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ABSTRACT

Recent AI trends seek to align AI models to learned human-centric objectives, such as
personal preferences, utility, or societal values. Using standard preference elicitation
methods, researchers and practitioners build models of human decisions and judgments,
to which AI models are aligned. However, standard elicitation methods often fail to
capture the cognitive processes behind human decision making, such as heuristics or
simplifying structured thought patterns. To address this failure, we take an axiomatic
approach to learning cognitively faithful decision processes from pairwise comparisons.
Building on the literature analyzing cognitive processes that shape human decision-
making, we derive a model class in which features are first processed with learned rules,
then aggregated via a fixed rule, such as the Bradley-Terry rule, to produce a decision.
This structured processing of information ensures that such models are realistic and
feasible candidates to represent underlying human decision-making processes. We
demonstrate the efficacy of this modeling approach by learning interpretable models of
human decision making in a kidney allocation task, and show that our proposed models
match or surpass the accuracy of prior models of human pairwise decision-making.

1 INTRODUCTION

Computational models of human cognition allow us to quantify and study the factors that influence
our decisions, and when accurate, they help explain commonalities in human decision processes across
different tasks (Gigerenzer et al., 2000; Crockett, 2016). This may also be why computational models to
predict human behavior have recently found applications in personalized AI tools in various settings, e.g.,
healthcare, autonomous vehicles, and resource allocation, to increase users’ confidence that AI will be
aligned with their preferences (Ji et al., 2023; Kim et al., 2018; Noothigattu et al., 2018; 2019).

Despite promising use cases, current AI models of human decision-making typically do not attempt
to faithfully replicate cognitive processes. Modern AI tools built using preference elicitation (Lee
et al., 2019; Awad et al., 2018; Johnston et al., 2023; Freedman et al., 2020; Rafailov et al., 2023)
and reinforcement learning (Ng et al., 2000; Christiano et al., 2017; Kaufmann et al., 2023) implicitly
assume that a reward/objective model from a prespecified hypothesis class can accurately predict human
decisions, but such tools are agnostic about how faithful these models are to cognitive processes. However,
recent works highlight the lack of suitable hypothesis classes to capture human choices or their values
(Stray et al., 2021; Boerstler et al., 2024; Leike et al., 2018). Unsuitable modeling classes introduce the
possibility of inappropriate optimization formulations and reward hacking (Pan et al., 2022; Hubinger et al.,
2019), and can lead to arbitrarily erroneous inferential models learned from human responses (Zhuang
& Hadfield-Menell, 2020; Pan et al., 2022). Additionally, such misaligned models are limited in their
explanatory power and trustworthiness. As suggested by Jacovi et al. (2021), misalignment between AI and
human reasoning processes threatens intrinsic trust placed in the AI’s decisions. These problems are further
exacerbated when AI is used in high-stakes domains, including moral domains such as healthcare and
sentencing (Sinnott-Armstrong et al., 2021; Kim et al., 2018), where stakeholders often expect an AI to
justify its decision in a similar manner and to the same extent as humans (Lima et al., 2021; Keswani et al.,
2025). Modeling done in prior moral decision-making contexts either favors simple model classes — e.g.,
linear models and decision trees (Lee et al., 2019; Noothigattu et al., 2018; Freedman et al., 2020), whose
fit for human decision-making is highly context-specific (Ganzach, 2001; Zorman et al., 1997), or employs
uninterpretable classes — e.g., neural networks or random forests (Wiedeman et al., 2020; Ueshima &
Takikawa, 2024) — whose decision processes cannot be validated due to their uninterpretable designs. A
qualitative study by Keswani et al. (2025) note this process misalignment as a crucial issue around AI-trust
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in morally-salient tasks like kidney transplant allocation, with one study participant expressing concern:
“they don’t think like a human. . . what they might think should be ranked as priority, I may not.”

Such human concerns highlight that, for certain real-world applications, building trustworthy AI tools
requires accurately simulating human decision processes. However, human decision processes are often not
captured by standard hypothesis classes. For example, consider humans’ use of decision heuristics, defined
by Gigerenzer & Gaissmaier (2011) as a strategy “that ignores part of the information, with the goal
of making decisions more quickly, frugally, and/or accurately than more complex methods.” Keswani
et al. (2025) document several heuristics people use when deciding which patient should get an available
kidney. Their study participants often used a form of hiatus heuristic, employing thresholds to isolate
relevant patient feature information; e.g., some treated “number of dependents” as a binary (none or any),
disregarding the actual quantity. Similarly, rather than contrast patients holistically, some participants used
simple aggregation methods, such as the tallying heuristic, which simply counts the number of features
favoring each patient to make their choices. While the role of such heuristics in human decision processes
is well established (Gigerenzer & Gaissmaier, 2011; Shah & Oppenheimer, 2008; Gigerenzer et al., 2000),
models learned from human decisions using standard hypothesis classes often don’t capture or explain the
heuristics people use to make decisions. For example, if a decision-maker uses the threshold-based heuristic
mentioned above, linear models would fail to capture it, while neural networks or multivaritae monotonic
regressors may learn the heuristic, but would fail to explain its role in the decision process. To explain or
simulate human decision processes accurately, we need methods to learn and represent these heuristics (and
other decision-making nuances). To that end, this paper explores hypothesis classes that more accurately
capture the cognitive processes people use to make their decisions in pairwise comparison settings.

This work presents a learning framework for computational models of pairwise human decision-making,
which is motivated by prior work on human cognition. We present natural decision-making axioms
(sec. 2.2), and from them, we derive a class of feasible cognitively faithful decision-making models. Given
any pairwise comparison between two options x1, x2 ∈ Rd, we model the decision-maker’s response to
this comparison as a sequential two-stage process (sec. 2.1). The first stage captures the editing rules that the
decision-maker employs over individual features x(j)

1 , x
(j)
2 to process/simplify/transform the information

presented in feature j ∈ [d]. Each feature j may have its own decision rule, and these rules work towards
transforming x

(j)
i in a manner that reflects the feature’s contribution to the decision-maker’s final choice

(e.g., whether the decision-maker thresholds, ignores, linearly transforms, or otherwise processes the
feature). We allow this transformation to be contextual in nature, whereby the value of one or more features
can influence the transformation used for another feature. Such conditional transformations capture feature
interactions in our hypothesis class, increasing the models’ expressiveness while ensuring that we still learn
feature-level decision rules. The second stage captures the decision rule that aggregates the processed
features to choose the preferred option. This aggregation rule can be as simple as the tallying heuristic
(Gigerenzer et al., 2000) or as complicated as Bradley-Terry aggregation for probabilistic preferences
(Bradley & Terry, 1952). Beyond the motivations from prior works on heuristic decision-making, we
present a simple axiomatic basis of human decision-making processes that yields our two-stage model class
(sec. 2.2). Moreover, more stringent assumptions yield special cases of interest, such as logistic regression,
probit regression, and monotonic decision rules. Finally, we assess the empirical efficacy of our proposed
framework over synthetic and real-world datasets in the kidney allocation domain (sec. 3), a domain where
users have said cognitive process alignment is particularly important. We find that our method can learn
models that explain the decision rules that people use for kidney allocation decisions, while ensuring that
the learned model has similar or better predictive accuracy than other modeling approaches.

Related Work Methods for learning preferences from choices among options have been proposed in many
contexts, such as recommender systems (Kalloori et al., 2018; Guo & Sanner, 2010; Chen & Pu, 2004),
language model personalization (Rafailov et al., 2023; Jiang et al., 2024; Ziegler et al., 2019; Ouyang et al.,
2022), and explanatory frameworks in social psychology (Lichtenstein & Slovic, 2006; Ben-Akiva et al.,
2019; Charness et al., 2013). Recently, preference learning and elicitation of stakeholder preferences has
flourished in the context of human-centric AI and AI alignment (Jiang et al., 2024; Ji et al., 2023; Capel &
Brereton, 2023; Feffer et al., 2023; Kim et al., 2018; Johnston et al., 2023; Sinnott-Armstrong et al., 2021;
Liscio et al., 2024; Lee et al., 2019). The usability of learned models in real settings relies on both their
predictive accuracy and their alignment to humans’ decision-making (Mukherjee et al., 2024; Keswani et al.,
2025; Capel & Brereton, 2023; Lima et al., 2021). However, modeling strategies in most prior AI alignment
work are agnostic about whether they actually capture human decision-making processes. Our work fills
this gap by proposing modeling classes explicitly motivated by the decision rules people report using for
pairwise comparisons. Like this work, Noothigattu et al. (2020) study the class of binary decision rules
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arising from pairwise comparisons. However, their axioms concern MLE estimation over data, and thus are
distribution sensitive, whereas our axioms dictate laws as to how probabilistic preferences must behave over
their domain. They also do not characterize model classes arising from their axioms, but rather study
whether known classes satisfy them, making their work more taxonomically descriptive than prescriptive.
Ge et al. (2024) continue this line of inquiry, again with axioms related to estimation from datasets.

