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ABSTRACT

It is widely acknowledged that the performance of Transformer models is logarith-
mically related to their number of parameters and computational complexity. While
approaches like Mixture of Experts (MoE) decouple parameter count from com-
putational complexity, they still face challenges in inference due to high memory
access costs. This work introduces UltraMem, incorporating large-scale, ultra-
sparse memory layer to address these limitations. Our approach significantly
reduces inference latency while maintaining model performance. We also inves-
tigate the scaling laws of this new architecture, demonstrating that it not only
exhibits favorable scaling properties but outperforms MoE. In experiments, the
largest UltraMem we train has 20 million memory slots. The results show that our
method achieves state-of-the-art inference speed and model performance within a
given computational budget, paving the way for billions of slots or experts.

1 INTRODUCTION
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(b) Inference time
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Figure 1: We ensured that three models have the same computation, and MoE and UltraMem have
the same parameters. The x-axis is plotted on a logarithmic scale. In (b) and (c), the sequence length
is 1 because during decoding time, we can only predict one token at a time, and the key/value cache
length is 2048. The experiments in (b) and (c) are conducted on the A100-SXM-80GB.

Recent advancements in natural language processing (NLP), driven by Large Language Models
(LLMs) (Radford et al., 2019; Brown, 2020), require exponentially more computational resources
as they scale, posing challenges in resource-limited environments like real-time applications. To
address computational issues, the Mixture of Experts (MoE)(Fedus et al., 2022; Jiang et al., 2024) and
Product Key Memory (PKM)(Lample et al., 2019) have been introduced. MoE selectively activates
parameters, boosting training efficiency but impairing inference time due to increased memory access.
PKM maintains consistent memory access with fewer value embeddings but its performance is
significantly worse than MoE.

As shown in Figure 1(b), an MoE model, despite having the same computational cost and twelve times
more parameters than a dense model, runs 2 to 6 times slower in inference, varying by batch size.

∗Equal contribution.
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This slowdown, as depicted in Figure 1(c), stems from high memory access demands, highlighting
its inefficiency in inference scenarios. The primary challenge is how to match or even surpass the
effectiveness of the MoE model while maintaining memory access levels comparable to those of
dense models.

In this paper, we introduce UltraMem, an architecture that builds upon and extends the concepts
from PKM. UltraMem incorporates large-scale, ultra-sparse memory layers that significantly enhance
computational efficiency and reduce inference latency while maintaining or even improving model
performance across various benchmarks. This architecture not only supports the deployment of highly
effective language models in resource-constrained environments but also opens up new avenues for
constructing even larger models without the previously associated prohibitive costs.

In summary, we make the following contributions:

1. UltraMem is greatly enhanced compared to PKM, and outperforms MoE at same scale.
Compared to PKM, UltraMem truly possesses the prerequisites for training large-scale mod-
els on extensive computational resources and has undergone comprehensive experimental
validation.

2. UltraMem has significantly lower memory access cost during inference compared to MoE.
Under common inference batch sizes, it can be up to 6 times faster than MoE with the same
parameters and calculations. The inference speed of UltraMem is almost identical to that of
a dense model with equivalent computational resources.

3. We have verified the scaling ability of UltraMem. Similar to MoE, UltraMem has strong
scaling ability, and we have observed stronger scaling ability than MoE.

2 RELATED WORK

Mixture of Expert. Shazeer et al. (2017) proposed MoE and Fedus et al. (2022) introduced the
MoE in large language models, where each token selects one expert for inference each time, thereby
increasing model parameters without increasing computation. Rajbhandari et al. (2022) introduced
the concept of shared experts, where each token utilizes some fixed experts along with some unique
experts. Subsequent research has focused on improving the gating functions of MoE, including token
choice (Chi et al., 2022), non-trainable token choice (Roller et al., 2021) and expert choice (Zhou
et al., 2022), primarily to address the issue of expert imbalance. Liu et al. (2024); Dai et al. (2024)
opted to slice the experts into smaller segments while activating more experts per token, achieving
significant performance improvements. Concurrent study (Krajewski et al., 2024) meticulously
explored the benefits of granularity and increasing the number of experts, alongside investigating the
scaling laws associated with MoE. In this paper, we use fine-grained MoE as our baseline, wherein
the granularity of the MoE is set to 2. This means that each expert is half the size of the original
MultiLayer Perceptron (MLP) , with two experts activated per token.

