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A. Overview

In this appendix, we provide additional details regarding
our methodology, experiments and results. Specifically, we
cover our setup for data collection (Section B), the tech-
nique used for mapping tactile images (local depth maps)
into 3D points (Section C), and additional results and abla-
tions (Section D).

B. Data collection

Our methodology integrates RGB images captured by cam-
eras with tactile images (local depth maps) acquired through
robotic tactile sensing, all within a 3D Gaussian Splatting
representation. This combination improves geometry re-
construction by incorporating both global information from
the cameras and local details obtained through tactile sens-
ing.

The acquisition of touch point clouds varies between
simulated environments and real-world applications. In
simulations, such as those involving the Shiny Blender and
Glossy Synthetic datasets referenced in the main paper, we
utilise the available 3D models to directly simulate local
point clouds on the virtual object surfaces (Figure 7). In
contrast, gathering touch point cloud in the real world ne-
cessitates to physically interact with the object through tac-
tile sensors.

A tactile sensor [13, 14, 33] is a device mounted on the
end-effector of a robot arm that transduces a surface con-
tact area into a tactile image. This image is generated when
the sensor’s soft skin deforms upon touching an object, al-
lowing an internal camera to capture the deformation. This
deformation, represented as a depth map, reflects the local
surface characteristics of the object. The resulting image is
then converted to a 3D point cloud.

For real-world data collection, we equipped an Allegro
Hand with four DigiTac tactile sensors [15] mounted on a
UR5 robotic arm. We gathered 20 tactile images (5 grasps
with a 4-finger robotic hand), each paired with the precise
3D pose of the sensor (in the robot frame of reference). Ad-
ditionally, we collected 25 RGB images along with their
corresponding camera poses (also calibrated in the robot
frame) to support volume rendering. Figure 8 shows a sam-
ple of RGB images and tactile images collected on a reflec-
tive object.

C. Mapping tactile images to 3D point clouds

The conversion of tactile images to 3D point clouds is non
trivial, as the local depth maps obtained with tactile sen-
sors depends on physical characteristics and internal hard-
ware of the tactile sensors in use. For example, while the
DIGIT [13] sensor has a flat profile and produces RGB read-
ings, sensors from the TacTip family [14] have rounded de-
signs and outputs marker-based maps that are later prepro-
cessed into depth maps. Therefore, directly projecting 3D
point clouds from these depth maps does not always yield
precise results.

In this section, we describe a solution to the shortcom-
ings mentioned above, which draws upon the work pro-
posed in [3, 24]. This approach involves training a model
for image-to-3D point cloud mapping and can be adopted
for multiple sensors, regardless of their technical specificity.
A critical step in this process is the acquisition of ground
truth 3D point clouds for training, which, although readily
obtainable in simulations, presents significant challenges in
real-world settings. Therefore, our 3D point clouds collec-
tion is performed in simulation within the environment Tac-
tile Gym [2], which is based on the physical simulator Py-
Bullet [4]. However, the tactile images obtained in simula-
tion and those acquired in the real world are inherently dif-
ferent. Overcoming this discrepancy, known as real-to-sim
gap, is essential for the accuracy of the conversion process.
The approach to bridge real-to-sim data varies depending on
the type of sensor used. For DIGIT sensors, methodologies
that are discussed in Smith et al. [23, 24] can be adopted,
while strategies for TacTip sensors are covered in [2, 15]. In
our research we utilise the DigiTac sensor, a member of the
TacTip sensor family, therefore employing available real-to-
sim conversion models detailed in Lin et al. [15].