There have also been other efforts to computationally model human decision-making. Bourgin et al.
(2019) propose constructing models bounded by theoretical properties of human decision-making that are
fine-tuned with real-world data, but they aim for accurate predictions, rather than cognitive fidelity or
interpretable models. Peterson et al. (2021) use neural networks to implement and test cognitive models of
participant choices for pairs of gambles. This analysis provides information on the fit of various cognitive
models, but does not provide a mechanism to learn the decision-making process from an individual’s data.
Plonsky et al. (2017) and Payne et al. (1988) use psychological theories to select feature transformations or
simulate prespecified heuristics to obtain gains in predictive power by curating the learning tasks to be more
cognitive aligned with human decision processes. However, the applicability of these methods can be
limited in settings where feature transformations are unknown a priori and vary across individuals. Our
work also uses relevant works in psychology to identify appropriate decision rule assumptions, but we learn
the feature heuristics/transformations from human decisions. Other works use neural networks alongside
theory-driven cognitive models to simulate human decision-making (Fintz et al., 2022; Lin et al., 2022), but
such models of learned decision processes are largely uninterpretable. Several studies also illustrate that
simple heuristic-based models predict human responses well in classification (Holte, 1993; Şimşek &
Buckmann, 2015; Brighton, 2006; Czerlinski et al., 1999; Dawes, 1979), supporting our goal of learning
heuristics from decisions. Yet, the heterogeneity of heuristics used by different people makes it difficult to
find a single model to accurately simulate the responses for an entire population. Our work addresses this
issue by learning individual-level decision rules from data.

2 A MODEL OF COGNITIVELY-FAITHFUL DECISION-MAKING

In our setting, a decision-maker is presented with a pairwise comparison (x1, x2) between two options
from the domain X ⊆ Rd, i.e. each with d descriptive features. For each i ∈ [d], let Xi ⊆ R denote the
input space for feature i, such that X .

= X1 × · · · ×Xd. The decision-maker’s stochastic response function
H : X × X → [0, 1] denotes the probability of choosing the first option x1 for any given pairwise
comparison (x1, x2). To learn H from observed data, suppose we are given a dataset S containing the
decision-maker’s responses to N pairwise comparisons of the kind (x1, x2, r), where r ∈ {0, 1}, is the
binary decision, with r = 1 if the decision-maker deterministically chose x1, and 0 otherwise.

Given dataset S, we aim to learn a model Ĥ that accurately simulates the decision-maker’s response
function. Taking a general learning approach to this problem, given a hypothesis class of models H, we can
search for a model from H that minimizes the predictive loss over S. A common approach to learning Ĥ is
to start with standard hypothesis classes, such as classes of linear functions, decision trees, or neural
networks. However, as discussed earlier, the assumptions of these classes are likely not faithful to the
cognitive processes people truly use to reach their own decisions (Keswani et al., 2025). As such, when
using these classes, the resulting model can be difficult to validate and may lead to erroneous predictions in
cases where the model class cannot capture the computation required to reach the “correct” decision. We
aim to identify a hypothesis class that yields the most accurate model while faithfully representing humans’
actual decision-making processes. Such models have the added benefit of being interpretable for human
users. To come up with cognitively faithful computational models, we first discuss the computational
properties commonly observed in human decision-making processes, and then use these properties to
construct an appropriate hypothesis class.

2.1 RULE-BASED DECISION-MAKING MODELS

Prior works on cognitive models for human decision-making point to a reliance on decision rules and
heuristics in comparative settings (Gigerenzer et al., 2000; Gigerenzer & Gaissmaier, 2011; Brandstätter
et al., 2006; Kahneman & Tversky, 2013; Kahneman & Frederick, 2005). Based on this literature, we
construct hypothesis classes that consist of hierarchical decision rules. Our proposed strategy models
decision-making for pairwise comparison of options (x1, x2) as a two-step process. In the first step, the
decision-maker processes each feature in x1 and x2 to edit or transform the information presented using this
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feature. In the second step, the decision-maker combines the edited information from all features to select
the dominant option. Our hypothesis class will consist of functions that reflect this hierarchical process.

Editing Rules The decision rules or heuristic functions used in the first step are referred to as editing rules.
Editing rules operate at the level of individual features of each element in the given pair and operationalize
how a decision-maker processes the given feature value. Let hi

inn : Xi → X ′
i denote the editing rule for

feature i, with X ′
i the output domain post-editing. Examples of editing include feature simplification (e.g.,

zeroing out features considered irrelevant), transformation (e.g., log transformation for features with
“diminishing returns” or scaling), or leaving the feature unchanged.

While these rules are often structurally simple, reflecting their use to reduce cognitive load (Gigerenzer &
Gaissmaier, 2011), there can be significant heterogeneity in the editing used in different contexts. For
example, prior works note feature interactions, where the editing rule used for the ith feature x(i) can
depend on the values of other features of x (Keswani et al., 2025). To account for this, we will consider the
choice of editing rule conditional on the decision context features, denoted by the values of features in a set
ω ⊆ [d]. On one extreme, ω = ∅, implying that each feature is edited independently (i.e., no feature
interactions), as ω grows, model complexity increases as conditional interactions involve more features, and
the other extreme, ω = [d], implies that the choice of editing function for each feature in x can depend on
the values of all other features. To account for this context ω, for any option x ∈ X , we will denote the
contextual editing rule operating over feature i by hi,xωi

inn : Xi → X ′
i , where ωi = ω \ {i}.

Remark 2.1 (Examples of Editing Rules). The use of editing rules is well-supported by literature in
behavioral economics and social psychology. Montgomery (1983) describes the phase of “separating
relevant information from less relevant information which can be discarded. . . ,” and Kahneman & Tversky
(2013) argue that this allows for decision-making based only on the most essential information. In some
settings, editing rules represent feature importance assignment (Payne, 1976; Shah & Oppenheimer, 2008;
Gigerenzer et al., 2000). In other cases, editing reflects feature transformations to isolate information
relevant to the task (Ajzen, 1996; Shah & Oppenheimer, 2008), e.g., thresholding to discretize features, or
log-transformation to model diminishing returns (Tversky, 1972; Kubanek, 2017).

Dominance Testing In the second step of the decision-making process, the edited features are compared
across the two options (x1, x2) and then combined to reach the final decision on which option is the
dominant one. We will refer to this second step as the dominance testing rule. Let hout : X ′ ×X ′ → [0, 1]
denote the dominance test function, where X ′ = X ′

1 × · · · × X ′
d.

Remark 2.2 (Examples of Dominance Testing rules). Several dominance testing rules have been studied in
prior literature, including the tallying up heuristic mentioned earlier (Czerlinski et al., 1999; Gigerenzer &
Gaissmaier, 2011) and the prominent feature heuristic (choose the element favored by the most prominent
feature for which there is non-zero difference in edited feature value) (Persson et al., 2022; Tversky et al.,
1988). Alternately, one could create additive or probabilistic functions to capture various dominance testing
rules observed in practice, e.g., Bradley-Terry aggregation (Bradley & Terry, 1952) (discussed in sec. 2.2).

With this setup, we model a decision maker’s response to any pairwise comparison as first applying
editing functions hi,xω

i

inn over each feature i for both options, given context ω and ωi = ω \ {i}, and then
combining the edited information to reach the final decision using the dominance testing rule hout. Hence,
our proposed hypothesis class contains such two-stage models, namely

H .
=

{
x1, x2 7→ hout

(
∀i ∈ [d], x

(i)
1 7→ h

i,x
ωi
1

inn (x
(i)
1 ), x

(i)
2 7→ h

i,x
ωi
2

inn (x
(i)
2 )

) ∣∣∣h·,·
inn ∈ Hinn, hout ∈ Hout

}
.

The properties that characterize classes Hinner and Houter are discussed in the next section.

2.2 AXIOMATIC CHARACTERIZATION OF DECISION RULES

The above-described two-stage process is motivated by extensive decision-making literature. An additional
compelling motivation for this hypothesis class comes from an axiomatic characterization of human
decision processes for pairwise comparisons. The axioms below describe simple properties expected to be
satisfied in an ideal comparative choice model (independent of its functional form).

