 4σi

√
log n = O

(
1

log2 n

)
= o(1),

where we used |T | = O(n/log10 n). We now show that |µi| = o(1) too for all i ∈ [n], which requires
some casework. First consider T ⊂ C+, then for any i ∈ C+:

|µi| ≤
√

log n

n
|T |a2

√
log n

n
= O

(
1

log9 n

)
,

Similarly, for any i ∈ C−:

|µi| =
√

log n

n
|T ||ab|

√
log n

n
= O

(
1

log9 n

)
.

Exactly following the same arguments, we also get the same bounds on µi even when T ⊂ C−.
Overall, we established that

P(∀i ∈ [n] : |Yi| ≤ 1) ≥ 1−O(n−7).

G PROOFS AND ALGORITHMS FOR SBM.

We follow the same structure: in Appendix G.1, we derive the formula for genie scores when no
side information is available. In Appendix G.2, we present our spectral algorithm with the optimality
proof. Finally, in Appendix G.3, we do the degree profiling algorithm.

G.1 GENIE SCORES’ FORMULA WHEN NO SIDE INFORMATION

We begin by showing that, with high probability, all the vertices have degrees logarithmic in n.
Lemma G.1. Let ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Condition on σ∗

such that the event E from (20) holds then. For c = 6max{1, a1, a2, b} let

E1 =

∀i :
∑
j∈[n]

Aij ≤ c log n

 ; (20)

then with P(E1) = 1−O(n−3).

Proof. Note that the entries of A (up to symmetry) are independent conditioned on σ∗. There-
fore, for any i ∈ [n], the ith row has independent Bernoulli entries with means either p1, p2 or
q, where (p1, p2, q) = (a1, a2, b) log n/n. Therefore, defining X ∼ Binom(n, τ log n/n), where
τ = max{a1, a2, b}, we have that X stochastically dominates

∑
j∈[n] Aij , for any i ∈ [n]. Then ap-

plying the Chernoff bound for Binomial random variables (Mitzenmacher & Upfal, 2017, Theorem
4.4, Equation 4.3) we get, for any i ∈ [n]

P

∑
j∈[n]

Aij > 6max{1, τ} log n

 ≤ P (X > 6max{1, τ} log n) ≤ 2−6 logn = O(n−4).

Taking a union bound over all i ∈ [n] yields the desired claim.
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We next analyze the form of genie scores without side information.
Lemma G.2. Let ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Denote
(p1, p2, q) := (a1, a2, b) logn/n. Then for any i ∈ [n], the genie score can be written as

z∗i = log

(
p1(1− q)

q(1− p1)

) ∑
j∈C−i

+

Aij + log

(
q(1− p2)

p2(1− q)

) ∑
j∈C−i

−

Aij + log

(
ρ

1− ρ

)

+ |C−i
+ | log

(
1− p1
1− q

)
+ |C−i

− | log
(

1− q

1− p2

)
.

Moreover, conditioned on the event E from (9) and E1 from (20),

∥z∗ −Aw − γ1n∥∞ = O(1),

where w ∈ Rn is a vector with entries (w+, w−) := (log(a1/b), log(b/a2)) on locations of C+ and
C− respectively and γ := (ρ(b− a1) + (1− ρ)(a2 − b)) log n.

Proof. First of all, note that the SBM is a special case of the GBM model with P+ ≡ Bern(p1),
P− ≡ Bern(p2) and Q ≡ Bern(q). Using Lemma 4.2 for this special case, for any i ∈ [n]

z∗i = log

(
ρ

1− ρ

)
+
∑

i∈C−i
+

log

(
p
Aij

1 (1− p1)
(1−Aij)

qAij (1− q)(1−Aij)

)
+
∑

j∈C−i
−

log

(
qAij (1− q)(1−Aij)

p
Aij

2 (1− p2)(1−Aij)

)

= log

(
p1(1− q)

q(1− p1)

) ∑
j∈C−i

+

Aij + log

(
q(1− p2)

p2(1− q)

) ∑
j∈C−i

−

Aij + log

(
ρ

1− ρ

)

+ |C−i
+ | log

(
1− p1
1− q

)
+ |C−i

− |
(

1− q

1− p2

)
. (21)

To show the second part of the lemma, we further simplify∣∣∣∣log( 1− q

1− p1

)∣∣∣∣ = ∣∣∣∣log(1 + p1 − q

(1− p1)