Large Memory Layer. Lample et al. (2019) first introduced the concept of large memory layer,
called PKM, which can be seen as slicing the MoE experts to the smallest possible configuration. Kim
& Jung (2020) introduced a concept similar to shared experts in MoE, allowing PKM and MLP to
operate in parallel. Csordás et al. (2023) made a slight modification to PKM by removing the Softmax
operation. PEER (He, 2024) improved the activation of values in PKM to activate a small expert with
an inner dimension of 1, achieving significant performance gains. However, current research on PKM
is limited to smaller models, and even the latest improved versions of PKM only outperform MoE in
certain scenarios. Additionally, current PKM do not possess characteristics suitable for large-scale
training. We address these issues in this paper.

Tensor decomposition breaks down a tensor into a series of small matrices or tensors. In deep
learning research, such methods are commonly used to approximate a large tensor during training,
aiming to save on computation and parameters. Product quantization (Jegou et al., 2010) breaks a
vector into multiple sub-vectors, allowing us to reconstruct the original vector using a smaller number
of sub-vectors, thereby reducing the model parameters. Bershatsky et al. (2024) initializes several
matrices and a core tensor, trains these parameters during the fine-tuning phase, and reconstructs the
original large tensor in a manner of Tucker Decomposition at the end of training to reduce training
costs. We borrow this insight to improve PKM’s key retrieval.
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Figure 2: An overview of multilayer perceptron (MLP) and large memory layer (LML). For the sake
of brevity, we omit the third top-m operation from memory layer. An MLP typically consists of two
linear layers and a GeLU activation. We consider the weights of the first linear layer as keys, and
those of the second linear layer as values. LML uses row and column keys to determine the 2-D
logical address to index memory values, whereas MLP uses 1-D logical address. “fetch value” refers
to retrieving values based on the indices with higher scores.

3 ULTRAMEM

3.1 PRELIMINARY

Here we firstly introduce the origin large memory layer (LML) based on product keys, which serves as
the foundation for our proposed approach. The concept of a product key-based memory layer (PKM)
was first explored in prior work (Lample et al., 2019). In their approach, the authors incorporated an
external memory module into language models, with the goal of expanding the model’s parameters
while maintaining a similar level of computational complexity. The overall structural diagram is
depicted in Figure 2(b).

A memory layer generally consists of two parts: keys K ∈ RN×Dk and values V ∈ RN×Dv . To
retrieve information from memory values, a query vector q ∈ RDk finds most relevant values by
multiplying keys to obtain scores. The higher the scores are, the better impact should the values have.
Consequently, this process can be formulated as:

s = σ(Kq) o = V⊤s, (1)

where s is the scores, σ is a non-linear activation, o is the output. Attention layers, who memorize
context contents, and MLP layers, who memorize world knowledge, also follow the above formulation
with σ being SoftMax in attention layers and GeLU in MLP layers (Geva et al., 2020) (see Figure 2(a)).

Product-key memory layers scale up the memory size with N > 106, while activating only a few
values with top-m scores. Here, m is a hyper-parameter controlling sparsity. Though values are
sparsely accessed, the keys, which are as large as values, must be fully computed to obtain scores
before top-m activation following equation 1. To alleviate the computation complexity for keys,
product keys are proposed. Borrowing the idea of Product Quantization, it utilizes a 2-D logical
address (see Figure 2(b)), typically a n × n grid where n =

√
N , for memory value retrieval.