Definition 2.3 (Axioms of Binary Choice). The following axioms describe a binary preference function
H(x1, x2) : X 2 → Y . Unless otherwise stated, each must hold for all x1, x2, x3 ∈ X .
1. Complementarity: The order in which two options are presented should not impact the option that is
eventually selected. Formally, we require that H(x1, x2) = 1−H(x2, x1).
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Complementarity

x1 x2

p

1 − p

Weak Transitivity

x1

x2

x3

p q

f(p, q)

Codomain Span Noninteractive
Compositionality

x1

x′
2 x′′

2

x2
′′′

Xi Xj

Xj Xi

Key: Assumed
Prediction

Consequent
Prediction

Feature
Modification

Figure 1: Visualization of the axioms of def. 2.3. Solid arrows represent assumed choice probabilities, dashed arrows
represent choice probabilities implied by an axiom, and in noninteractive compositionality, dotted arrows represent
feature modifications. Arrows may be labeled with choice probabilities.

2. Weak Transitivity (WT): The comparison H(x1, x3) can be expressed as a function of H(x1, x2) and
H(x2, x3), i.e., for some f : [0, 1]2 → [0, 1], it holds that H(x1, x3) = f(H(x1, x2), H(x2, x3)).
3. Codomain Span: For any p ∈ (0, 1) and x1 ∈ X , there exists x2 ∈ X such that H(x1, x2) = p.
4. Noninteractive Compositionality (NC): Suppose some x1 ∈ X , and x′

2, x
′′
2 , x

′′′
2 ∈ X such that x′

2 and
x′′
2 are obtained by changing different features of x1, and x′′′

2 is produced by applying both changes to x1.
We then require that H(x1, x

′′′
2 ) can be computed from H(x1, x

′
2) and H(x1, x

′′
2).

5. Conditionally Interactive Compositionality (CIC): Given a set of condition features ω ⊆ [d], suppose
some x1 ∈ X , and x′

2, x
′′
2 , x

′′′
2 ∈ X such that x′

2 and x′′
2 are obtained by changing different features

(neither in ω) of x1, and x′′′
2 is produced by applying both changes to x1. We then require that H(x1, x

′′′
2 )

can be computed from H(x1, x
′
2) and H(x1, x

′′
2).

These axioms are visualized in fig. 1. Complementarity ensures that the order in which options are presented
should not matter, and predicted probabilities sum to 1. Weak transitivity requires that comparisons between
(x1, x2) and (x2, x3) carry all the information about the items x1, x2, x3 to also compare (x1, x3), i.e.,
the first two pairwise comparisons suffice to “complete the triangle” of all three pairwise comparisons.
Codomain span is a technical condition, as to specify the decision rule for all probabilities, we must ensure
that all probabilities arise in comparisons over the domain X . Thm. 2.4 item 2 shows that these properties
work together to induce a strong form of transitivity in probabilistic predictions.

Axioms 4 & 5 characterize the extent to which different features interact in the decision process.
Noninteractive compositionality encodes a form of feature independence, requiring that the impact
of changing two different features is compositional, which is less restrictive than assuming linearity,
but restricts interactions between features in a similar manner. Essentially, this axiom characterizes a
generalized additive model (GAM) (Hastie, 2017), as it dictates how information is synthesizes across
features. Conditional interactivity then generalizes this idea, allowing for non-additive conditional feature
interactions. We propose this axiom to account for a larger class of models that consider the decision
context, where the impact of changing two features is additively compositional, except if one of the features
is a condition feature (part of the context ω described in sec. 2.1). Axioms 1–3 are prescriptive, while 4–5
are not assumed to be universal, but rather characterize a class of simple decision-making rules.

All of our axioms are simple statements about concrete judgments over pairwise choices (rather than
more abstract properties, like estimation or a specific decision mechanism). Furthermore, they are quite
weak: WT assumes that transitive relationships exist, and NC and CIC assume that the impact of multiple
independent feature modifications can be computed, without specifying any particular relationship. Note
that we do not claim that our axioms characterize rationality, but rather an ideal binary choice process in the
absence of cognitive biases; limitations of this assumption are discussed in sec. 4. We next show that the
decision-making processes that satisfy these axioms follow the two-stage process outlined in sec. 2.1.

Theorem 2.4 (Axiomatic Factoring Characterization). We now explore the consequences of our axioms on
characterizing the response function H(·, ·) of a decision-maker.
1. Atomic Model Suppose axiom 1, and also that X is a countable domain. Then there exists an atomic
rule hinn : X → R and hout : R → [0, 1] s.t. H(·, ·) can be factored as

H(x1, x2) = hout (hinn(x1)− hinn(x2)) .

2. σ(·)-Transitivity Suppose axioms 2–3 hold for some continuous transitivity law f(·, ·). Then there
exists a symmetric continuous random variable with full support and CDF σ(·) s.t.

H(x1, x3) = σ
(
σ−1(H(x1, x2)) + σ−1(H(x2, x3))

)
.
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Moreover, there exists some atomic rule hinn : X → R such that H(·, ·) can be factored as
H(x1, x2) = σ (hinn(x1)− hinn(x2)) .

3. Unconditional Factor Model: Suppose as in item 2, and also axiom 4 (NC). Then there exist inner
functions hi

inn : Xi → R for i ∈ [d] such that the atomic rule hinn(·) and decision rule H(·, ·) factor as

hinn(x) =

d∑
i=1

hi
inn(x

(i)) , H(x1, x2) = hout

( d∑
i=1

hi
inn(x

(i)
1 )− hi

inn(x
(i)
2 )
)

.

4. Conditional Factor Model: Suppose as in item 2, and also axiom 5 (CIC). Then there exist conditional
inner functions hi,·

inn :Xi → R for i ∈ [d] and condition features (context) ω ⊆ [d], ωi = ω \ {i}, s.t.

H(x1, x2) = hout

( d∑
i=1

h
i,x

ωi
1

inn (x
(i)
1 )− h

i,x
ωi
2

inn (x
(i)
2 )
)

.

Item 1 shows that axiom 1 suffices to reduce binary choices to a function of a difference of atomic
predictions for continuous transitivity laws f(·, ·), i.e., to H(x1, x2) = hout(hinn(x1) − hinn(x2)),
thus recovering the two-stage modeling process described in sec. 2.1. However, there is little structure
beyond this: Such a factoring exists, but it is by no means unique, and it may well be intransitive. Item 2
then imposes weak transitivity through axiom 2, additional continuity structure through axiom 3, and paired
with continuity of the transitivity law f(·, ·), we may conclude that hout(·) is a sigmoid function (CDF).
Axioms 4–5 are then needed to control feature interactions, and dictate a two-stage model structure wherein
each feature is processed individually or conditionally.

Intuitively, with σ-transitivity, we require that transitive probabilities can be computed via addition within
the sigmoid. Therefore, transitivity along chains of probabilities above 1

2 grow ever closer to 1 as σ(·) is
applied to a growing sum. In the parlance of generalized linear models, σ−1 plays the role of a link function.
Bradley-Terry models, such as logistic regressors, employ the logistic sigmoid, but other sigmoids, such as
the Gaussian CDF (with probit link function) also see use, e.g., in GLMs (MacCullagh & Nelder, 1989).

We now describe strong assumptions that may only be appropriate in specific real-world domains but
nonetheless produce specific properties for the hypothesis class of editing function Hinner.
Definition 2.5 (Assumptions on Binary Preference Models). We state assumptions on H that are suitable
for discrete or continuous domains. These discrete properties must apply to all x1, x2 ∈ X .
1. σ-Linearity: There exists some w ∈ Rd such that σ−1 ◦H(x1, x2) = w · (x1 − x2).
2. Monotonicity: If x1 ⪯ x2, then H(x1, x2) ≤ 1

2 .

We now combine these stronger assumptions with the results of the axiomatic analysis of thm. 2.4. Recall
that our basic axioms imply the factoring H = {x1, x2 7→ σ (hinn(x1)− hinn(x2)) |hinn ∈ Hinn}.
Theorem 2.6 (Axiomatic Models). Suppose axioms 1–4. The following then restrict Hinn or each H(i)

inn.
1. Suppose σ-linearity. Then H(i)

inn = {x 7→ wx|w ∈ R}, thus H = {x1, x2 7→ σ(w · (x1 − x2)) |w ∈ Rd}.
2. Suppose monotonicity. Then H(i)

inn = {h : R → R |x ≤ y =⇒ h(x) ≤ h(y)}.
3. Multivariate Monotonic Models: If we assume monotonicity but relax noninteractive compositionality,
then H = {x1, x2 7→ σ(h(x1)− h(x2)) |h : X → R s.t. x⃗ ⪯ y⃗ =⇒ h(x⃗) ≤ h(y⃗)}.
4. Conditional GAM Tree If we relax NC to CIC, then hinn(·) may be represented as a hybrid model of a
decision tree / GAM model, starting with a tree over Xω, where each leaf contains a GAM over X\ω.
Formally, we have Hinn =

{∑d−|ω|
i=1

(
Ti(x

ω)
)(
(x\ω)(i)

) ∣∣T ∈ R|ω| → (R → R)d−|ω|} .
From this perspective, we derive a few valuable insights: Logistic regression with nonnegative weights is
abstractly characterized by Bradley-Terry aggregation (σ(u) = logistic(u)) and linearity (and implicitly
implies noninteractivity and monotonicity). If linearity is relaxed to monotonicity, we obtain the class of
univariate monotonic models, and subsequently when noninteractivity is relaxed, we obtain univariate
monotonic models with conditional interactions. Similarly, probit regression is characterized by taking
σ(u) = Φ(u), i.e., the Gaussian CDF function, and linearity.

