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Supplementary Material

1. More Details for the Method
1.1. Network Architectures

Neural SDF: fΘg
(x) = (s,f geo). We employ an 8-layer

MLP featuring a hidden dimension of 256 and incorporate
a skip connection at the fourth layer. The network input is
the 3D coordinate x encoded with a frequency of 6, to out-
put the SDF value and an implicit local geometric feature.
Before optimization, we perform geometric initialization on
the network, as described by [1].
Neural diffuse albedo: fΘd

(x,n,n,f) = ρd. We use
an 8-layer MLP featuring a hidden dimension of 256 and
a skip connection at the fourth layer. The network inputs
include the 3D coordinate x encoded with 10 frequencies,
surface normal, and geometric features. It outputs the dif-
fuse albedo for point x.
Neural specular albedo: fΘs

(x,n,f) = ρs. We employ
a 4-layer MLP with a width of 256. The input 3D coordinate
x is encoded using 6 frequencies.
Neural roughness: fΘr

(x,n,f geo) = ρr. We deploy a
4-layer MLP with a width of 256. The input 3D coordinate
x is encoded using 6 frequencies.
Blending scalar: γ (∥x− x′∥ ,wi · n, ρr) = γ. We use
a 4-layer MLP with a width of 128. The dot product of
normal and view direction uses 6 frequencies.
Neural DINO feature: fΘdino(x) = f dino We utilize a 4-
layer MLP with a width of 256, where the input location
x is encoded with 6 frequencies, and the output features a
dimension of 384.

1.2. Visibility Computation

For joint optimization of object geometry and light position,
we determine the visibility of a surface point x by uniformly
sampling N = 128 points {xi}Ni=1 along the path from sur-
face point x to the light source. We obtain the discrete opac-
ity values {α}Ni=1 for these points using the unbiased SDF
density conversion method introduced by NeuS [63]:

αi = max

(
Φs (f (p (ti)))− Φs (f (p (ti+1)))

Φs (f (p (ti)))
, 0

)
.

(10)

The light visibility of point x in the direction of incident
light wi is represented by the residual transmittance:

fv (wi;x) = 1−
N∑
j=1

αjTj , (11)

where αj is the density value at point xj , and Tj =∏j−1
k=1 (1− αk) is the light transmittance at point xj in the

direction wi.

1.3. Inter-reflection Computation

Importance Sampling To model the indirect illumination
in scenes dynamically captured with directional lighting, we
introduce an online computation approach that combines a
differentiable layer and an importance sampling strategy.
For a point x and view direction wi, we consider a single
light bounce and employ a ray marching towards the reflec-
tive direction:

wr = 2× n−wi. (12)

We then identify the secondary intersection point x′. To
determine if x′ is occluded from the light source, we uni-
formly sample 20 points along the path between the light
source and the intersection point. The light is considered
occluded by another surface if any of the sampled points
exhibit a negative SDF value.

Figure 10 illustrates the process of inter-reflection mod-
eling. If the secondary intersection point x′ is unobstructed,
we compute the outgoing radiance at x′ using the flash-
light’s incoming radiance. The outgoing result is then com-
bined with the blending coefficient to represent the indirect
illumination.
Gradient Backpropogation Given that the blending coef-
ficient is conditioned on the roughness property of the 3D
point, there exists a correlation between the roughness prop-
erty and the blending coefficient, introducing additional
ambiguity in material estimation. In our experiments, we
found that detaching the roughness of the secondary inter-
section point x′ prior to its input into the blending coef-
ficient network leads to a more precise material decompo-
sition. Moreover, the process of gradient backpropagation
starts from the image loss, through the residual component,
and into the material networks of the secondary intersection
point x′, fostering the alignment of secondary point radi-
ance with inter-reflection cues. In our experiments, we dis-
covered that disabling the optimization of local geometry at
the secondary point reduces the complexity of the optimiza-
tion process, leading to improved geometric reconstruction,
especially in concave areas.

1.4. BRDF Renderer

Our BRDF implementation closely adheres to the Mitsuba
roughplastic BRDF model [22], with the distribution pa-
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(d) Computation details of blending coefficient 𝛾 and indirect illumination component 𝑓%&.

Figure 10. The illustration of inter-reflection modeling. We take into account rays that are physically rendered at secondary intersection
points near the reflective direction of point x, as these rays contribute significantly to the indirect illumination.

rameter specifically set to ‘ggx’. For simplicity, we refer
to our configuration as the roughplastic model. Default val-
ues are maintained for the internal and external Indices of
Refraction and the nonlinear parameter.