Specifically, a 2-D logical address (i, j) is used to index memory value at physical address n× i+ j.
With such strategy, logical scores are then represented as a matrix, which is further decomposed as an
addition of row and column scores:

srow = σTopM(Krowqrow(x)), scol = σTopM(Kcolqcol(x)), (2)

Sgrid = σTopM(srow + s⊤col), o = V⊤ × SoftMax(vec(Sgrid)), (3)

where Krow,Kcol ∈ Rn×Dk , qrow, qcol : RDi → RDk convert input hidden x ∈ RDi to row and
column query, σTopM(·) preserves top-m largest elements in the input and set the rest to negative
infinity, and the matrix addition with unmatched matrix shape is implemented by element broadcasting.
It should be noted that removing σTopM from equation 2 does not make any difference. The only
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reason for applying top-m to the row and column scores is to reduce the computation for the
last top-m operation on Sgrid. As srow, scol have only m activated scores, Sgrid has only m2

candidates for top-m operation rather than N , i.e., top-m complexity reduces from O(N logm) to
O((

√
N +m2) logm).

Note that the Sgrid undergoes a SoftMax operation akin to the one employed in the self-attention
mechanism. Moreover, PKM adopts the multi-head mechanism from the self-attention module,
wherein it utilizes multiple key sets to retrieve the shared values, we denote H as the number of PKM
heads.

3.2 STRUCTURE IMPROVEMENTS

Improve PKM with a bag of tricks. We first studied the structure of PKM and found that a series of
minor adjustments can steadily improve the model’s performance:

1) We remove the operation Softmax in equation 3, which is well-established in the stud-
ies (Shen et al., 2023; Csordás et al., 2023).

2) We conduct Layer Normalization (LN) (Ba et al., 2016) on query and keys for stability of
training.

3) PKM suggests using a constant learning rate of 0.001 to learn the values, which is much
higher than the learning rate for other parameters. We found that gradually decaying the
value learning rate provides further benefits.

4) PKM uses a linear layer to generate query, we add a causal depthwise convolutional
layer (Howard, 2017) before this linear layer to enhance query.

5) Similar to Group Query Attention (Ainslie et al., 2023), we share query in two key sets. This
can reduce the computational cost of generating the query by half, with little performance
impact.

6) By halving Dv, we double the number of values. Under the condition of keeping the
activation value parameter unchanged, we increased the diversity of activated values, and
the model effect is further improved. In order to make the output consistent with hidden
dimension, we add a linear layer on the aggregated output.

UltraMem Overall structure. We then take a deeper investigation into the model structure and
propose UltraMem. Figure 3 shows the PKM and our improved UltraMem structure, based on a
Pre-LayerNorm Transformer architecture. PKM replaces MLP or operates in parallel (Kim & Jung,
2020) with MLP in the one of deeper layers with memory layer. We notice three drawbacks to PKM:
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UltraMem
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UltraMem block

PKM

Transformer layer

Transformer layer…

Transformer layer…

Transformer layer

Transformer layer…

Transformer layer

UltraMem block…

Transformer layer…

Transformer layer…

Figure 3: Overall of PKM and UltraMem.

1. As value size N significantly increases,
queries can harder find correct values.

2. Product key decomposition introduces
bias on retrieval topology. For example,
let (i, j) be the logical address for the top-
1 score, then top-2 score must be located
on row i or column j, which significantly
limits the diversity of top-m selection.

3. There are issues with unbalanced multi-
GPU computation and communication
during large-scale parameter training, as
the full model parameters cannot be
placed on a single GPU.

To alleviate problems 1 and 3, we decompose this
large memory layer into multiple smaller mem-
ory layers distributed at fixed intervals across the
transformer layers. Additionally, this skip-layer
structure allows us to overlap the execution of the
memory layer and the transformer layers, as the
memory layer is predominantly memory-bound
during training.
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Figure 4: Flow of Tucker Decomposed Query-Key Retrieval (TDQKR), here r = 2. The term “fetch”
refers to the action of retrieving scores based on a given index (corresponding to “torch.gather”).
TDQKR replacing Product Quantization, serves as a more precise retrieval module for recalling value
indices in UltraMem. Each step of the TDQKR process is meticulously referenced within the main
text for understanding.