Extending Pairwise Comparisons to n-Way Choice

We focus on binary preference elicitation because it is a well-studied task in the decision-making literature.
To extend our binary preference framework to learn probabilistic rankings over n items, we use the choice
axiom of Luce et al. (1959): Introducing additional items should not change the probability ratio of
choosing x1 to choosing x2, Without WT, there are

(
n
2

)
degrees of freedom (DoF) to complementary

binary preferences, and a probabilistic ranking that accords with these binary preferences in general does
not exist (e.g., preferences over rocks-paper-scissors cannot accord with the choice axiom). However, with
WT, there are only n− 1 DoF, as a tree of predictions spanning n items can be completed via transitivity.

6
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Figure 2: Interpretable models learned for P4 of Study One. For our two-stage model and logistic classifier, we plot
the contributions of each value of each feature to the final choice i.e., we plot hinn(·), which by thm. 2.6 item 1 is linear
for the logistic model). We also show the decision tree, truncated to the first three layers. Note the differences in model
interpretation between these strategies, with our model providing insight into the heuristics used by P4.

Theorem 2.7 (Proportionality of Choice). Suppose a probabilistic decision rule over n ≥ 3 items that
obeys the choice axiom. Then H(·, ·) admits a σ-transitive factoring with logistic σ(·).

Thm. 2.7 uniquely characterizes the Bradley-Terry model, but is only interesting insofar as the model is
believable. Alternative models of n-way decision making are also well-studied, such as noisy observation,
where utility + noise is observed for each option, and the largest observation wins, resulting in a probability
distribution over outcomes. In particular, the Bradley-Terry model arises (non-uniquely) from homoskedastic
Gumbel noise, but of course the Thurstone–Mosteller model (Thurstone, 1927; Mosteller, 1951) arises from
homoskedastic Gaussian noise (hence the probit link function), and from this perspective, σ-transitivity
can be generalized to n-way decision models whenever the distribution with CDF σ decomposes as the
difference of two i.i.d. random variables, i.e., is in the difference-form decomposable (DFD) family,
although such decompositions are not always unique (Carnal & Dozzi, 1989; Ewerhart & Serena, 2025).

Overall, with reasonable domain-specific assumptions, we recover other standard modeling classes from
our two-stage modeling framework, highlighting the expressive power of our modeling class. Importantly,
assumptions like linearity and monotonicity are domain-dependent and need to be qualitatively justified for
the problem context. Classes, like logistic regressors, that implicitly encode these assumptions may
not generate cognitively-faithful models when the human decision process violates these assumptions.
Instead, we based our modeling class on generic axioms of human decision processes, which can be further
constrained by domain-specific assumptions as necessary.

Additionally, our axiomatic approach significantly constrains the set of feasible models, thus simplifying
the model class. For instance, suppose we are given a pairwise comparison (x1, x2) ∈ R2×d. Assuming
feature independence, a generic supervised learning approach would have at least 2d parameters. In
comparison, due to the complementarity axiom, our approach constructs d editing functions, halving the
parameter space, and implicitly enforcing symmetry over the two presented options, which is more cog-
nitively plausible than models that process both options independently, essentially repeating the logic twice.

3 EMPIRICAL ANALYSIS ON KIDNEY ALLOCATION DATA

We test our modeling strategy to learn moral judgment processes for kidney allocation, where prior works
study moral judgments regarding the allocation of kidneys to patients based on their medical attributes (e.g.,
transplant outcomes) and non-medical attributes (e.g., dependents and lifestyles) (Boerstler et al., 2024;
Keswani et al., 2025; Chan et al., 2024). We assess with both real-world and synthetic data.

Real-world dataset We use the dataset of Boerstler et al. (2024), which spans two studies where participants
were presented with several kidney allocation scenarios (15 participants in Study One and 40 in Study Two).
In both studies, each kidney allocation scenario comprises a pairwise comparison between two patients (see

7
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fig. 4 for an example). Participants were instructed to choose which patient should be given an available
kidney. In Study One, the patient features presented are the patient’s number of dependents, projected life
years gained from the transplant (LYG), alcoholic drinks per day, and number of crimes committed. In
Study Two, the patient features are the patient’s number of elderly dependents, LYG, years waiting for the
transplant, weekly work hours post-transplant, and obesity level. We present further details in appx. B.

Synthetic dataset We also created a synthetic dataset representing multiple simulated decision-makers.
This dataset contains pairwise comparisons of hypothetical kidney patients described using four features:
number of dependents, LYG, years waiting, and number of crimes committed. The goal is to simulate
decision-makers who explicitly use the heuristics observed in prior studies to assess how well our model
and other baselines recover these heuristics. The heuristics are taken from Keswani et al. (2025), who
provide user-reported qualitative accounts of decision rules people use for kidney allocation decisions.
Using their observations, we create five simulated decision-makers, DM1–DM5, each using different
decision rules over the presented patient features. For instance, DM1 decides between A and B with the
following process: (a) assign 1 point to the patient with a higher LYG; (b) assign 1 point to each patient
with dependents; (c) assign 1 point to each patient on the waiting list for >6 years; (d) add N (0, 1) noise
(i.e., a homoskedastic Thurstone-Mosteller process) to the difference of patient scores, and choose A if
difference> 0 and B otherwise (DM1’s process is mathematically described in fig. 3). Other simulated
decision-makers (DM2–DM5) also use various heuristics, such as thresholding, diminishing returns, and
tallying (described in appx. B). Our dataset contains 1000 pairwise comparisons from each simulated DM.

Methodology and Baselines We compare our model to several learning approaches, namely Bradley-Terry
and Drift Diffusion models from cognitive science literature, and common supervised learning approaches,
such as logistic and elastic-net classifiers, SVM, GAM with spline terms, decision trees, multi-layer
perception (MLP), k-NN, and random forests. Drift Diffusion is the only model we consider that requires
reaction times per scenario, thus it is not run for the simulated DMs. We use logistic models and decision
tree models as the “interpretable” methods to compare our model’s interpretability to. Since moral
judgments vary substantially across individuals, all experiments operate over individual-participant-level
data. For each decision-maker (real or simulated), we use a 70-30 train-test split, and report test accuracy
over 20 repetitions. For our framework, we minimize the predictive loss to learn the editing functions h·,·

inn
(which assign score∈ R to each feature value), constraining all h·,·

inn to be monotonic (since all features in
our dataset can be seen to impact the final choice monotonically) We implement two variants of this
framework: (A) with cross-entropy loss and σ(x) = (1 + e−x)−1, and (B) with hinge loss and σ as the
identity function. The first variant is aligned with the probabilistic framework of thm. 2.4, while the
second framework is better suited to assessing our learned model on the “hard classification” metric of
0-1 predictive accuracy. Context ω is limited to one feature for the real-world datasets, chosen using
cross-validation, and ∅ for the synthetic dataset. Appx. B provides additional implementation details.

Average Accuracy (stddev)
Model Study One Study Two Simulated
Cognitive models

Drift-Diffusion .89 (.05) .88 (.05) –
Bradley-Terry .90 (.06) .78 (.06) .77 (.06)
Supervised learning models

Logistic Clf .90 (.06) .89 (.05) .85 (.07)
Elastic Net .89 (.04) .88 (.05) .85 (.07)
SVM .89 (.06) .89 (.05) .85 (.07)
GAM .87 (.09) .84 (.11) .88 (.08)
Decision Tree .83 (.06) .79 (.06) .82 (.11)
k-NN .85 (.06) .82 (.05) .79 (.08)
MLP .89 (.05) .86 (.06) .87 (.08)
Random Forest .86 (.05) .85 (.04) .87 (.08)
Our Models

cross-entropy loss .90 (.06) .90 (.05) .89 (.10)
hinge loss .90 (.06) .89 (.06) .89 (.08)

Table 1: Performance statistics of all mod-
els on kidney allocation datasets.