With effective real-to-sim conversion models in place,
we can simulate the collection of point clouds to train a
Convolutional Neural Network (CNN) for mapping tac-
tile images to 3D point clouds. The collection of these
point clouds is performed following the procedure outlined
in [24]. Our training procedure begins by defining a base
mesh that acts as a geometric prior for the contact surface.
The CNN is then trained to predict adjustments to the vertex
positions of this mesh based on tactile image inputs. This
results in a deformed mesh that closely mirrors the actual
geometry of the contact surface. The accurate 3D point
cloud is generated by sampling points from this deformed
mesh, ensuring an accurate representation of the object’s
touched surface. Once the CNN is adequately trained, it be-



Figure 7. Visualisation of simulated 3D point clouds (in orange) that mimic those derived from tactile images in real-world settings. The
depicted objects are from the Shiny Blender and Glossy Synthetic datasets.

Figure 8. Data collection in the real-world. We collected RGB images and local depth maps on a reflective toaster.

comes capable of converting tactile images obtained from
real-world interactions into precise 3D point clouds. We re-
fer to [3] for additional details on this conversion mapping
for TacTip sensors.

D. Additional results

D.1. Highly sparse views

In this section, we are interested to explore how our method
compares against standard 3DGS on highly sparse data.
Specifically, we compare its performance using from 1 to 5
views on the Glossy Synthetic dataset. Results are reported
in Table 4.

We believe that 5 views strikes a nice balance, whereas
we can assure that all the object is fully covered by the
5 views and it is not overwhelming for a user to capture.
When using fewer views, we need to add strong inductive
biases so the system can imagine unseen parts of the object,
e.g., pre-training a diffusion model on Objaverse renders

CD (↓)

Views 1 2 3 4 5

3DGS 0.124 0.045 0.027 0.025 0.011
Ours 0.090 0.034 0.003 0.003 0.001

Table 4. Comparison of our method against standard 3D Gaussian
Splatting (3DGS) across different view counts on the Glossy Syn-
thetic dataset. Results show the CD from 1 to 5 views, demonstrat-
ing the effectiveness of our approach with increasing view sparsity.

like in [16]. We certainly believe that tactile information
will help to understand unseen but touchable parts of an ob-
ject. However, given the very different methodologies re-
quired for, e.g., diffusion models, such an extension is out
of scope for the present work.



Glossy Synthetic [17]
Metric Method Angel Bell Cat Horse Luyu Potion Tbell Teapot Avg.

100 Views

CD (↓)
3DGS 0.0002 0.0132 0.0073 0.0005 0.0011 0.0143 0.0133 0.0098 0.0075
NeRO 0.0034 0.0032 0.0044 0.0049 0.0054 0.0053 0.0035 0.0037 0.0042

Ours[5 grasps] 0.0002 0.0068 0.0027 0.0004 0.0009 0.0038 0.0072 0.0059 0.0034

SSIM (↑)
3DGS 0.928 0.917 0.969 0.959 0.929 0.948 0.919 0.893 0.933
NeRO 0.898 0.917 0.924 0.912 0.867 0.906 0.898 0.913 0.904

Ours[5 grasps] 0.929 0.917 0.969 0.959 0.928 0.949 0.922 0.894 0.933

5 Views

CD (↓)
3DGS 0.0004 0.0220 0.0295 0.0007 0.0013 0.0122 0.0145 0.0079 0.0111
NeRO 0.0893 0.0398 0.0230 0.1817 0.0170 0.0043 0.0859 0.0282 0.0586

Ours[5 grasps] 0.0003 0.0082 0.0021 0.0004 0.0008 0.0013 0.0057 0.0022 0.0026

SSIM (↑)
3DGS 0.820 0.821 0.855 0.889 0.790 0.800 0.794 0.809 0.822
NeRO 0.700 0.818 0.833 0.741 0.769 0.797 0.777 0.800 0.779

Ours[5 grasps] 0.821 0.816 0.879 0.891 0.795 0.810 0.800 0.810 0.828

PSNR(↑)
3DGS 20.98 19.60 22.77 18.99 21.24 21.33 17.97 17.80 20.08
NeRO 10.93 17.33 15.53 9.76 13.58 17.44 12.54 13.13 13.78

Ours[5 grasps] 21.02 19.52 23.06 21.94 20.95 21.64 18.25 17.94 20.55

Table 5. Evaluation of the Chamfer Distance (CD) and SSIM on the Glossy Synthetic dataset [17] for individual objects. Our method is the
best in recovering the object geometry from glossy surfaces in both the 100 views and 5 views scenario. In terms of photometric quality,
our method outperforms the baselines in the minimal view setting.