Previous methods (IRON [84] and WildLight [12]) em-
ploying the renderer relied on an oversimplified BRDF
model within an idealized setting where the camera and
flashlight are collocated, neglecting the deviations between
the camera and light source present in our capture setup.
To address this limitation, we have enhanced the simplified
roughplastic model to accommodate a broader range of sce-
narios, allowing for variations in both incident and outgoing
light directions.

1.5. Training Details

The training process requires approximately 9 hours on a
single RTX3090 GPU with 24GB of memory. We start by
training NeuS over 100,000 iterations to initialize the ge-
ometry and diffuse albedo networks. For each training iter-
ation, we utilize 512 randomly sampled pixels, employing
an ℓ1 loss along with an eikonal regularization loss. Prior to
the rendering phase, we derive the feature maps of images
by the pre-trained ViT-S/8 model [9] and executed 10,000
iterations with λ4 set to 1.0 to extract the DINO feature from
2D feature maps to 3D surfaces. During the physics-based
surface rendering stage with a total of 50,000 iterations, we
fixed the geometry and lighting to warm up the BRDFs net-
work for 2,000 iterations to stabilize the process, and subse-
quently, we carried out a joint optimization of the lighting,
geometry, and BRDFs. The training of the blending coef-
ficient network started at the 10,000th iteration. We set the
size of rendered image patch as 128× 128 and loss weights
to λ1 = 10−4, λ2 = 0.1, λ3 = 10−5 and λ4 = 10−5. All

networks are optimized by corresponding Adam optimizers
with learning rate 10−4.

2. More Details for the Dataset

DRV Dataset We acquired the DRV dataset [5] from the
authors, comprising five scenes: Dragon, Girl, Pony, Tree,
and Cartoon. Each scene has approximately 400 images,
split between training and test sets. The dataset captures
images in a darkroom, utilizing a nearly collocated camera-
light setup.
Luan Dataset The Luan dataset [40] was captured using a
casual smartphone. We noticed that the images exhibit sig-
nificant noise and motion blur, together with varying expo-
sure times and white balance settings during capture. This
inconsistency introduces challenges in maintaining multi-
view consistency. We evaluated the scene Xmen, which in-
cludes 136 images, to compare novel view rendering and
material decomposition against the IRON method.
Self-captured Dataset For capturing real-world images,
we employed an iPhone 15 to shoot in RAW format, en-
suring a linear camera response. Across all photos, we
maintained consistent settings for the camera’s exposure
time, focus, and white balance. Specifically, the ISO
value and shutter speed (exposure time) were fixed at 100
and 1/250s, respectively, with the white balance adjusted
to 3,800 Kelvin degrees. Our collection encompasses 5
scenes: Toy, fruit, Panda, Assassin, and Bear, with the num-
ber of images per scene varying from 120 to 400. Camera
poses were derived using COLMAP [50], and objects were
scaled to fit within a unit sphere based on the reconstructed
point cloud. The photography sessions took place in a dark-
room, positioning the camera 0.15 to 0.3 meters away from
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Figure 11. Qualitative comparisons with state-of-art methods on the synthetic dataset (dragon and horse). The materials of NeILF++[82]
are Base Color, Metallic, Roughness defined by simplified Disney principled BRDF.

each object. To achieve comprehensive coverage, we sys-
tematically moved the camera in a spiral pattern around the
subjects. The separation between the camera lens and the
flashlight on the iPhone, roughly 0.015m, results in an ap-
proximate 3-degree variation between viewing and lighting
angles at a standard distance of 0.25m from the object.

3. More Results and Comparisons
We primarily compare our results with those from IRON
[84] and WildLight [12]. Notably, WildLight was unable
to reconstruct the synthetic data for duck, and as such, its
results are not presented in the table within the main paper.

3.1. Results on Synthetic Data

In Table 4, we offer comprehensive results for each syn-
thetic scene captured under casual conditions. Additionally,
we provide a qualitative comparison of novel view render-
ing and material decomposition between our method and
earlier methods, as illustrated in Fig. 11. For the dragon
scene, our method produces a diffuse albedo with less in-
direct illumination incorporated into the materials. In the
horse scene, our material decomposition results demon-
strate a reduced influence of self-shadows, showing a closer
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Figure 12. Ablation study on inter-reflection in marble bowl.

alignment with the ground truth than those obtained with
IRON. Even in extremely concave regions, our method is
more robust than the previous method, as shown in Fig. 12.