Tucker Decomposed Query-Key Retrieval (TDQKR). We explore a more complex multiplicative
approach to alleviate problem 1 and 2, where a tucker decomposition (Malik & Becker, 2018) is
adopted in place of product quantization. The whole process of TDQKR is illustrated in Figure 4.
Specifically, tucker decomposition estimates grid scores with rank-r matrix multiplication:

Srow = Krowqrow(x), Scol = Kcolqcol(x), (4)

Sgrid = σTopM(S
⊤
row ×C× Scol), (5)

where Srow,Scol ∈ Rr×n and C ∈ Rr×r is the tucker core, which is a learnable parameter with
random initialization. To produce n × r shaped row and column score, the dimensions of the
query and key are reshaped, resulting in Krow,Kcol ∈ Rr×n×(Dk/r) and qrow, qcol ∈ Rr×(Dk/r),
corresponding to Figure 4 step 1.

However, equation 5 is inefficient to be directly applied in practice, as the top-m operation cannot
be simplified with an equivalent two-phase top-m technique like product quantization can. As a
consequence, we propose an approximated top-m algorithm to tackle this problem. The key is to do
rank-1 approximation for the tucker core, so that the overall top-m can be approximated by:

C ≈ ut⊤, σTopM(S
⊤
row ×C× Scol) ≈ σTopM((u

⊤Srow)
⊤ × (t⊤Scol)) (6)

where u, t ∈ Rr×1. Note that (u⊤Srow), (t
⊤Scol) ∈ R1×n are row vectors, then the two-phase top-

m technique pertains to the approximated objective σTopM((u
⊤Srow)

⊤ × (t⊤Scol)), corresponding
to Figure 4 step 3. Overall, we conduct approximated top-m on row and column scores, filtering out
non-top elements, then we use the concrete objective in the final top-m operated on Sgrid, keeping
index scores precise:

C ≈ut⊤ (7)

S̃row =ITopM(u⊤Srow)⊙ Srow (8)

S̃col =ITopM(t⊤Scol)⊙ Scol (9)

Sgrid =σTopM(S̃
⊤
row ×C× S̃col), (10)

where ITopM(·) is binary value function, which converts top-m elements to 1 and otherwise to 0.
Equation 8&9 corresponding to Figure 4 step 4&5,and Equation 10 corresponding to Figure 4 step
6&7. As for the rank-1 approximation, we leverage Singular Value Decomposition (SVD) (Abdi,
2007) to factorize the tucker core with u, t be the left and right singular vectors corresponding to the
leading singular value, corresponding to Figure 4 step 2.
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Figure 5: Flow of Implicit Value Expansion (IVE), here E = 4, m = 16. IVE reduces memory
access and scales up memory size by expanding the memory table virtually. Each virtual block is a
reparameterization of the physical memory table. Every virtual memory address corresponds to a
physical memory address and a projector index. The weighted sum pooling is grouped by the virtual
blocks, followed by a linear layer to produce the final output.

Last but not the least, the approximation error should be concerned when non-maximum singular
values are as large as the maximum one. To mitigate this, an auxiliary loss that manages approximation
error is introduced during training by constraining non-maximum eigenvalues:

C = UΛT⊤, (by SVD) (11)

Laux =
α

r − 1

r∑
i=2

(max (0, λi − τ))
2
, (12)

where, Λ denotes the singular values for C in descending order, with τ serving as a margin to prevent
C from degenerating into a rank-1 matrix, and α is the coefficient for the loss.

Implicit Value Expansion (IVE). Though sparsely used, maintaining a large memory table is still
costly during training due to the large amount of memory access. To reduce memory access as well
as scale up the memory size, we propose virtual memory as an implicit value expansion. Given a
virtual expansion rate E > 1, virtual memory expands the memory table into E times size. We design
virtual memories as multiple reparameterizations of the original memory value V, which we denote
as physical memory. Then, E linear projectors {Wp|p ∈ [1, E],Wp ∈ RDv×D′

v} are utilized, and
virtual memory block Ṽp corresponding to the p-th reparameterization can be defined as:

Ṽp = VWp. (13)

Then the overall virtual memory is a concatenation of the virtual blocks Ṽ = [Ṽ⊤
0 , Ṽ

⊤
1 , . . . , Ṽ

⊤
E ]

⊤.
Note the dimension of virtual values D′

v is not necessarily consistent with the dimension of physical
values Dv .