)∣∣∣∣ = ∣∣∣∣log(1 + (a1 − b) log n

(1− p1)n

)∣∣∣∣ = O

(
log n

n

)
. (22)

In the last inequality, we used x
x+1 ≤ log(1 + x) ≤ x for x > −1. Similarly,∣∣∣∣log(1− p2

1− q

)∣∣∣∣ = ∣∣∣∣log(1 + q − p2
(1− q)

)∣∣∣∣ = ∣∣∣∣log(1 + (b− a2) log n

(1− q)n

)∣∣∣∣ = O

(
log n

n

)
. (23)

Recall the definition of event E from (9) and E1 from (20). Conditioned on E ∩ E1, we simplify
(21) using (22) and (23).

log

(
p1(1− q)

q(1− p1)

) ∑
j∈C−i

+

Aij + log

(
q(1− p2)

p2(1− q)

) ∑
j∈C−i

−

Aij

= log
(a1
b

) ∑
j∈C−i

+

Aij + log

(
b

a2

) ∑
j∈C−i

−

Aij +O

(
log n

n

) ∑
j∈[n]

Aij

= log
(a1
b

) ∑
j∈C−i

+

Aij + log

(
b

a2

) ∑
j∈C−i

−

Aij + o(1), (24)

where the last equality followed by conditioning on E1. We also simplify

|C−i
+ | log

(
1− p1
1− q

)
= |C−i

+ | log
(
1 +

q − p1
(1− q)

)
= |C−i

+ | log
(
1 +

(b− a1) log n

(1− q)n

)
= |C−i

+ |
(
(b− a1) log n

(1− q)n
+O

(
log2 n

n2

))
(using a Taylor expansion of log(1 + x))

= (1 +O(n−1/3))ρn

(
(b− a1) log n

(1− q)n
+O

(
log2 n

n2

))
= ρ(b− a1) log n+ o(1) (25)
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Similarly,

|C−i
− | log

(
1− q

1− p2

)
= |C−i

− | log
(
1 +

p2 − q

(1− p2)

)
= (1− ρ)(a2 − b) log n+ o(1) (26)

Substituting (24), (25) and (26) into (21),

z∗i = log
(a1
b

) ∑
j∈C−i

+

Aij + log

(
b

a2

) ∑
j∈C−i

−

Aij + ρ(b− a1) + (1− ρ)(a2 − b) log n+O(1)

= w+

∑
j∈C−i

+

Aij + w−
∑

j∈C−i
−

Aij + γ +O(1) = Ai·w + γ +O(1).

Writing the above for all i ∈ [n] in a vector notation, we obtain

∥z∗ − (Aw + γ1n)∥∞ = O(1).

G.2 SPECTRAL ALGORITHM AND PROOF OF THEOREM 2

In this section, we present our spectral algorithm for the SBM that can emulate the genie. As
discussed in Section 5, this requires taking an appropriate linear combination of eigenvectors such
that the top two eigenvectors such that c1u∗

1 + c2u
∗
2 approximates w in the ℓ∞ norm. The vector w

is a block vector with entries (w+, w−) on the locations of C+ and C−. Recall by Lemma G.2 that

w+ = log
(a1
b

)
and w− = log

(
b

a2

)
.

We first present a subroutine that finds these coefficients (c1, c2). We will introduce the formal cor-
rectness of the subroutine later, but first we provide informal discussion as to how these coefficients
are computed. Roughly speaking, both u∗

1 and u∗
2 also have a block structure, and therefore, finding

(c1, c2) just corresponds to solving a system of 2× 2 linear equations. Also, the coefficients do not
depend on the locations of σ∗ with +1 or −1 labels, so exploiting this fact we just do calculation
as if C+ is on the first ⌊ρn⌋ vertices and compute the proxy for actual A∗. This results into the
following subroutine.

Algorithm 4 Find Linear Combination Coefficients

Input: The parameter set (ρ, a1, a2, b) such that a1a2 ̸= b2 (Rank-2) and the graph size n.

Output: The desired linear combination (c1, c2).

1: Let S ⊆ [n] such that S = {i : i ≤ ρn} and compute the matrix B ∈ Rn×n such that

Bij =


a1 log n/n if i, j ∈ S;

b log n/n if i ∈ S but j /∈ S;

a2 log n/n if i /∈ S and j /∈ S.

