
Under review as a conference paper at ICLR 2022

APPENDIX

Anonymous authors
Paper under double-blind review

A PROOF OF PROPOSITION 1

Using the fact that

ρ(Real(zeiα)) = ρ(Real(|z|ei(ϕ(z)+α)))

= |z|ρ(cos(α+ ϕ(z)),

and taking the Fourier transform of ρα(z) in the variable α, we obtain

F(ρα(z))(k) :=
1

2π

∫
[0,2π]

ρα(z)e−ikαdα

= |z| 1

2π

∫
[0,2π]

ρ(cos(α+ ϕ(z))e−ikαdα

= |z|eikϕ(z)ck

= [z]kck,

where ck is the Fourier transform of h(.) := ρ(cos(.)) at the frequency k. The function α 7→ ρα(z)
being periodic in α, we have its decomposition in Fourier series

ρα(z) =
∑
k∈Z
F(ρα(z))(k)eikα

=
∑
k∈Z

ck[z]keikα.

We can then write, for any z, z′ ∈ C, and α, α′ ∈ [0, 2π],

ρα(z)ρα′(z′)∗ =
∑

k,k′∈Z2

ckc
∗
k[z]k[z′]−k

′
ei(kα−k

′α′).

Replacing z and z′ by any two wavelet coefficients x ?ψj,θ(u) and x ?ψj′,θ′(u− τ), we thus obtain
the relation in Proposition 1.

B PROOF OF PROPOSITION 2

Let z ∈ C, and recall from eq. (5), that ρα(z) = ρ(Real(zeiα)). Note that we have the following
relation

z = ρ0(z)− ρπ(z)− i(ρπ
2

(z)− ρ 3π
2

(z)). (9)

We can then write

zz′∗ =
(
ρ0(z)− ρπ(z)− i(ρπ

2
(z)− ρ 3π

2
(z))

)(
ρ0(z′)− ρπ(z′)− i(ρπ

2
(z′)− ρ 3π

2
(z′))

)
=

∑
α,α′∈I2

wα,α′ρα(z)ρα′(z′),

with I = {0, π2 , π,
3π
2 }. Replacing z with x ? ψj,θ(u), z′ with x ? ψj′,θ′(u − τ), and injecting this

relation in eq. (1) gives us the desired result.

1

Under review as a conference paper at ICLR 2022

C INFLUENCE OF THE CHOICE OF THE WAVELET TRANSFORM

C.1 INFLUENCE OF THE WAVELET FAMILY

In Section 3.2, we illustrated the importance of the set of indices Υ that define the wavelet coef-
ficients being correlated. Another important role is played by the choice of the wavelets used in
equation 2. As illustrated in Figure 5, this choice can have a visible impact on the quality of the
textures. We observe that, while on the first example, the coherence of the structures appear similar
for the three wavelet families, the second example shows that the wavelets used in Portilla & Si-
moncelli (2000) are less efficient in reproducing the contours of the objects (pebbles). While in our
experiments, we chose to use the classical Morlet wavelets, an optimal choice for the wavelet family
remains an open problem.

Observation Simoncelli Bump Morlet

Figure 5: Comparision between different wavelets. Central zooms of syntheses using the same
covariance model, with three different wavelet families. From left to right: observation, Simoncelli
steerable wavelets, bump steerable wavelets (Mallat et al., 2020), and Morlet wavelets.

C.2 INFLUENCE OF SCALE PARAMETER

Recall from Section 2.2.1, the wavelet transform of an image x is defined by

{x ? ψj,θ, x ? φJ}0≤j<J, θ∈ πL{0,··· ,L−1}.

The maximal scale parameter J also plays an important role in the definition of the wavelet trans-
form. It determines the scales of the structures being captured by the transform. If this parameter
is too small, large structures in the observation image might not be captured and reproduced in
the model syntheses. Conversely, if J is too large, then the large scale statistics may have a high
variance, inducing a memorization effect in the syntheses. Figure 6 illustrates this point on two
examples from Section 4.2. By setting J = 4 (i.e. the maximal range of structures captured by the
wavelets is of size 24 = 16), we observe on the first example that the larger structures (bubbles) are
not well reproduced. When J is set to 6, the observation is almost identically reproduced by the
synthesis. Similarly on the second examples, several parts of the synthesis appear very similar to
ones in the observation. We found that a suitable trade-off consists in setting J = 5 for images of
size N = 256.

D MODEL AND ALGORITHMIC SPECIFICATION

We provide additional information needed to reproduce the numerical results of the models (for both
gray-scale and color textures) considered in this paper. First, we detail the models of PS, RF, VGG.
We then give algorithmic parameters to obtain the synthesis images. For natural textures, we also
propose a strategy to synthesize non-periodic images in our models1.