Results Across all datasets, we observe that our cognitively-
motivated models achieve high accuracy and provide deeper
insight into decision-making processes than other baselines.

Aggregated Performance. The mean accuracy of each model
over all participants is shown in tbl. 1. Overall, on both real
and synthetic data, our framework produces models at least
as accurate as all baselines. Individual-level performance
is presented in appx. B. Additionally, editing functions hinn
learned for the decision-makers provide insight into how they
process the input features to reach their final decision. We
demonstrate this interpretability through case studies of the
editing functions learned for the simulated decision-maker
DM1 and a real-world participant P4 from Study One.

Participant P4 in Study One. The two-stage model learned for
P4 (w/ hinge loss) is illustrated in fig. 2 (top row). The editing function plots show the following nuances of
their decision-making process for pairwise comparisons of kidney patients: (a) number of dependents
and number of alcoholic drinks are the two most important features, as reflected by the large choice
contributions of these features; (b) number of past crimes is considered mostly irrelevant by this participant;
(c) life decades gained is relevant only when the patient has zero dependents, indicating a conditional
interaction between these two features; (d) for number of dependents, a difference of 1 vs 0 dependents is
much more significant to the final choice than a difference of 2 vs 1 dependents — approximately a
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Figure 3: Models learned for the simulated decision-maker DM1. On the top left, we present the mathematical
description of the DM1’s process. Once again, we present each model’s interpretation of the process used by the
decision-maker. Observe that our two-stage model most accurately captures the simulated process.

threshold decision rule such that any non-zero number of dependents contributes equally; (e) similarly for
life decades gained and number of alcoholic drinks, for certain conditions on number of dependents, the
participant employs threshold decision rules. Our model is able to learn all of these decision-making
nuances with an accuracy of 0.78 (± 0.05), but a trained logistic classifier (bottom-left in fig. 2) has a lower
accuracy of 0.76 (± 0.04) and only uncovered points (a) and (b) above, while a trained decision-tree model
(bottom-right in fig. 2) has an accuracy of 0.70 (± 0.03) and only uncovered points (a), (c), and (d).

Simulated DM1. Fig. 3 (top right) shows how our model recovers the rules used by DM1. E.g., for the
feature number for dependents, h#deps

inn captures the increase in choice contribution when this feature has a
non-zero value, and for the years waiting feature, hwait yrs

inn learns the increased contribution of values
exceeding 6 years. Both successfully represent the threshold functions used in DM1. Note that neither of
these observations can be easily inferred from logistic or decision tree models (bottom row of fig. 3). Our
model is also more accurate (0.76 ± 0.02) than logistic (0.74 ± 0.02) and decision tree (0.68 ± 0.04)
models. Appx. B shows similar results for other simulated decision-makers. Overall, our models provide a
better understanding of the decision-making processes, without sacrificing predictive accuracy.

4 DISCUSSION, LIMITATIONS, AND FUTURE WORK

This work provides a modeling strategy to learn human decision processes from pairwise comparisons. The
primary goal of this strategy is fidelity, such that best-fit models from these classes are more faithful to
humans’ actual decision-making than standard hypothesis spaces. Our theoretical analysis demonstrates
that these classes emerge from natural decision-making axioms, and our empirical analysis shows that
greater fidelity would lead to greater model accuracy in some cases. The advantages of cognitively-faithful
models will depend on the application. In applications like online recommender systems, it may be
sufficient to predict human behavior accurately, without simulating their actual decision processes.
However, cognitively-faithful models would be desirable in other high-stakes AI domains (e.g., healthcare
and sentencing), where the interpretability and alignment of AI’s decisions with the users is pivotal in
establishing trust in AI (Jacovi et al., 2021). Cognitively-faithful models would also be preferable in
domains with no “ground truth” (like the kidney allocation domain), where model validation requires the
user to understand and evaluate the model’s decision process. Lastly, cognitively-faithful models are
essential for any use of AI in moral domains, since stakeholders expect an AI to justify its moral decisions
in a similar manner and to the same extent as humans (Lima et al., 2021).

As for limitations, the interpretability features of our framework need further validation through real-world
user studies. While this work provides a proof-of-concept for a computational framework to learn from
human decisions, future user studies can help assess the extent to which users understand and trust the
learned two-stage models. Our axioms characterize the “ideal” decision-making process of an individual;
i.e., the one they would prefer to follow in the absence of any internal/external constraints and/or the one
that describes their judgments about what “should be done.” However, human decisions are known to
deviate from the ideal in many ways, e.g., well-known transitivity and complementarity violations (Tversky
et al., 1990), among others. Future work can explore ways to extend our two-stage hypothesis classes to
quantify deviations of one’s “ideal” judgments from their implemented choices.
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Gabriel Lima, Nina Grgić-Hlača, and Meeyoung Cha. Human perceptions on moral responsibility of ai: A
case study in ai-assisted bail decision-making. In Proceedings of the 2021 CHI conference on human
factors in computing systems, pp. 1–17, 2021.

Baihan Lin, Djallel Bouneffouf, and Guillermo Cecchi. Predicting human decision making in psychological
tasks with recurrent neural networks. PloS one, 17(5):e0267907, 2022.

Enrico Liscio, Luciano Cavalcante Siebert, Catholijn M. Jonker, and Pradeep K. Murukannaiah. Value
preferences estimation and disambiguation in hybrid participatory systems. CoRR, abs/2402.16751,
2024. doi: 10.48550/ARXIV.2402.16751. URL https://doi.org/10.48550/arXiv.2402.
16751.

R Duncan Luce et al. Individual choice behavior, volume 4. Wiley New York, 1959.

P MacCullagh and JA Nelder. Generalized linear models. 1989.

Henry Montgomery. Decision rules and the search for a dominance structure: Towards a process model of
decision making. In Advances in psychology, volume 14, pp. 343–369. Elsevier, 1983.

Frederick Mosteller. Remarks on the method of paired comparisons: I. the least squares solution assuming
equal standard deviations and equal correlations. Psychometrika, 16(1):3–9, 1951.

Subhojyoti Mukherjee, Anusha Lalitha, Kousha Kalantari, Aniket Anand Deshmukh, Ge Liu, Yifei Ma, and
Branislav Kveton. Optimal design for human preference elicitation. Advances in Neural Information
Processing Systems, 37:90132–90159, 2024.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, pp.
2, 2000.

Ritesh Noothigattu, Snehalkumar Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep
Ravikumar, and Ariel Procaccia. A voting-based system for ethical decision making. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush Madan, Kush R
Varshney, Murray Campbell, Moninder Singh, and Francesca Rossi. Teaching ai agents ethical values
using reinforcement learning and policy orchestration. IBM Journal of Research and Development, 63
(4/5):2–1, 2019.

Ritesh Noothigattu, Dominik Peters, and Ariel D Procaccia. Axioms for learning from pairwise comparisons.
Advances in Neural Information Processing Systems, 33:17745–17754, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions
with human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping and
mitigating misaligned models. In International Conference on Learning Representations, 2022.

12

https://doi.org/10.48550/arXiv.2402.16751
https://doi.org/10.48550/arXiv.2402.16751


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John W Payne. Task complexity and contingent processing in decision making: An information search and
protocol analysis. Organizational behavior and human performance, 16(2):366–387, 1976.

John W Payne, James R Bettman, and Eric J Johnson. Adaptive strategy selection in decision making.
Journal of experimental psychology: Learning, Memory, and Cognition, 14(3):534, 1988.

Emil Persson, Arvid Erlandsson, Paul Slovic, Daniel Västfjäll, and Gustav Tinghög. The prominence effect
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A PROOF COMPENDIUM

Theorem 2.4 (Axiomatic Factoring Characterization). We now explore the consequences of our axioms on
characterizing the response function H(·, ·) of a decision-maker.
1. Atomic Model Suppose axiom 1, and also that X is a countable domain. Then there exists an atomic
rule hinn : X → R and hout : R → [0, 1] s.t. H(·, ·) can be factored as

H(x1, x2) = hout (hinn(x1)− hinn(x2)) .

2. σ(·)-Transitivity Suppose axioms 2–3 hold for some continuous transitivity law f(·, ·). Then there
exists a symmetric continuous random variable with full support and CDF σ(·) s.t.

H(x1, x3) = σ
(
σ−1(H(x1, x2)) + σ−1(H(x2, x3))

)
.

Moreover, there exists some atomic rule hinn : X → R such that H(·, ·) can be factored as

H(x1, x2) = σ (hinn(x1)− hinn(x2)) .