2: Compute the two eigenpairs (λ̃1, ṽ1) and (λ̃2, ṽ2) of B (note that B is rank-2).
3: Let w ∈ Rn be the block vector such that:

wi =

{
w+ = log(a1/b), if i ∈ S;

w− = log(b/a2) if i /∈ S.

4: Return (c1, c2) ∈ R2 that satisfies

c1

(
ṽ1

λ̃1

)
+ c2

(
ṽ2

λ̃2

)
= w. (27)

Both ṽ1 and ṽ2 are block-vectors and they are linearly independent. Thus, Finding (c1, c2)
corresponds to solving a system of 2× 2 linear equations.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

We note that in the rank-2 case when a1a2 ̸= b2, the vectors ṽ1 and ṽ2 have block structure and
are linearly independent. Therefore, it is possible to span any vector with block structure, and in
particular, even w. We now propose our spectral algorithm in the rank-2 case.

Algorithm 5 Spectral recovery algorithm for SBM (Rank-2)

Input: An n×n observation matrix A and parameters (ρ, a1, a2, b) such that a1a2 ̸= b2. Optionally,
side information y ∈ Yn such that we can compute the likelihood laws S+ and S−.

Output: An estimate of community assignments σ̂spec.

1: Compute leading eigenpairs. Compute the top eigenpair of A, denoted by (λ1, u1), where
|λ1| ≥ · · · ≥ |λn|.

2: Compute coefficients of linear combination. Run Algorithm 4 to find (c1, c2) and

γ := (ρ(b− a1) + (1− ρ)(a2 − b)) log n.

3: Compute spectral scores. For any s = (s1, s2) ∈ {±1}2, prepare the spectral score vectors
• No side information:

z(s) = s1c1u1 + s2c2u2 + γ1n.

• Side information:

z(s) = s1c1u1 + s2c2u2 + γ1n + log

(
S+

S−
(y)

)
.

4: Remove sign ambiguity. For each s ∈ {±1}2, let σ̂(s) = sgn(z(s)).
• No side information: Return σ̂spec = argmax{σ̂(s):s∈{±1}} P(σ∗ = σ̂(s) | A).

• BEC or BSC side information: Return σ̂spec = argmax{σ̂(s):s∈{±1}} P(σ∗ = σ̂(s) | A, y).

Finally, when a1a2 = b2, from Lemma G.2 we have w+ = w− = log
(
a1

b

)
. In this case, we can

just use the deterministic vector along 1n to emulate the genie-score vector. Strictly speaking, in
this degenerate case, we do not even need a spectral strategy to achieve optimality. Despite this, we
just refer to this as a spectral algorithm in the rest of the analysis for simplicity of exposition.

Algorithm 6 (Spectral) Recovery algorithm for SBM (Rank-1)

Input: An n×n observation matrix A and parameters (ρ, a1, a2, b) such that a1a2 = b2. Optionally,
side information y ∈ Yn such that we can compute the likelihood laws S+ and S−..

Output: An estimate of community assignments σ̂spec.

1: Let
c := log

(a1
b

)
, γ := (ρ(b− a1) + (1− ρ)(a2 − b)) log n.

2: Prepare the spectral score vector zspec as follows.
• No side information:

zspec = cA1n + γ1n.

• Side information:

zspec = cA1n + γ1n + log

(
S+

S−
(y)

)
.

3: Return σ̂spec = sgn(zspec).

We now show that the score vectors formed by these algorithms approximate the genie score vector
z∗ in each case.
Lemma G.3. Consider ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b) and
condition on σ∗ such that E from (9) holds. Optionally, let y ∼ SI(σ∗,S+,S−) for the channel
laws (S+,S−). Let z∗ be the genie score vector for the corresponding model. Then with probability
1− o(1)

• Case a1a2 ̸= b2: for some s = (s1, s2) ∈ {±1}2∥∥∥z∗ − z(s)
∥∥∥
∞
= o(log n).
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• Case a1a2 = b2:
∥z∗ − zspec∥∞ = o(log n)

Proof. Recall from Lemma 4.2, how the genie score changes in the presence of side information.
In Algorithm 5 (step 3) and Algorithm 6 (step 2), this is precisely how the spectral score vectors are
updated from the case when no side information is present. Therefore, it suffices to show that the
score approximation holds in the case when no side information is present, which now will be the
focus of the proof. The argument is exactly analogous to the one done used in Lemma F.3. We now
discuss the rank 1 and rank 2 cases one by one.
Rank-1 case: a1a2 = b2. In this case, when no side information is present