1an image is non-periodic if a periodic extension of the image to the domain outside ΩN create discontinu-
ities at the contour of ΩN

2

Under review as a conference paper at ICLR 2022

Observation J = 4 J = 5 J = 6

Figure 6: Syntheses from the ALPHAC model defined with three different maximal scale parameter
J ∈ {4, 5, 6}.

Sources of textures Our natural texture examples were obtained from the following three sources:
CNS NYU2, Textures.com3, Describable Textures Dataset model4 and the Github page of Berger &
Memisevic (2017)5.

D.1 MODEL PARAMETERS

We specify the model parameters to synthesize both gray-scale and color textures. We also discuss
how to extend the RF and the VGG model, originally designed for color textures, to model gray-scale
textures.

• PS: We set the number of scales J = 5, and the number of orientations L = 8 for the
Simoncelli steerable wavelets. The spatial shift τ = (τ1, τ2) ∈ ΩN is chosen to be in the
range of max (τ1, τ2) ≤ 4. The rest of the model parameters are given by default in the
software available at https://www.cns.nyu.edu/˜lcv/texture/.

• RF: For gray-scale textures, we consider J × L random convolutional filters (ψf)1≤f≤JL.
Let f = (j, `), the index j representing the scale of each filter, whose size is (Wj ,Wj) for
1 ≤ j ≤ J . For Γ = {f = (j, `)|j ≤ J, ` ≤ L}, the representation is

RRFx(γ, u) = ρ(x ? ψj,`(u)), γ = (j, `) ∈ Γ.

For a color image x = {xc}1≤c≤3, we use 3 × J × L random convolutional filters. The
representation of x is

RRFx(γ, u) = ρ
(3∑
c=1

xc ? ψc,j,`(u)
)
, γ = (j, `) ∈ Γ.

The correlations CRFx are defined for all pairs (γ, γ′) ∈ Γ× Γ. In both the gray and color
cases, it results in a correlation matrix CRF with J2L2 statistics.
Following the default setting of the RF model, we set J = 8 and L = 128 for filters whose
sizes are W1 = 3,W2 = 5,W3 = 7,W4 = 11,W5 = 15,W6 = 23,W7 = 37,W8 =
55. Each filter ψj,` or ψc,j,` is generated randomly according to GlorotUniform in
Lasagne6.

• VGG. For a color image x = {xc}, the VGG model computes a correlation matrix CVGGx
between the features maps within different layers of a pre-trained CNN network. To adapt

2http://www.cns.nyu.edu/˜lcv/texture/
3https://textures.com/
4https://www.robots.ox.ac.uk/˜vgg/data/dtd/index.html
5https://github.com/guillaumebrg/texture_generation
6https://lasagne.readthedocs.io/

3

https://www.cns.nyu.edu/~lcv/texture/
GlorotUniform
http://www.cns.nyu.edu/~lcv/texture/
https://textures.com/
https://www.robots.ox.ac.uk/~vgg/data/dtd/index.html
https://github.com/guillaumebrg/texture_generation
https://lasagne.readthedocs.io/

Under review as a conference paper at ICLR 2022

this model to gray-scale textures, we shall add one input layer which converts a gray-scale
image y into a color image, by setting xc = y for each color channel c. This allows one
to use the same CVGGx to compute the gradient of the VGG loss with respect to y, and
therefore to synthesise a gray-scale texture. For both gray-scale and color textures, we use
only five layers ’conv1 1’, ’pool1’, ’pool2’, ’pool3’, ’pool4’, as proposed in the original
work.

• ALPHA. See the main text.

D.2 ALGORITHMIC PARAMETERS

We specify the optimization parameters used to synthesize both gray-scale and color textures.

• PS: It utilizes iterative projections onto constraint sets to generate textures. We set the
number of iterations to 200.

• RF: It uses the L-BFGS procedure7 with a memory size 20, and with a maximal number of
iterations 2000. The initialization for each pixel value of a gray-image is Uniform between
[−1, 1]. For the color image case, each RGB channel is initialized independently with a
Uniform distribution between [−1, 1]. To address non-zero mean textures (i.e. E(X(u)) 6=
0), the empirical mean of x̄ is subtracted from the input x to compute the representation. It
is added back to the output of the optimization to produce a synthesis.

• VGG: It uses the L-BFGS procedure8 with a memory size of 20, and with a maximal
number of iterations of 2000. The initialization of each pixel value is the standard normal
distribution (zero mean, unit variance). To address non-zero mean textures (i.e. E(X(u)) 6=
0), the VGG mean is subtracted from the input x of the representation9. It is added back
to the output after the optimization to produce a synthesis (with an additional histogram
matching post-processing).