To apply the virtual memory is intuitive, where memory table can be replaced from V to Ṽ. And
to fit virtual memory size, the key size is expanded by

√
E times. Moreover, we suggest a random

shuffle for virtual memory to eliminate some unnecessary index topology prior introduced by row
and column scoring. Concretely, if the virtual memory tables are unioned by concatenation, each
memory value and its expansions would be located in the same column in logical address, and thus
can be potentially more frequently chosen simultaneously.

A naive reparameterization for virtual memory still introduces lots of computations, which is E ·
N ·Dv ·D′

v, and E times GPU memory access. A better idea is to compute reparameterization on
demand. That is, we expand the logical address to triplets (i, j, p) where (i, j) is the original logical
address and p is index for the virtual memory block, and then simultaneously conduct sum pooling
and compute virtual memory value. Consequently, equation 3 is rewritten as:

ŝ =Shuffle(vec(Sgrid)), (14)

o = Ṽ⊤ × ŝ =
∑
p

Ṽ⊤
p × ŝp =

∑
p

W⊤
p

(
V⊤ × ŝp

)
(15)

where ŝp represents the scores corresponding to p-th virtual memory block. With equation 15, we can
firstly lookup and pool values according to the virtual block index and then transform the reduced
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physical values directly into reduced virtual values. This trick reduces extra computation from
E ·N ·Dv ·D′

v to E · B ·Dv ·D′
v, where B is the number of tokens in batch, and has nearly no

extra GPU memory access except for the linear projectors. Figure 5 shows the flow of IVE.

Multi-Core Scoring (MCS). PKM shares a single score across dimension Dv for each value.
Empirically, assigning multiple scores to a single value has shown to enhance performance. Thus,
we rewrite the tucker core C as a series of component cores C =

∑h
i C

(i). This allows employing
{C(i)}hi=1 to generate individual score maps S(i)

tucker = S⊤
rowC

(i)Scol. Obviously,

Stucker = S⊤
row(

h∑
i

C(i))Scol =

h∑
i

S⊤
rowC

(i)Scol =

h∑
i

S
(i)
tucker. (16)

We keep top-m conducted on aggregated score Stucker, while applying individual scores S(i)
tucker on

vertically split value table V = [V(1), . . . ,V(h), ] with V(i) ∈ RN×(Dv/h), i.e.,

o = [ŝ(1)⊤V(1), . . . , ŝ(h)⊤V(h)]⊤. (17)

When this technique incorporates with IVE, we split physical memory values instead of virtual
memory values to keep the equivalence in equation 15.

Improved initialization. PKM initializes values with a Gaussian distribution N (0, 1
Dv

). Since
PKM applies Softmax to the scores, the variance of the pooled outputs is 1/Dv . We argue that LML
should be considered as a component similar to an MLP and, therefore, should use an initialization
method akin to that of MLPs. Before training, the output of an MLP typically follows a Gaussian
distribution N (0, 1

2L ) (Brown, 2020), where L is the total number of layers. We initialize value
with N (0, E

2mHL ), where m is the activated value number, H is the head number, E is the value
expansion times. To ensure that the output distribution of UltraMem is N (0, 1

2L ), We need to confirm
that the mean of top-m score is 1, details see Appendix A.

4 QUANTITATIVE ANALYSIS WHY ULTRAMEM INSTEAD OF MOE

The most effective method for enhancing model capacity without significantly raising computational
costs is MoE. This strategy employs a set of specialized sub-models, known as “experts”, which
work together to tackle complex problems. However, the MoE model poses challenges for inference
processes.

Consider the Transformer hidden dimension as D, the inner dimension of MLP is 4D, given the
inference batch size as B. Using the MoE with 2inNmoe (choose 2 in Nmoe experts per token) as an
example, where the inner dimension of expert is 2D. Assuming the expert chosen is fully balanced,
we can get the memory access of single MoE layer as min(2B,Nmoe)× 2D2. For the UltraMem,
assuming value dimension is D/2, and each token activates the top-m values, then its memory access
is min(Bm,N)×D/2. As the batch size increases, the memory access of MoE grows rapidly until
it reaches an upper limit where all expert parameters need to be accessed. In contrast, the memory
access of UltraMem increases very slowly, only reaching parity with MoE when the batch size is in
the tens of thousands. However, in inference scenarios, the batch size is typically not very large.