3. Unconditional Factor Model: Suppose as in item 2, and also axiom 4 (NC). Then there exist inner
functions hi

inn : Xi → R for i ∈ [d] such that the atomic rule hinn(·) and decision rule H(·, ·) factor as

hinn(x) =

d∑
i=1

hi
inn(x

(i)) , H(x1, x2) = hout

( d∑
i=1

hi
inn(x

(i)
1 )− hi

inn(x
(i)
2 )
)

.

4. Conditional Factor Model: Suppose as in item 2, and also axiom 5 (CIC). Then there exist conditional
inner functions hi,·

inn :Xi → R for i ∈ [d] and condition features (context) ω ⊆ [d], ωi = ω \ {i}, s.t.

H(x1, x2) = hout

( d∑
i=1

h
i,x

ωi
1

inn (x
(i)
1 )− h

i,x
ωi
2

inn (x
(i)
2 )
)

.

Proof. The structure of this result is a bit convoluted, due to its presentation in four parts. We first show
item 1 in isolation using a straightforward explicit construction. We then show that the conditions of item 2
imply symmetry of the transitivity law, and the assumed addition of continuity of f(·, ·) is sufficient to yield
item 2.

From there, we address items 3 & 4. Note that because NC is a special case of CIC with condition set
ω = ∅, we show only item 4, as item 3 is a special case of item 4.

We first show item 1. For countable X , it’s trivially true that each x ∈ X can be encoded as a power of 2.
Then, hinn(x1)− hinn(x2) is then 0 iff x1 = x2, which by axiom 1, necessitates hout(0) =

1
2 . Otherwise,

x1 ≠ x2, and we can recover x1 and x2 uniquely (the larger by rounding the (absolute) difference up to a
the nearest power of 2, i.e., by taking log2(|hinn(xi)− hinn(xj)|) the smaller via subtraction, and the sign
indicating which is which). Therefore, using this construction of hinn, for an arbitrary mapping between X
and Z, we can construct a corresponding hout that reconstructs any possible decision rule H(·, ·) over X .

We now show item 2.

We first show that these assumptions imply f(u, v) = f(v, u) for all u, v ∈ (0, 1), i.e., the transitivity law
is symmetric. Assume WLOG u ≥ 1

2 and v ≥ 1
2 , as by complementarity and WT, the remaining cases can

be derived. Now, select an arbitrary x0 in X . For any ε ∈ (0, 12), by codomain span, there exists an
infinite sequence x1, x2, . . . such that H(xi−1, xi) =

1
2 + ε, and moreover, let k1, k2 be the smallest

integers such that H(x0, xk1
) ≥ u and H(x0, xk1

) ≥ v, respectively. Note that for any k, H(x0, xk) is
an increasing function, achieving limk→∞ H(x0, xk) = 1. Furthermore, by continuity, in the limit as
ε → 0, H(x0, xk1

) and H(x0, xk2
) converge to u and v, respectively. However, the grouping of this

sequence into a segment of k1 points approximating u and k2 points approximating v was arbitrary, and the
weak transitivity operator f(·, ·), by construction, must be associative. We may thus conclude that, due to
continuity and the limit as ε → 0, f(u, v) = f(v, u).

Now observe that, by the continuous deep sets theorem (Theorem 7 of (Zaheer et al., 2017)), since f(·, ·) is
symmetric, there exist continuous functions ρ, ϕ : R → R such that

H(x1, x3) = f(H(x1, x2), H(x2, x3)) = ρ(ϕ ◦H(x1, x2) + ϕ ◦H(x2, x3)) .

Assume WLOG that ϕ(12) = 0 (as any shifting to ϕ can be absorbed by ρ in the composition).
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Complementarity implies reflexivity, i.e., it holds that H(x1, x1) = 1−H(x1, x1) =
1
2 . Consequently,

we observe the f Now, again by reflexivity, and applying our derived weak transitive law, it holds

H(x1, x2) = ρ(ϕ ◦H(x1, x2) + ϕ ◦H(x2, x2))

= ρ(ϕ ◦H(x1, x2)) ϕ ◦H(x2, x2) = ϕ(
1

2
) = 0 .

Thus ρ(ϕ(u)) = u for all u ∈ (0, 1).

Now, we argue that ϕ(u) + ϕ(1− u) = 0, which implies ϕ(u) = −ϕ(1− u). Observe the following
cancellation: H(x1, x1) = f(H(x1, x2), H(x2, x1)) = ρ(ϕ(u)+ϕ(1−u)) = ρ(0) = 1

2 . By continuity,
and the property ρ(ϕ(u)) = u, this implies that ϕ is either an increasing or a decreasing function. Assume
now that, WLOG, ϕ (and consequently ρ) are both increasing functions, as output-negation of ϕ may be
counterbalanced by input-negation of ρ.

To show that ρ and ϕ are true inverses, we require also that ϕ(ρ(v)) = v for all v ∈ R. We show this
by proving that ρ(·) is a strictly increasing continuous function on R → (0, 1). Because ϕ is a strictly
increasing function, and ρ(ϕ(1)) = 1, clearly ρ(∞) = 1 and ρ is a strictly increasing continuous function
on the domain (ϕ(0), ϕ(1)). The only issue is that, if ϕ(1) = −ϕ(0) < ∞, then ρ is only weakly
increasing (constant) over the rest of R. Now, suppose BWOC that ϕ(1) = c for some c < ∞. By
codomain span and increasingness of ρ, there exist x1, x2, x3, x∞, such that H(x1, x2) ≠ H(x1, x3),
H(xi, x∞) = 1 for each i, and the weak transitivity law is violated, as H(x1, x2) and H(x1, x3) can not
possibly both be computed as f(1, 1). NB this impossibility does not depend on the functional form we
derive: Rather, there is a fundamental incompatibility between weak transitivity and prediction with
certainty. We thus conclude that the image of ϕ(·) is R, hence ϕ and ρ are true inverses, and both strictly
monotonically increasing continuous functions. Moreover, ρ takes the form of the CDF of a symmetric
continuous random variable with support R.

Henceforth, we have operated purely in terms of the predicted probabilities, i.e., H(·, ·), but the result
requires us to draw conclusions in terms of some hinn(x). We now argue for the existence of such a
decomposition. Essentially, we “eliminate the middle man,” as

H(x1, x3) = f(H(x1, x2), H(x2, x3)) WEAK TRANSITIVITY

= ρ(ϕ ◦H(x1, x2) + ϕ ◦H(x2, x3)) SEE ABOVE

= ρ(ϕ ◦H(x1, x2)− ϕ ◦H(x3, x2)) COMPLEMENTARITY

= ρ ((hinn(x1)− h′
inn(x2))− (hinn(x3)− h′

inn(x2))) SEE BELOW

= ρ (hinn(x1)− hinn(x3)) .

The step marked SEE BELOW is rather subtle, but observe that it must hold BWOC for some functions
hinn, h

′
inn : X → R, as if it did not, then there would exist some x2, x′

2 such that H(x1, x3) =
f(H(x1, x2), H(x2, x3)) ≠ f(H(x1, x

′
2), H(x′

2, x3)), which violates weak transitivity. Essentially,
due to invertibility, ϕ ◦H(x1, x3) = (hinn(x1)− h′

inn(x2))− (hinn(x3)− h′
inn(x2)) must be invariant

under choice of x2. In the subsequent step, h′
inn is eliminated, which effectively illustrates that hinn = h′

inn.
Finally, let hout(u) = ϕ(u), and item 1 is complete.

We now show item 4 (noting again that item 3 is a special case).

We first show a technical lemma: we assume x′′′ can be obtained from x1 by changing two independent
features not in the condition set ω, each partial change resulting in x′

2 and x′′
2 (as in the CIC axiom).