∥z∗ − zspec∥∞ = ∥z∗ − log(a1/b)A1n − γ1n∥∞ = O(1),

where the last equation follows from Lemma G.2 and using that a1

b = b
a2

.
Rank-2 case: a1a2 ̸= b2. Fix (s1, s2) ∈ {±1}n to be the signs for which the high probability
event in Lemma E.4 holds. Define w to be the vector from Lemma G.2 with entries (w+, w−) =
(log(a1/b), log(b/a2)) on the locations of C+ and C− respectively. In this case, using Lemma E.4,
we will show that with probability 1− o(1), we have

∥Aw − s1c1u1 − s2c2u2∥∞ = o(log n). (28)

Combing this (28) along with Lemma G.2 implies the desired result: with probability 1− o(1),∥∥∥z∗ − z(s)
∥∥∥
∞

≤ ∥z∗ −Aw − γ1n∥∞ +
∥∥∥Aw + γ1n − z(s)

∥∥∥
∞

= ∥z∗ −Aw − γ1n∥∞ + ∥Aw − s1c1u1 − s2c2u2∥∞ (step 3 of Algorithm 5)
= o(log n).

It remains to show (28). Note that, we calculate (c1, c2) in Algorithm 4 using the matrix B where
community sizes are exactly ρn. But, condition on E, we have community sizes (1 + o(1))ρn and
(1+o(1))(1−ρ)n. Also, in A∗, we have zero diagonal, where as, the matrix B has diagonal entries
of the order of O(log n/n). These changes only affect the eigenvalues by the multiplicative factor
of (1 + o(1)) by Weyl’s inequality. Therefore,

λ∗
1 = (1 + o(1))λ̃1 and λ∗

2 = (1 + o(1))λ̃2.

Moreover, the entries of u∗
1 in location of C+ are (1+o(1)) factor of the entries of ṽ1 in the location

S. By the same argument, one can say the same for u∗
1 in locations of C− and ṽ1 in locations of

[n] \ S, and also for u∗
2 and ṽ2. From the way we calculate (c1, c2) in (27), we have

c1

(
ṽ1

λ̃1

)
+ c2

(
ṽ2

λ̃2

)
= w.

Then the above discussion implies

w+ = (1+o(1))

(
c1u

∗
1,i

λ∗
1

+
c2u

∗
2,i

λ∗
2

)
, for i ∈ C+ and w− = (1+o(1))

(
c1u

∗
1,i

λ∗
1

+
c2u

∗
2,i

λ∗
2

)
, for i ∈ C−.

Finally using Lemma E.4, with probability 1− o(1)

∥Aw − s1c1u2 − s2c2u2∥∞ ≤
∥∥∥∥Aw − c1

Au∗
1

λ∗
1

− c2
Au∗

2

λ∗
2

∥∥∥∥
∞

+ o(1)

=

∥∥∥∥(1 + o(1))

(
c1

Au∗
1

λ∗
1

+ c2
Au∗

2

λ∗
2

)
− c1

Au∗
1

λ∗
1

− c2
Au∗

2

λ∗
2

∥∥∥∥
∞

+ o(1)

= o(1)

(
max
i∈[n]

∥Ai·∥1
)
·
(∥∥∥∥c1u∗

1

λ∗
1

∥∥∥∥
∞

∨
∥∥∥∥c2u∗

2

λ∗
2

∥∥∥∥
∞

)
= o(log n),

where the last step follows by using Lemma G.1 and (c1, c2) are chosen in such a way that the entries
of vectors c1u

∗
1

λ∗
1

and c2u
∗
2

λ∗
2

are O(1) by (27).

We finally combine all the pieces and give the proof of Theorem 2.
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Proof of Theorem 2. We break into cases.

1. Rank 1, i.e. a1a2 = b2: First note that Algorithm 6 creates a score vector zspec ∈ Rn such
that ∥z∗ − zspec∥∞ = o(log n) by Lemma G.3. Using Lemma D.1, whenever I∗ >, there
exists ς > 0 such that

P(σ∗
i z

spec
i ≤ ς log n) = o(n−1).

Taking a union bound,

P(∀i ∈ [n], σ∗
i z

spec
i > ς log n) = 1− o(1).

Finally, the algorithm outputs σ̂spec = sgn(zspec) (step 3), this immediately implies

P(σ̂spec = σ∗) = 1− o(1).

