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Abstract—Short-term physiological forecasting holds promise
for applications requiring capture of rapid changes in physiolog-
ical signals. Modeling these transient dynamics may enable the
quantification of subtle physiological changes that can be critical
in many real-time or sensitive contexts, such as assessing acute
stress or closed-loop resuscitation. In this paper, we demonstrate
the effectiveness of a time-varying autoregressive Kalman filter-
based framework for short-term forecasting of physiological
features. To eliminate the need for manual hyperparameter
tuning, we integrate an adaptive mechanism that dynamically
estimates the process and measurement noise parameters of
the Kalman filter. Our results demonstrate that the proposed
method outperforms baseline models by approximately 1 ms in
predicting the next heartbeat’s pre-ejection period and by 2–3 ms
in predicting the next heartbeat’s left ventricular ejection period.
Moreover, we demonstrate that it can achieve this improved per-
formance without hyperparameter tuning. This work provides a
robust forecasting framework for tracking physiological features
and generating new ones to capture short-term physiological
variations.

Index Terms—Autoregressive modeling, Kalman filter, physio-
logical forecasting, seismocardiogram, electrocardiogram, adap-
tive estimation

I. INTRODUCTION

Time series forecasting for physiological signals involves
predicting future values of biosignals, or biosignal features,
based on their historical temporal patterns. This enables
modeling of short-term (i.e., millisecond-level) and long-term
physiological changes, with applications in early anomaly de-
tection, personalized health monitoring, and data-driven med-
ical decision-making. Various forecasting methods, including
autoregressive and deep learning models, have been explored
in healthcare for diagnostic and prognostic purposes [1]. Most
of the recent efforts focus on ECG waveform prediction
[2]–[4] or certain features such as heart rate dynamics [5].
However, in the context of physiological forecasting, broader
evaluations across diverse features derived from multiple sens-
ing modalities are still needed to more effectively capture
multimodal relationships. Additionally, although these features
have been widely applied in various domains [6], [7], short-
term forecasting at fine temporal resolutions (e.g., millisecond-
level) remains underexplored.
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To address this gap, [8] evaluated several algorithms for
short-term cardiac feature forecasting, specifically targeting
aortic opening and closing events, which have been demon-
strated in the existing literature to provide value in assessing
left ventricular function, ejection fraction, and blood volume
decompensation status [9]–[11]. It has been proposed that such
short-term forecasting not only improves temporal resolution
but also enables the derivation of new features representing the
model’s belief based on historical data [8]. These features can
be leveraged to quantify discrepancies between predictions and
actual measurements, facilitating the development of new data-
driven approaches for fine-grained physiological assessments.
Among the methods examined, time-varying autoregressive
Kalman filter-based models outperformed the others across
noisy and clean settings, in both unimodal and multimodal
configurations. Although the effects of modalities such as elec-
trocardiogram (ECG) and seismocardiogram (SCG) have been
examined [8], the work did not explore additional modalities
that are commonly acquired alongside these signals. Addition-
ally, another key limitation of [8] is the reliance on random
search for tuning Kalman filter parameters—specifically, the
process and measurement noise matrices, which is computa-
tionally expensive.

Building on this foundation, our study evaluates these fore-
casting models using a more diverse feature set obtained from
three sensing modalities: ECG, SCG, and photoplethysmo-
gram (PPG). To address the limitations associated with manual
tuning of Kalman filter parameters, we introduce an adaptive
update mechanism that dynamically adjusts the process and
measurement noise parameters in real-time based on incoming
data, eliminating the computationally expensive parameter
tuning procedure while maintaining predictive performance.

In this paper, our key contributions are as follows:

• We validate the performance of time-varying autore-
gressive Kalman filter-based forecasters with multimodal
inputs on a more diverse physiological feature set.

• We propose an adaptive mechanism for updating process
and measurement noise parameters, removing the need
for hyperparameter tuning and adding personalization.