Observe that
σ−1◦H(x1, x

′′′
2 ) = σ−1◦H(x1, x

′
2) + σ−1◦H(x′

2, x
′′′
2 ) + σ−1◦H(x1, x

′′
2 ) + σ−1◦H(x′′

2 , x
′′′
2 )− σ−1◦H(x1, x

′′′
2 ) σ-TRANSITIVITY

=
(
σ−1◦H(x1, x

′
2) + σ−1◦H(x1, x

′′
2 )
)
+

(
σ−1◦H(x′

2, x
′′′
2 ) + σ−1◦H(x′′

2 , x
′′′
2 ) + σ−1◦H(x′′′

2 , x1)
)

ALGEBRA

=
(
σ−1◦H(x1, x

′
2) + σ−1◦H(x1, x

′′
2 )
)
+

1
2

(
σ−1◦H(x′

2, x
′′′
2 ) + σ−1◦H(x′′

2 , x
′′′
2 ) + σ−1◦H(x′

2, x1) + σ−1◦H(x′′
2 , x1)

)
ALGEBRA

= 1
2

(
σ−1◦H(x1, x

′
2) + σ−1◦H(x1, x

′′
2 )
)
+ 1

2

(
σ−1◦H(x′

2, x
′′′
2 ) + σ−1◦H(x′′

2 , x
′′′
2 )

)
ALGEBRA

= σ−1◦H(x1, x
′
2) + σ−1◦H(x1, x

′′
2 ) SEE BELOW

The final step applies the assumed CIC axiom: The only way this assumption can hold is if(
σ−1 ◦H(x1, x

′
2) + σ−1 ◦H(x1, x

′′
2)
)
=
(
σ−1 ◦H(x′

2, x
′′′
2 ) + σ−1 ◦H(x′′

2 , x
′′′
2 )
)
. This is because
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of symmetry, if we negate the equation, flipping x1 and x′′′
2 , the same must hold, hence the conclusion of

the technical lemma.

We now chain the above result to derive the desideratum, i.e., item 2. Given x′
0, x

′
1, x

′
2, x

′
3, . . . , x

′
d, define

the transitive chain operator f(·, ·, · · · , ·) as

f(x′
0, x

′
1, x

′
2, x

′
3, . . . , x

′
d) = f(· · · (f(f(x′

0, x
′
1), x

′
2), · · · ), x′

d) = hout

(
d∑

i=1

hinn(x
′
i−1)− hinn(x

′
i)

)
,

where the RHS applies the structure of σ-transitivity.

Now, take x′i
ω to be xi

2 if i ∈ ω, xi
1 otherwise. Define a sequence x′

j such that each x′
j takes the previous

x′
j−1 (starting with x′

ω for j = 1) and changes one feature k ̸∈ ω from xk
1 to xk

2 , such that x′
d−|ω| = x2.

We then chain the result over all items not in the condition set ω to obtain

H(x1, x2) = hout (hinn(x1)− hinn(x2)) BY ASSUMPTION

= f(x1, x2,ω, x2,(1), x2,(2), . . . , x2,(d−|ω|)) TRANSITIVITY CHAIN

= hout

h
ω,xω

1

inn (x1)− h
ω,xω

2

inn (x2) +
∑
i ̸∈ω

hi,ωi

inn (xi
1)− hi,ωi

inn (xi
2)

 σ-TRANSITIVITY

= hout

∑
i ̸∈ω

hi,ωi

inn (xi
1)− hi,ωi

inn (xi
2)

 SEE BELOW

= hout

(
d∑

i=1

hi,ωi

inn (xi
1)− hi,ωi

inn (xi
2)

)
. LEThi,ωi

inn (x) = 0 for all i ∈ ω

Note that the function hinn may change from step to step above, the conclusion is only that such a
decomposition exists. To see the step marked SEE BELOW, observe that the terms that condition on ω are
capable of additively representing any function over ω, so the explicit first term, i.e., that involving hω

inn,
may be omitted. Finally, observe that for the special case of noninteractivity, we have ω = ∅, thus this first
term always cancels out, and the above telescoping decomposition consists of exactly d terms, one per
feature.

We now show thm. 2.6.

Theorem 2.6 (Axiomatic Models). Suppose axioms 1–4. The following then restrict Hinn or each H(i)
inn.

1. Suppose σ-linearity. Then H(i)
inn = {x 7→ wx|w ∈ R}, thus H = {x1, x2 7→ σ(w · (x1 − x2)) |w ∈ Rd}.

2. Suppose monotonicity. Then H(i)
inn = {h : R → R |x ≤ y =⇒ h(x) ≤ h(y)}.

3. Multivariate Monotonic Models: If we assume monotonicity but relax noninteractive compositionality,
then H = {x1, x2 7→ σ(h(x1)− h(x2)) |h : X → R s.t. x⃗ ⪯ y⃗ =⇒ h(x⃗) ≤ h(y⃗)}.
4. Conditional GAM Tree If we relax NC to CIC, then hinn(·) may be represented as a hybrid model of a
decision tree / GAM model, starting with a tree over Xω, where each leaf contains a GAM over X\ω.
Formally, we have Hinn =

{∑d−|ω|
i=1

(
Ti(x

ω)
)(
(x\ω)(i)

) ∣∣T ∈ R|ω| → (R → R)d−|ω|} .
Proof. We first show item 1. We then find that it is more straightforward to show item 3, and finally to
conclude item 2 as a corollary.

We first show item 1. Recall that the linearity assumption requires that there exists some w such that for all
x1, x2, it holds

σ−1 ◦H(x1, x2) = w · (x1 − x2) .

Consequently, the set of all feasible decision rules is parameterized by w, in particular, applying σ(·) to
both sides of the above, it holds

H =
{
x1, x2 7→ σ(w · (x1 − x2))

∣∣w ∈ Rd
}

.
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Finally, observe that this multivariate hypothesis class decomposes as

H =

{
x1, x2 7→ σ

(
d∑

i=1

hi
inn(x

i
1)− hi

inn(x
i
2)

)∣∣∣∣∣hi
inn(x) = wix,w ∈ Rd

}
.

From this, we conclude both the form of H and of each H(i)
inn.

NB σ of σ-linearity and σ-transitivity must be identical over the domain (up to isomorphism), as σ-linearity
and σ-transitivity would otherwise be mutually incompatible.

We now show item 3.

Recall that we assumed σ-transitivity (thm. 2.4 item 2). It thus holds that

H =
{
x(1), x(2) 7→ σ

( d∑
i=1

hi
inn(x

(i)
1 )− hi

inn(x
(i)
2 )
) ∣∣∣hi

inn ∈ H(i)
inn

}
.

Monotonicity requires that if x1 ⪯ x2, then

H(x1, x2) ≤
1

2
.

In our factoring, this is equivalent to

hinn(x1) ≤ hinn(x2)

Consequently, the set of all such functions satisfying monotonicity is

H = {x1, x2 7→ σ(h(x1)− h(x2)) |h : X → R s.t. x⃗ ⪯ y⃗ =⇒ h(x⃗) ≤ h(y⃗)} .

NB: this does not specify σ, but due to the assumed factoring, σ must be a symmetric continuous CDF with
full support.

We now show item 2.

As we now restore NC, we now begin with the stronger factored form

H =
{
x(1), x(2) 7→ σ

( d∑
i=1

hi
inn(x

(i)
1 )− hi

inn(x
(i)
2 )
) ∣∣∣hi

inn ∈ H(i)
inn

}
.

We then apply the same reasoning as in item 3, now applied to x1, x2 that differ in only dimension i, to
conclude that the ith model factor obeys

H(i)
inn = {h : R → R |x ≤ y =⇒ h(x) ≤ h(y)} .

This concludes the result.

We now show thm. 2.7.

Theorem 2.7 (Proportionality of Choice). Suppose a probabilistic decision rule over n ≥ 3 items that
obeys the choice axiom. Then H(·, ·) admits a σ-transitive factoring with logistic σ(·).

Proof. Suppose items A, B, and C ∈ X . Essentially, we use the telescoping product

P(A best)
P(C best)

=
P(A best)
P(B best)

P(B best)
P(C best)

Substituting in the proportionality axiom:

1

σ(σ−1(P(C > B)) + σ−1(P(B > A)))
− 1 =

(
1

P(B > A)
− 1

)(
1

P(C > A)
− 1

)
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Figure 4: An example pairwise comparison presented to participants of Study One of the Kidney Allocation
dataset.

Rearranging the equation:

σ(σ−1(P(C > B)) + σ−1(P(B > A))) =
1

1 +
(

1
P(B>A) − 1

)(
1

P(C>A) − 1
)

=
1

1 + exp ◦ ln
((

1
P(B>A) − 1

)(
1

P(C>A) − 1
))

= logistic

(
ln

(
1

1
P(B>A) − 1

)
+ ln

(
1

1
P(C>A) − 1

))
= logistic (logit (P(B > A)) + logit (P(C > A))) .

We thus conclude that σ is the logistic function.

B EMPIRICAL ANALYSIS – OTHER DETAILS

B.1 DATASET AND PREPROCESSING

Kidney Allocation Real-World Datasets. As mentioned earlier, the real-world dataset we used was
collected by Boerstler et al. (2024) to test moral judgments stability. Across two studies, multiple
participants were presented with several kidney allocation scenarios across 10 days (60 scenarios per
day). In Study One, each kidney allocation scenario contained profiles of two kidney patients (Patient A
and Patient B) described by four features: (a) number of dependents (0, 1, 2), (b) life decades gained
from kidney transplant (1, 2, 3), (c) number of alcoholic drinks per day (0, 2, 4), and (d) number of
crimes committed (0, 1, 2). In Study Two, each patient is described by five features: (a) number of
elderly dependents (0, 1, 2), (b) life years gained from kidney transplant (1, 2, 3), (c) years waiting for the
transplant (0, 2, 4), (d) weekly work hours post-transplant (0, 1, 2), and (e) obesity level (0, 1, 2, 3, 4).
Participants were asked to decide who should get the kidney when only one was available and both patients
were eligible. An example of one such pairwise comparison is presented in Figure 4.