2. Rank 2, i.e. a1a2 ̸= b2: We first note that whenever I∗ > 1, the estimator σ̂MAP achieves
exact recovery by Proposition 3.1. That is with high probability, we have σ̂MAP = σ∗, unless
a1 = a2 and no side information, in which case σ̂MAP ∈ {±σ∗}. Recall that Algorithm 5
creates four candidates for σ∗ and chooses the one with maximum posterior probability.
Due to statistical achievability, it suffices to show that one of the {σ(s) : s = (s1, s2) ∈
{±1}2} maintained by the algorithm is σ∗ with high probability. To this end, recall Lemma
G.3 that with probability 1− o(1),

min
s∗∈{±1}

∥∥∥z∗ − z(s)
∥∥∥
∞

= o(log n).

Combining this with Lemma D.1, there exists s∗ ∈ {±1}2 and ς > 0 such that

P
(
min
i∈[n]

σ∗
i z

(s∗)
i > ς log n

)
= 1− o(1),

after taking a union bound. As σ̂(s∗) = sgn(z(s
∗)) in step 4, we obtain σ̂(s∗) = σ∗ with

high probability. Overall, we established that σ̂spec achieves exact recovery above the IT
threshold.

G.3 DEGREE-PROFILING ALGORITHM FOR BEC AND BSC CHANNELS

Algorithm 7 Degree-Profiling algorithm for SBM in the presence of BEC or BSC side information.

Input: An n × n observation matrix A and parameters (ρ, a1, a2, b). The BEC side information y
with parameter ϵ or BSC side information y with parameter α.

Output: An estimate of community assignments σ̂dp.

1: Let S+ := {i : yi = +1}, S− := {i : yi = −1}, and γ := (ρ(b− a1) + (1− ρ)(a2 − b)) log n.
Compute z ∈ Rn such that, for every i ∈ [n]

zi = log
(a1
b

) ∑
j∈S+

Aij + log

(
b

a2

) ∑
j∈S−

Aij + γ.

2: Prepare the degree-profile score vector zdp as follows.
• BEC side information: For any i ∈ [n],

zdp
i =


zi if yi = 0;

+∞, if yi = +1;

−∞ if yi = −1;

• BSC side information:

zdp = z + log

(
1− αn

αn

)
y

3: Return σ̂dp = sgn(zdp).
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The success of the degree-profiling algorithm is formalized in the following lemma.

Theorem 4. Let ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Let
y ∼ BEC(σ∗, ϵ) or y ∼ BSC(σ∗, α), where

lim
n→∞

log(1/ϵ)

log n
= β and lim

n→∞

log( 1−α
α )

log n
= β

for some β > 0. Then I∗ from (5) is well-defined and there is a degree-profiling algorithm (Algo-
rithm 7) that returns the estimator σ̂dp which achieves exact recovery whenever I∗ > 1.

Again to prove that our approximation is good enough when using S+ and S− as proxies for the
actual communities, we will need a technical lemma to bound the error terms, whose proof we
include the at the end of this section.

Lemma G.4. Consider ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b). Condition
on σ∗ such that the event E from (9) holds. Fix any set T ⊂ C+ or T ⊂ C− such that |T | =
O(n/ log10 n). Then for any i ∈ [n], define Yi :=

∑
j∈T Aij . Then

P
(
∀i ∈ [n] : Yi ≤

log n

log log n

)
≥ 1−O(n−3).

Using this, we now show that the degree-profiling scores are indeed good approximations of the
actual genie scores.

Lemma G.5. Fix ρ ∈ (0, 1) and a1, a2, b > 0. Let (A, σ∗) ∼ SBMn(ρ, a1, a2, b) and condition
on σ∗ such that E from (9) holds. For β > 0, let y ∼ BEC(σ∗, ϵn) or y ∼ BSC(σ∗, αn) where
ϵn and αn scales as described in Theorem 4. Let z∗ and zdp respectively be the genie score vector
and the degree-profiling score vector produced by Algorithm 7 for the corresponding model of side
information. Then with probability 1− o(1),∥∥z∗ − zdp

∥∥
∞= O

(
log n

log log n

)
.