With these contributions, we envision that this work paves
the way towards future efforts which can leverage this short-



Fig. 1. Diagrams depicting the processes of feature forecasting and parameter
optimization. (a) Pipeline from data collection to feature forecasting. (b)
Diagram showing model evaluation via hyperparameter tuning with leave-one-
subject-out cross-validation. (c) Diagram illustrating model evaluation using
adaptive parameter estimation.

time forecasting capability to enable closed-loop interventions
in response to rapid physiological shifts, including adaptive
resuscitation protocols in response to changing left ventricular
function and volume status.

II. METHODS

A. Dataset

The dataset described in [8], [11]–[13] consists of ECG,
PPG, and SCG recordings from six catheterized pigs undergo-
ing controlled blood volume depletion to simulate hemorrhage.
Following the preprocessing methods outlined in [8], [13],
eleven features were extracted as per the approach in [11].
These features encompass both amplitude- and timing-based
metrics, specifically: heart rate (HR); time-domain heart rate
variability (HRV); HRV derived via the Poincaré method;
frequency-domain HRV; PPG amplitude range; pulse arrival
time (PAT) and its normalized form; pulse transit time (PTT);
pleth variability index (PVI); pre-ejection period (PEP); and
left ventricular ejection time (LVET). For a more detailed
explanation of these features, readers are referred to [11].

B. Autoregressive Modeling of Feature Forecasting

A single-feature autoregressive model of order p, i.e.,
AR(p), is expressed as

FX
t = ϕX

1 FX
t−1 + ϕX

2 FX
t−2 + · · ·+ ϕX

p FX
t−p + wt, (1)

where F refers to feature with X denoting the specific feature
of interest to forecast, wt is the process noise and ϕi, for
i = 1, 2, . . . , p denote the autoregressive coefficients corre-
sponding to the respective lagged terms. When dealing with
multiple features, the model must be extended to incorporate
cross-modal interactions.

C. Time-varying Autoregressive Kalman Filter Modeling

For next-feature forecasting, we adopt the time-varying
autoregressive Kalman filter-based models introduced in [8].
Specifically, we use the unimodal “TV-SF-AR” (SF-KF) and
the multimodal “TV-MF-AR” (MF-KF) models, which have
demonstrated superiority in estimating next-beat aortic open-
ing (AO) and aortic closing (AC) timings [8].

The state transition equation of a Kalman filter without
external input is xt+1 = Atxt + wt, where xt is the state
vector, At is the state transition matrix, and wt ∼ N (0,Qt)
represents the process noise at time t. The measurement
equation of a Kalman filter is zt = Ctxt + vt, where zt
is the measurement vector, Ct is the measurement matrix and
vt ∼ N (0,Rt) represents the measurement noise.

1) Single-Feature Kalman Filter (SF-KF): Following [8],
this model follows the AR(p) process as in (1). We set CX

t =
FX

t = [FX
t−p, . . . , F

X
t−1] and xX

t = [ϕX
p , . . . , ϕX

1 ]⊤. The state
transition matrix AX

t ∈ Rp×p and measurement zXt ∈ R
are Ip+q and FX

t for each target modality X . For a given
feature X , the model relies solely on the historical values of
X and updates the autoregressive weights ϕX

i , i = 1, . . . , p, as
defined in equation (1), enabling the model to adapt quickly to
physiological changes by updating its parameters in real time.

2) Multi-Feature Kalman Filter (MF-KF): Unlike [8],
which utilized only three features, our approach leverages
a broader set of 11 features. Let S = {XS

1 , . . . , X
S
|S|}

and T = {XT
1 , . . . , XT

|T |} denote the sets of source and
target features, respectively, with |S| and |T | representing
their cardinalities. Target features are the variables we seek
to estimate, whereas source features are included in the
state to predict these targets. This distinction enhances
the model’s generalizability to different feature sets and
constraints. Additionally, adjusting these features enables us
to explore their impact on forecasting performance. The state
vector xt ∈ R|S|2p, encoding all auto- and cross-regressive
weights between the source features can be written as xt =[
ΦXS