Out of the 60 scenarios presented to each participant per day, several scenarios were repeated. This
includes 6 scenarios that were repeated twice per day across all days to test for response stability and 2
scenarios that were used for attention checks. The remaining scenarios were randomly chosen. Since the
repeated scenarios were non-random, we removed them from the dataset to ensure that the underlying data
distribution for each participant corresponds to the uniform distribution over the input space. Sessions
where participants failed attention checks were also removed from the dataset.

After the above steps, we had around 383 average responses from 15 participants in Study One and around
330 average responses from 40 participants in Study Two. This dataset is available under the CC-BY 4.0
license and is included with the Supplementary for the sake of completeness.
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Figure 5: Comparison of our model vs baseline linear regression model for the synthetic dataset containing
responses from five simulated decision-makers.

Synthetic Datasets. The synthetic dataset is constructed by simulating five decision-makers DM1–DM5,
each using a different set of heuristics. The process for DM1 is described in Section 3. For DM2–DM5, the
simulated decision processes are noted below. Recall that each decision-maker is presented with a pairwise
comparison between two kidney patients, A and B, with features xA and xB . Each patient is described
using the patient’s number of dependents, life years gained from the transplant, years waiting for the
transplant, and their past number of crimes.

DM2 simulation. For DM2, the decision process for any pairwise comparison between A and B can be
described as follows: (a) choose the patient with non-zero dependents; (b) if both patients have non-zero
dependents, then choose the patient with greater value for life years gained; (c) if equal, then choose the
patient who has been waiting longer for the transplant; (d) if equal, then choose randomly. Hence, this
decision-maker also uses thresholds on the number of dependents and employs other features mainly for
tie-breaking.

DM3 simulation. For DM3, the decision process for any pairwise comparison between A and B can
be described as follows: (a) transform life years gained feature to reflect diminishing returns, i.e.
zlife gained
A = ⌊log

(
xlife gained
A

)
⌋ and zlife gained

B = ⌊log
(
xlife gained
B

)
⌋; (b) assign zlife gained

A points to patient

A and zlife gained
B to patient B; (c) assign xdependents

A points to patient A and xdependents
B points to patient B; (d)

assign one point each patient who was been waiting for 5 years or more; (e) sum up the points for each
patient and choose one with greater number of points (ties broken randomly). The log-transformation used
in this decision-making process captures the diminishing returns property associated with the life years
gained feature. Additionally, this process also uses the tallying heuristic to essentially count the number of
factors favoring each patient.

DM4 simulation. For DM4, the decision process for any pairwise comparison between A and B
can be described as follows: (a) transform life years gained feature to reflect diminishing returns,
i.e. zlife gained

A = ⌊log
(
xlife gained
A

)
⌋ and zlife gained

B = ⌊log
(
xlife gained
B

)
⌋; (b) choose patient with greater

zlife gained
· value; (c) if equal, then choose the patient with more dependents; (d) if equal, then choose

the patient who has been waiting longer for the transplant; (e) if equal, then choose randomly. This
decision-maker also uses log-transformation for life years gained and other features for tie-breaking.

DM5 simulation. For DM5, the decision process for any pairwise comparison between A and B can be
described as follows: (a) count how many features favor each patient and choose the patient favored by
more features; (b) if equal, choose randomly. This decision-maker simply uses the tallying heuristic,
choosing the option favored by more factors.

B.2 IMPLEMENTATION DETAILS

For each decision-maker (real or simulated), we use a random 70-30 train-test split and report the summary
statistics of predictive accuracy over test partitions across 20 repetitions.
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Figure 6: Comparison of our model vs baseline linear regression model for participants in Study One of the
Kidney Allocation dataset.

Figure 7: Comparison of our model vs baseline linear regression model for participants in Study Two of the
Kidney Allocation dataset.
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Figure 8: Comparison of our model vs baselines across increasing training size.
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Our learning framework. For our framework, we learn editing functions hi,·
inn for feature i that are

designed to assign a score∈ R to each value of feature i. As noted earlier, all h·,·
inn are constrained to

be monotonic. Context ω is limited to one feature for the real-world dataset. The specific context is
chosen using cross-validation. 20% of the training data is held out to use for validation purposes and the
conditional two-stage model is learned for each setting of ω = {i} for all i ∈ [d]. The context ω = {i⋆}
for which we achieve the smallest predictive error over the validation set is chosen as the final context for
the corresponding participant. Context ω is kept empty for the synthetic dataset. For the dominance testing
function hout(·), we implement the simple tallying heuristic (i.e., the outputs from each feature-level editing
function h·,·

inn are simply averaged). The final binary prediction is basically whether the hout(·) is greater
than 0 or not (with positive value favoring the patient on the left and negative value favoring the one on the
right).

The two-stage model is trained by minimizing the chosen loss function (cross-entropy or hinge) with
regularization and constraints. The regularization term quantifies the difference between editing functions
learned for different values of the context variable ω. We use this regularizer to ensure that editing
functions for any feature i corresponding to different context values are not too far from each other. As we
noted earlier, ω is set to contain only one feature in our experiments on real-world datasets. For any two
feature values xω = a and xω = b, and for any other feature i /∈ ω, the regularization term measures
||hi,a

inn − hi,b
inn||, for all a, b. The difference between the two editing functions is calculated by taking the

squared norm of the difference between the outputs of these functions over all values in Xi. Hence, the
overall regularization term we use is

λ ·
∑
i/∈ω

∑
a,b

||hi,a
inn − hi,b

inn||.

Here λ is the regularization parameter and is set to be 1e-3 in our experiments. Additionally, we impose
monotonicity constraints on each of hinn functions while optimizing the above loss; i.e., for all features i,
hi

inn(a) ≥ hi
inn(b),∀a > b ∈ Xi OR hi

inn(a) ≤ hi
inn(b),∀a > b ∈ Xi (same constraints for context-based

inner functions as well). We solve this constrained optimization problem using the Python SLSQP library
(options ’ftol’ and ’maxiter’ are set to 1e-7 and 300, respectively).

Baseline details. The drift diffusion model was implemented using the Python PyDDM library with linear
drift functions. The Bradley-Terry framework was implemented using the Python choix library, with a
two-layer neural network scoring function.

We also implemented the following supervised modeling strategies to compare our method against. (a)
Logistic Classifier – we implement the standard logistic classification approach, but impose a symmetry
constraint by regressing over feature differences across the pairwise comparison; (b) Elastic-net Classifier –
using the standard logistic classification approach over all given features with L1 and L2 regularization,
with L1 ratio (scaling between L1 and L2 penalties) set to be 0.5. (c) Decision Tree Classifier – over all
features with Gini splitting criterion; (d) Linear SVM – over all features with L2 penalty and squared hinge
loss; (e) kNN – over all features with n = 5 neighbors; (f) Random Forest Classifier – over all features
with 100 estimators; (g) MLP Classifier – over all features with two hidden layers of 10 nodes each.

Computing resources used. All experiments were run on a MacBook M2 system with a 16GB memory.

B.3 ADDITIONAL EMPIRICAL RESULTS

Performances and models for simulated decision-makers DM2–DM5. As mentioned earlier, we also
created a synthetic dataset containing responses from five simulated decision-makers. The descriptions of
the simulated DMs are provided above. In this section, we report additional results for these simulations.

First, the performance of our model, Logistic Classifier, and MLP Classifier are presented in Figure 5. Note
for all but DM5, our model has better predictive accuracy than baselines.

Individual participant-level performances. Across all participants, the performance of our two-stage
model, Logistic Classifier, and MLP Classifier are reported in Figure 6 for Study One and in Figure 7 for
Study Two (other baselines excluded here for presentation clarity). The plots show that our model has
comparable accuracy to the Logistic Classifier for all participants across the real-world study datasets.

Performance variation across training data sizes. We also assess the performance of each model across
variations of training size from 10 to 100. The results are reported in Figure 8. Our model reaches high
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Figure 9: Editing rules learned by our approach for all simulated decision-makers DM1–DM5.
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accuracy levels faster than other models, with significant improvement in training performance compared to
baselines for the simulated decision-makers.
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