Proof. The proof has similar calculations as in Lemma F.6 for ROS. We again first start by noting
that zdp is just formed by overriding the entries of z from step 1 of Algorithm 7 with +∞ or −∞
depending on the side information label being +1 or −1 under BEC channel. Also, in step 2 under
the BSC channel, we have zdp = z + log

(
1−αn

αn

)
y. Recall Lemma 4.2 as to how the genie scores

change under both types of side information. It suffices to show that, with probability 1− o(1),

∥z′ − z∥∞ = O

(
log n

log log n

)
,

where z′ is the genie score vector without side information and z is formed in step 1. Recall that E1

holds with probability 1−O(n−3) from (20). Using Lemma G.2 along with the triangle inequality
we obtain the following.

• BEC side information:

∥z′ − z∥∞ = max
i∈[n]

|z′i − zi|

≤ max
i∈[n]

∣∣∣∣∣∣log
(a1
b

) ∑
j∈C+\S+

Aij + log

(
b

a2

) ∑
j∈C−\S−

Aij

∣∣∣∣∣∣+O(1)

where we substitute z′ from step 1. From Lemma F.4, both |C+ \ S+| and |C− \ S−| are
bounded by O(n/ log10 n) with probability 1− o(1). These sets are independent of A and
are chosen based on y. Using Lemma G.4 for these sets, with probability 1− o(1)

∥z′ − z∥∞ ≤ max
i∈[n]

∣∣∣∣∣∣log
(a1
b

) ∑
j∈C+\S+

Aij

∣∣∣∣∣∣+
∣∣∣∣∣∣log

(
b

a2

) ∑
j∈C−\S−

Aij

∣∣∣∣∣∣+O(1) = O

(
log n

log log n

)
.
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• BSC side information: There are additional error terms caused by the sets S+ \ C+ and
S− \ C−:

∥z′ − z∥∞ = max
i∈[n]

|z′i − zi| = max
i∈[n]

∣∣∣∣∣ log (a1b ) ∑
j∈C+\S+

Aij − log
(a1
b

) ∑
j∈S+\C+

Aij

+ log

(
b

a2

) ∑
j∈C−\S−

Aij − log

(
b

a2

) ∑
j∈S−\C−

Aij

∣∣∣∣∣+O(1)

(substituting z′ from Lemma G.2 and z from step 1)

= O(1) ·max
i∈[n]

∣∣∣∣∣ ∑
j∈C+\S+

Aij +
∑

j∈C−\S−

Aij

∣∣∣∣∣+O(1).

(since S+ \ C+ = C− \ S− and S− \ C− = C+ \ S+)
Exactly the same argument of using Lemma F.4, both |C+ \ S+| and |C− \ S−| is
O(n/ log10 n) with probability 1 − o(1). Using Lemma G.4 for these sets, with proba-
bility 1− o(1)

∥z′ − z∥∞ = O

(
log n

log log n

)
.

We finally prove Theorem 4.

Proof of Theorem 4. We already discussed in Appendix C that I∗ is well-defined. When β > 0, by
Lemma G.5, with probability 1− o(1),∥∥z∗ − zdp

∥∥
∞ = O(1).

Above the IT threshold by Lemma D.1 and union bound over i ∈ [n], there exists δ > 0 such that

P
(
min
i∈[n]

σ∗
i z

∗
i > δ log n

)
= 1− o(1).

Taking a union bound of these two events, there exists ς > 0 such that

P
(
min
i∈[n]

σ∗
i z

dp
i > ς log n

)
= 1− o(1).

Observing σ̂dp = sgn(zdp) in step 3 of Algorithm 7, we obtain σ̂dp achieves exact recovery, i.e.
lim
n→∞

P (σ̂dp succeeds) = 1.

We finally return to the skipped proof of a technical lemma.

Proof of Lemma G.4. Fix any set T according to the lemma and define {Yi : i ∈ [n]}. Let
τ = max{a1, a2, b} and Y ∼ Binom(|T |, τ logn

n ). Observe that for any i ∈ [n], we have Yi

is stochastically dominated by Y . Applying the following Chernoff bound for Binomial random
variable (Mitzenmacher & Upfal, 2017, Thereom 4.4): for any r > 1 and X ∼ Binom(N, p),
P(X ≥ rnp) ≤ (e/r)rnp, we obtain for any i ∈ [n]

P
(
Yi ≤

log n

log log n

)
≤ P

(
Y ≤ log n

log logn

)
≤
(

e|T |τ log n/n
log n/ log log n

) log n
log log n

= O

(
log log n

log10 n

) log n
log log n

= n−10+o(1).

A simple union bound over all i ∈ [n] gives us

P
(
∀i ∈ [n] : Yi ≤

log n

log log n

)
≥ 1−O(n−3).
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