Shiny Blender, 100 views [30]
Method Car Coffee Helmet Teapot Toaster Avg.

CD(↓)

3DGS 0.0027 0.0018 0.0068 0.0003 0.0069 0.0037
3DGS + S 0.0014 0.0022 0.0024 0.0007 0.0077 0.0028

3DGS + T[5 grasps] 0.0028 0.0011 0.0043 0.0002 0.0029 0.0022
Ours[5 grasps] 0.0004 0.0017 0.0005 0.0002 0.0038 0.0013

PSNR(↑)

3DGS 27.40 32.81 27.56 45.48 21.10 30.87
3DGS + S 27.46 32.90 27.69 45.45 21.12 30.92

3DGS + T[5 grasps] 27.36 32.88 27.60 45.51 21.16 30.90
Ours[5 grasps] 27.43 32.91 27.48 45.10 21.19 30.82

SSIM(↑)

3DGS 0.930 0.972 0.950 0.997 0.896 0.949
3DGS + S 0.932 0.972 0.952 0.997 0.898 0.950

3DGS + T[5 grasps] 0.930 0.971 0.948 0.996 0.896 0.948
Ours[5 grasps] 0.932 0.972 0.951 0.997 0.899 0.950

Table 6. Evaluation of SSIM, PSNR, and CD results on the Shiny Blender dataset [30]. Our full method includes both touches and our
proposed smoothness loss. Our method considerably improves the geometry reconstruction, while achieving comparable levels of image
fidelity.



Figure 9. Point Cloud Coverage for the all the objects in the Shiny Blender dataset. Combining tactile and visual data leads to higher
accuracy at lower distance thresholds

Figure 10. Surface reconstruction qualitative results using 5 training views on the full the Glossy Synthetic dataset.



Figure 11. Novel-view synthesis qualitative results from 5 training views on the Glossy Synthetic dataset

D.2. Complete results across objects

Glossy Synthetic dataset. Table 1 in the main paper
presents the average results obtained on the Glossy Syn-
thetic dataset. This section details the results for each ob-
ject in the dataset (Table 5). The results for 3DGS and our
method were obtained from our experiments, while NeRO
results are from the original authors. In the 100 views set-
ting, our method outperforms the baselines in terms of CD
and matches 3DGS in photometric quality. In the minimal
setting view, our method surpasses the baselines in both CD
and photometric quality. These findings are further sup-
ported by the qualitative results in Figure 10 (geometry re-
construction) and Figure 11 (novel-view synthesis). This
underscores the main benefit of our proposed solution in
applications with limited data availability.

Shiny Blender dataset. Similarly, the results for the
Shiny Blender dataset in the main paper are reported as av-
erages across the objects. Table 6 shows an ablation study
on the components of our method. We report CD and SSIM
for the full Shiny Blender dataset (100 views). The results
indicate that combining tactile data with vision significantly
improves geometry reconstruction quality, even with dense
data availability, without compromising image quality.

D.3. Ablation: Point Cloud Coverage

In Section 5.3, we motivate and introduce the metric Point
Cloud Coverage to complement the CD evaluation. Fig-
ure 9 displays the Point Cloud Coverage across increasing
radii for each object in the Shiny Blender dataset. These
curves illustrate that incorporating tactile readings improves
the reconstruction quality of objects with prominent specu-
lar features, such as toaster, helmet, car. For objects lacking
dense specular highlights, which are inherently simpler to
reconstruct using standard methods, our approach performs
comparably to existing techniques.
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