1 →XS
1 , . . . ,ΦXS

|S|→XS
1 , . . . ,ΦXS

1 →XS
|S| , . . . ,ΦXS

|S|→XS
|S|

]⊤
Each ΦXS

i →XS
j , i, j = 1, 2, . . . , |S|, contains p lag coefficients

representing the influence of feature XS
i on XS

j . The state
transition matrix is taken as identity: At = I ∈ R|S|2p×|S|2p.
The measurement vector zt = FT

t consists of observations
from the target features T , and the corresponding measurement
matrix Ct is given by:

Ct =


F

XT
1

t F
XT
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t . . . F

XT
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...
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...
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1
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t


where each FXi

t contains lagged observations from feature
Xi, and 0W denotes a 1 × W zero vector, with W = |T |p,
matching the dimension of the stacked FXi

p blocks. Note that
this mathematical structure assumes, without loss of generality,
that the first |T | elements of S correspond exactly to T . In



other words, each target’s own history is utilized to inform its
prediction, which is then enhanced by information from other
features. The inclusion of multimodality is the key distinction
from SF-KF, enhancing both accuracy and robustness to noise
by incorporating multiple sources of information.

D. Scenarios Examined

We examine both clean and noisy feature scenarios. In the
noisy scenarios, following [8], we model the noise ηXt as a
mixture of Gaussian distributions N (0, σ2), N (0, (3σ)2), and
N (0, (5σ)2), each occurring with equal probability (i.e., one-
third). This noise is added randomly to 25% of the data to
simulate real-world conditions with occasional measurement
errors. The parameter σ is determined by computing the
moving standard deviation of the data. Our analysis focuses
specifically on the target features PEP and LVET, as they are
closely associated with AO and AC—the targets in [8]. The
scenarios investigated is described below.

1) Naive: As a baseline for short-term forecasting, we
include a naive approach that predicts the next value using the
most recent observation. Specifically, it returns F̂X

t = FX
t−1

where X denotes any feature of interest. Its noisy counterpart
is referred to as N-Naive.

2) Rolling Average (RA): As another baseline model, we
include RA with parameter p, returning the average of the last
p observations as the forecast, i.e., F̂X

t = (1/p)
∑p

i=1 F
X
t−i.

Its noisy counterpart is referred to as N-RA.
3) SF-KF: Two separate models are used—one for fore-

casting PEP and another for LVET—based on the previously
described SF-KF, each relying solely on its own historical data
for prediction. Its noisy counterpart is referred to as N SF-KF.

4) MF-KF: The previously introduced MF-KF model is
applied to forecast both PEP and LVET, leveraging all 11
available features. The observation vector z includes only
the observed values of PEP and LVET. We conduct two
experiments involving noise inclusion: one where noise is
partially added—applied only to SCG-derived features (e.g.,
PEP, LVET, and PTT)—and referred to as PN MF-KF, and
another where noise is added to all features, called N MF-
KF. The former simulates scenarios where only SCG data
is affected by noise, while the latter represents conditions in
which data from all devices are corrupted by noise.

E. Adaptive Estimation of Covariance Matrix Parameters to
Remove Hyperparameter Tuning

In [8], the process noise and measurement noise covariance
matrices, Qt and Rt, were tuned for each test subject j using
cross-validation on the remaining subjects (i = 1, . . . , N ; i ̸=
j), requiring an extensive search over the hyperparameter
space. Although random search was used to reduce com-
putational burden, it remains prone to suboptimal solutions
due to its inherent randomness. Moreover, tuning based on
population-level data may not yield parameters optimal for
the individual test subject. To address these limitations, we
propose an adaptive strategy that estimates Qt and Rt on the

TABLE I
PEP AND LVET FORECAST ERRORS ACROSS ALL PIGS UNDER VARIOUS

SCENARIOS

Scenario PEP RMSE (ms) LVET RMSE (ms)
Mean Std Mean Std

Clean

Naive 3.693 2.126 10.649 3.876
RA 3.564 1.447 9.584 2.646

SF-KF 2.678 1.914 8.117 3.879
MF-KF 2.493 1.754 7.674 3.697

Noisy

N-Naive 6.562 1.560 18.075 2.295
N-RA 4.547 1.369 13.349 2.350

N SF-KF 5.477 1.332 14.672 2.363
PN MF-KF 4.815 1.283 13.782 2.581
N MF-KF 4.242 1.431 12.346 2.933

fly, based solely on incoming data, eliminating the need for
manual or population-based tuning.