3.2. Results on Real Data

In Fig. 14, we present our dataset’s novel view render-
ing and material decomposition outcomes. The IRON



Scene Method Roughness Diffuse Albedo Specular Albedo Novel View Synthesis
MSE ×10−3 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

duck
WildLight - - - - - - - - - -

IRON 2.640 24.693 0.9631 0.0483 18.669 0.9017 0.1075 31.845 0.9855 0.0320
Ours 1.059 34.871 0.9852 0.0355 23.402 0.9474 0.0730 35.164 0.9912 0.0273

maneki
WildLight 93.59 18.151 0.7351 0.4472 12.413 0.8114 0.2497 29.913 0.9400 0.0787

IRON 1.455 35.367 0.9805 0.0238 18.967 0.8369 0.1732 30.087 0.9550 0.0468
Ours 0.467 36.098 0.9880 0.0184 22.245 0.9371 0.0726 32.979 0.9729 0.0340

horse
WildLight 40.23 24.625 0.9507 0.1032 16.997 0.8401 0.2056 32.032 0.9669 0.0520

IRON 2.198 31.903 0.9826 0.0363 29.323 0.8701 0.1275 31.713 0.9808 0.0366
Ours 1.509 33.573 0.9880 0.0194 33.071 0.9259 0.0917 34.206 0.9831 0.0321

marble bowl
WildLight 165.2 22.613 0.8862 0.1379 15.600 0.8261 0.2135 28.219 0.9252 0.0981

IRON 0.321 29.258 0.9623 0.0518 35.035 0.8947 0.1553 27.403 0.9602 0.0583
Ours 0.172 29.881 0.9647 0.0493 39.972 0.9729 0.0660 29.209 0.9640 0.0591

dragon
WildLight 120.8 33.679 0.9208 0.1108 14.432 0.7840 0.2453 26.546 0.9078 0.1155

IRON 2.815 36.470 0.9675 0.0575 30.902 0.7610 0.2295 25.516 0.9257 0.0876
Ours 0.923 38.720 0.9735 0.0390 34.894 0.8152 0.1772 27.870 0.9406 0.0766

armchair
WildLight 117.9 30.116 0.9242 0.1282 15.748 0.8260 0.2136 29.126 0.9100 0.1200

IRON 1.612 41.361 0.9818 0.0416 21.960 0.8333 0.1938 27.752 0.9555 0.0734
Ours 1.155 41.518 0.9833 0.0370 25.442 0.8959 0.1438 31.916 0.9655 0.0642

Table 4. Complete results on the synthetic dataset.

Pony Girl Tree Dragon Cartoon Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IRON [84] 29.269 0.9150 27.136 0.9326 31.641 0.9464 32.421 0.9317 30.773 0.9587 30.248 0.9369
Ours 30.092 0.9414 27.589 0.9365 31.765 0.9464 32.251 0.9306 30.975 0.9589 30.534 0.9428

Table 5. Quantitative comparison of novel view rendering on DRV dataset.

method often incorporates indirect illumination into the dif-
fuse albedo, particularly in concave regions, as observed in
the Fruit scene. Additionally, specular albedoes produced
by the IRON method are adversely affected by self-shadows
and inter-reflections, as highlighted in specific boxes.

In Table 5, we provide a quantitative comparison that
underscores the enhanced performance of our method com-
pared to IRON in terms of novel view rendering within
the DRV real dataset. Figure 15 and Fig. 16 comple-
ment this with side-by-side qualitative comparisons of our
method against IRON regarding material decomposition.
Leveraging DINO regularization for surface decomposition,
which effectively clusters similar materials, our approach
produces more accurate results for material decomposition,
especially in scenarios with a skewed view distribution.
We observe that IRON’s evaluation metrics for the Dragon
scene slightly exceed those of our method, this disparity is
primarily due to its collocated camera-lighting setup, which
inherently minimizes the occurrence of self-shadows within
the scene.

3.3. Failure Case

Like many neural surface reconstruction methods, both
COLMAP and NeuS presuppose Lambertian observation to
guarantee multi-view consistency. Following the same ap-
proach as IRON, our method primarily depends on NeuS for
geometry initialization but struggles to reconstruct objects
with reflective surfaces, as depicted in Fig. 13. The surfaces
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Figure 13. A failure case on bear with reflective surfaces.

reconstructed by NeuS and our method exhibit holes within
reflective regions.

4. Video Demos
In the video, we present more comprehensive results to
demonstrate the effectiveness of our design, along with ad-
ditional comparison cases between our method and other
inverse rendering methods. Furthermore, we render the re-
constructed 3D assets using a traditional graphical pipeline
to illustrate their practical applications.
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Figure 14. More visual results of material decomposition on our dataset.
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Figure 15. Visual results of material decomposition on DRV dataset.
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Figure 16. Visual results of material decomposition on DRV dataset (continued).