• ALPHA: For all the models in ALPHA, we use the L-BFGS optimization algorithm with
restarts. Starting from the standard normal distribution, with mean and standard deviation
estimated from the observation, we use the L-BFGS procedure implemented in Pytorch. It
runs for 500 iterations and then it is restarted with an initialization obtained from the pre-
vious L-BFGS result. This is repeated 10 times to obtain the synthesis (with an additional
histogram matching post-processing).

D.3 NON PERIODIC BOUNDARIES IN NATURAL IMAGES

The convolution operation in the wavelet transform (equation 2) is performed using the Fast Fourier
Transform. Additionally, recall from Section 2.1 that spatial shifts are defined with periodic bound-
ary conditions. This implies periodicity of the input image x. However, natural texture images are
not periodic, so one needs to adapt the computation of coefficients to take into account possible
border effects. To that end, instead of averaging over all u ∈ ΩN as in eq. (1), each correlation coef-
ficient is averaged over a sub-window inside ΩN , which size depends on the scales of the coefficients
being correlated. More precisely, let γ = (j, θ, α) and γ′ = (j′, θ′, α′). Note jm := max(j, j′). We
define Ωjm := {u = (u1, u2) ∈ ΩN : 2jm ≤ ui < N − 2jm , i = 1, 2}. Then, for non periodic
images, we compute

CALPHAx(γ, γ′, τ) =
1

|Ωjm |
∑
u∈ΩN

1Ωjm
(u)1Ωjm

(u− τ)RALPHAx(γ, u)RALPHAx(γ′, u− τ),

(1)

where the spatial shifts are defined periodically. Note that the spatial averages µγ and µγ′ are also
performed on Ωjm .

7scipy.optimize.fmin_l_bfgs_b in Python
8scipy.optimize.minimize in Python
9For the color image whose pixel value is between zero and one, the mean of BGR is 0.40760392,

0.45795686, 0.48501961. For the gray-scale, we simply take the average of the BGR mean.

4

scipy.optimize.fmin_l_bfgs_b
scipy.optimize.minimize

Under review as a conference paper at ICLR 2022

E VGG SCORE

In Ustyuzhaninov et al. (2017), the authors proposed to use the synthesis loss of the VGG model
to evaluate the quality of syntheses from any model. The goal is to define a quantitative, and more
objective evaluation method than mere visual inspection. Since the VGG model produces syntheses
almost indistinguishable from real textures, it is natural to consider its loss to asses the quality of a
synthesis. We computed this loss for the examples presented in Figure 3, and report it in Table 2.
Note however that this loss is not exactly the same as the one used in Ustyuzhaninov et al. (2017),
as the layers selected to compute the loss are different. In this work, we chose to use the layers
suggested in Gatys et al. (2015), (i.e. ’conv1 1’, ’pool1’, ’pool2’, ’pool3’, and ’pool4’ of the VGG-
19 network (Simonyan & Zisserman, 2014)), and compute the relative VGG loss10.

We notice that this score is not always consistent with visual inspection, as there are texture examples
and models for which the syntheses do not look much like the observation image, yet produce a small
VGG loss (see e.g. the first and last rows of Figure 3, the RF model syntheses have the smallest loss).
It should also be noted that the VGG loss reported on the VGG syntheses is not the synthesis loss
after optimization, as a histogram matching (HM) procedure is performed as post-processing after
optimization. We observed that the VGG loss of the syntheses from the VGG model after HM
was considerably higher than the one for syntheses before it, while being visually very similar as
illustrated in Figure 7. These observations suggest that the VGG score suffers from instabilities after
reaching a certain level (that is, if the VGG loss is small enough, small perturbations of the values
of the image pixels might have a strong impact on the loss).

Data / Model ALPHAI VGG PS RF
Radishes 5.02e-05 1.87e-05 2.37e-04 1.13e-05
Cherries 4.86e-05 1.47e-06 6.68e-04 9.65e-06
Gravel 5.97e-05 3.08e-06 7.25e-04 1.29e-05

Turbulence 5.59e-05 5.97e-05 2.42e-04 3.95e-05

Table 2: Relative VGG loss of each model on examples in Figure 3. Each row corresponds to the
same row in Figure 3.

Before HM After HM

Figure 7: Visual comparison of syntheses from the VGG model, before and after histogram match-
ing. Before HM, the relative VGG loss is 2.22e-08, while after HM, the loss is 5.38e-05.

10Using the code from https://github.com/ivust/random-texture-synthesis/blob/
master/vgg_loss.py (function style loss relative).

5

https://github.com/ivust/random-texture-synthesis/blob/master/vgg_loss.py
https://github.com/ivust/random-texture-synthesis/blob/master/vgg_loss.py

	Proof of prop.equiv
	Proof of prop.second-order
	Influence of the choice of the wavelet transform
	Influence of the wavelet family
	Influence of scale parameter

	Model and algorithmic specification
	Model parameters
	Algorithmic parameters
	Non periodic boundaries in natural images

	VGG score