At every time step we first compute the error
δ̂t = x̂t|t − Atx̂t−1|t−1. This error term, δ̂t, is then
used to update the process noise covariance matrix Qt using

Qt =
1

MQ

MQ∑
i=1

δ̂iδ̂
⊤
i , (2)

where MQ is a window size, empirically set to 10 to ensure
stable estimates without excessive smoothing and short-term
memory. While MQ may be treated as a hyperparameter,
tuning this single value is considerably simpler than adjusting
all elements of Qt.

Similarly, for the measurement covariance matrix, we first
compute the error v̂t = zt − Ctx̂t|t−1. v̂t is then used to
update the measurement noise covariance matrix Rt using

Rt =
1

MR

MR∑
i=1

v̂iv̂
⊤
i , (3)

where MR denotes the window size, with a value of 10 chosen
empirically, consistent with the reasoning outlined earlier.

III. RESULTS

Table I presents the mean and standard deviations of fore-
casting errors for PEP and LVET features. It is important
to note that the covariance matrices in these scenarios are
obtained through hyperparameter tuning, in line with the
approach used in [8], to demonstrate the effectiveness of
the methodology on a different feature set. In the noise-
free scenario, SF-KF and MF-KF performed effectively on
this new feature set. The similar performance of SF-KF and
MF-KF indicates that the benefit of multimodality is not
apparent under clean conditions, and a unimodal autoregres-
sive model suffices. However, under noisy conditions, the
value of multimodality becomes evident. Specifically, N MF-
KF outperforms PN MF-KF, suggesting that incorporating
additional, even non-target, modalities enhances forecasting
performance. Overall, both multimodal models outperform the
unimodal approach in the presence of noise. Furthermore,



Fig. 2. Comparison of QRtuned and QRauto in Kalman filter-based
scenarios for both target features along with performances of baseline models.

autoregressive Kalman filter-based models—particularly MF-
KF—demonstrate superior performance compared to the base-
line models. The RA model outperforms both unimodal and
one of the multimodal autoregressive models, likely due to
the smoothing effect of averaging, which helps mitigate the
impact of occasional noise.

Figure 2 compares SF-KF and MF-KF with their counter-
parts that incorporate adaptive covariance matrix estimation.
To facilitate comparison, we also show the ranges for the Naive
and RA models, which do not incorporate covariance matrices.
For both target features (PEP and LVET), the performance of
QRauto matches or even exceeds that of QRtuned, indicating
that the automated approach achieves comparable accuracy
without requiring hyperparameter tuning. Notably, QRauto

eliminates the need for tuning entirely.
In multimodal models, the covariance matrix Q ∈ RL×L,

where L = |F|2p and |F| = 11 in this study, results in a
large number of parameters to tune—L2 in total. For unimodal
models, L = p. To reduce complexity, [8] assumed no cross-
lag or cross-modal relationships, limiting the estimation to the
diagonal elements and reducing the number of tunable parame-
ters to L. However, this simplification potentially omits useful
information. Even with this reduction, hyperparameter tuning
remains a combinatorial problem. [8] addressed this using a
predefined search space and random search, terminating after
a fixed number of trials—meaning not all configurations were
explored. In contrast, QRauto is fully data-driven, adaptively
updating the matrix elements during training without such
assumptions or manual effort, thus avoiding these challenges

entirely. Furthermore, as the results show, this approach does
not lead to any performance degradation. The same conclusion
also applies to the measurement noise matrix R.

IV. CONCLUSION

This work investigated the use of a time-varying autore-
gressive Kalman filter-based framework for unimodal and
multimodal short-term forecasting of physiological features. It
has been shown that the proposed model outperforms baseline
forecasting methods. Additionally, the impact of incorporating
multiple modalities under both clean and noisy conditions
was examined. Importantly, our results demonstrated that the
adaptive estimation of process noise and measurement noise
parameters effectively removes the need for manual hyperpa-
rameter tuning. This adaptive approach maintains competitive
performance, without relying on a computationally intensive
tuning procedure.
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