Figure 1 shows the inference time and memory access of a 1.6 billion parameter Transformer with
2in34 MoE and ×121 UltraMem. For larger batch sizes, see Figure 7 in Appendix. Compared to
MoE, UltraMem achieves the maximum acceleration of ×6 at a batch size of 64, and also shows
significant acceleration at other batch sizes.

5 EXPERIMENTS

In this section, we demonstrate the scaling capabilities of UltraMem, showing that it outperforms
MoE. We additionally show how the performance of UltraMem varies with different top-m values
and the number of parameters, and perform an ablation study to measure the impact of each part of
UltraMem.

1The number of parameters in UltraMem is 12 times the number of parameters in the dense layer. In this
case, the total parameters and total computation of UltraMem are the same as the 2in34 MoE.
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5.1 SETUP

Datasets. Training data comes from RedPajama (Computer, 2023), containing 1 trillion tokens.
RedPajama represents a clean-room, fully open-source version of the LLaMa (Touvron et al., 2023)
dataset. Validation data includes the C4 validation set (Raffel et al., 2020), derived from the Common
Crawl web corpus. The C4 training set is also incorporated within the RedPajama training data.

Tokenizer is based on the GPT-NeoX (Black et al., 2022) tokenizer, which uses the Byte-Pair
Encoding (BPE) (Sennrich et al., 2015) algorithm and has a vocabulary size of 50,432.

Evaluation. We conducted a comprehensive evaluation of all models across ten benchmark datasets.
These datasets included MMLU, Trivia-QA, GPQA, and ARC for assessing the models’ knowledge
capabilities; BBH, BoolQ, HellaSwag, and WinoGrande for evaluating reasoning skills; DROP for
testing reading comprehension abilities; and AGIeval for measuring overall model performance.
The decoding hyperparameters are aligned with those of LLaMA3 (Dubey et al., 2024). Detrails see
Appendix E.

Training details. We used a standard pre-norm transformer (Xiong et al., 2020) with rotary embed-
dings (Su et al., 2024) for our dense models, which have 151M, 680M, 1.6B, and 6.5B parameters2.
For sparse models, including UltraMem, PKM and MoE, we expand the sparse parameters twelvefold
from the 151M, 680M, and 1.6B dense models. In MoE models, two experts are activated per to-
ken (Jiang et al., 2024), using a balance loss (Fedus et al., 2022) weight of 0.01 to ensure even expert
selection. We slightly increased the width of MoE’s experts to match UltraMem’s computational
and parameter costs. In UltraMem models, the auxiliary loss weight is α = 0.001 and margin
τ = 0.15. The learning rate for values is ten times other parameters and decays linearly. For model
structure and hyperparameters details, see Appendix E, and for large-scale training optimizations, see
Appendix C, D.

5.2 EVALUATION ON LANGUAGE MODELING DATASETS

We evaluate models of various sizes, the results are shown in Table 13, where FLOPs is the computa-
tion cost of single token, the curves showing changes over the course of training are provided in the
Figure 11 in Appendix. We observe that as the model capacity increases, UltraMem can outperform
PKM and MoE with the same parameter and computation. On the 1.6B dense model, an UltraMem
model with 12x the parameters can match the performance of a 6.5B dense model.

Table 1: Performance metrics of various models.

Model Param FLOPs Val. GPQA↑ TriviaQA↑ BBH Hella Wino DROP↑ Avg↑
(B) (G) loss↓ cot↑ Swag↑ Grande↑

Dense-151M 0.15 0.30 2.96 19.98 12.67 22.57 35.07 52.49 13.60 26.06
PKM-151M-x12 2.04 0.35 2.76 17.30 24.66 23.14 42.25 51.38 13.10 28.64
MoE-151M-2in32 2.04 0.35 2.63 17.30 33.27 23.24 48.44 55.96 18.57 33.20
UltraMem-151M-x12 2.03 0.35 2.67 19.42 28.97 22.65 43.96 50.83 14.08 29.99

Dense-680M 0.68 1.36 2.64 21.09 27.16 24.65 48.83 54.93 22.97 33.27
PKM-680M-x12 8.95 1.50 2.46 20.65 46.31 26.97 57.32 61.72 25.20 39.70
MoE-680M-2in33 8.95 1.50 2.39 20.54 34.19 26.63 62.71 59.98 26.54 38.43
UltraMem-680M-x12 8.93 1.49 2.37 21.99 55.17 26.62 64.15 60.54 25.14 42.27

Dense-1.6B 1.61 3.21 2.49 21.76 39.65 26.41 58.6 61.72 22.63 38.46
PKM-1.6B-x12 21.13 3.48 2.34 22.99 48.92 28.98 65.45 63.93 27.55 42.97
MoE-1.6B-2in34 21.36 3.52 2.30 21.32 59.56 29.46 67.34 63.93 28.81 45.07
UltraMem-1.6B-x12 21.41 3.50 2.24 24.66 66.38 30.63 71.52 66.38 29.99 48.26

Dense-6.5B 6.44 12.88 2.30 19.98 57.28 31.14 69.73 65.9 33.12 46.19

2Excludes tokenizer vocabulary embedding and prediction head parameters.
3This table only includes evaluation results where the metrics have steadily increased with training. For all

results, see the Table 7 in Appendix.
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Figure 6: (a). C4 validation loss of different models at different scale. (b). Scaling curves at different
sparsity with 151M activated parameters. Each line represents the same model sparsity; e.g., 20K
indicates that approximately one out of every 20,000 values will be activated. The loss decreases
linearly as the sparse parameters increase exponentially. (c). Inference time for UltraMem and MoE
with 1.6B activated parameters. The batch size is 512, sequence length is 1, and key/value cache
length is 2048. With fixed activation parameters, UltraMem’s inference time remains nearly constant
as sparse parameters increase, while MoE’s inference time increases significantly.

5.3 VALUE NUMBER AND TOP-m

In most sparse LLMs, such as MoE and UltraMem, there is a clear positive correlation between
sparsity and model performance. Therefore, in this section, we conduct a series of scaling experiments
by varying selected top-m and value number, i.e., the parameters of the sparse modules, to verify the
changes in model performance with respect to sparsity. The result is shown in Figure 6(b).

It is evident that, at the same level of sparsity, the validation loss decreases as the number of parameters
increases and can maintain a certain degree of decline. Additionally, the smaller the sparsity, i.e.,
the larger the proportion of activated parameters, the better the model performance. However, this
also results in a higher memory access overhead. Thus, there is a trade-off between memory access
volume and scaling efficiency. In our final experiments, we selected a sparsity ratio of 80K as the
default model configuration.

As sparse parameters increase, Figure 6(c) shows that UltraMem maintains stable inference time
despite exponential growth in parameters, as long as activated parameters (top-m) stay constant. In
contrast, MoE’s inference time rises significantly under similar conditions. Additionally, Figure 1(b)
demonstrates that with smaller batch sizes, MoE’s inference speed deteriorates even more compared
to UltraMem.

5.4 ABLATION

We conduct comprehensive ablation studies based on the 151M dense model. In the baseline, the
PKM is a version that operates in parallel with the MLP, making it a stronger baseline. For this group
of experiments, the learning rate (LR) is set to 1.2e-4, with training on 500B tokens and evaluating
the cross entropy loss on the training and C4 validation sets. We ensure that the parameter count and
computational cost of the final version of the model were essentially at the same level.

Table 2 shows the ablation results. We identify 6 changes that significantly improved performance:

1. Doubling the number of values while halving their dimension, and simultaneously double
the top-m selections to keep the active parameters consistent.

2. Splitting a single UltraMem into multiple smaller units evenly across the transformer layers,
with outputs skipping several blocks. This arrangement keeps the total parameter count,
computational cost, and sparse parameter activation at or below pre-split levels.
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Table 2: Ablation study of model improvements

Train Loss ↓ Valid. Loss ↓ Dense Param.(M) Sparse Param.(G) FLOPs (M)

PKM-151M-x10 2.604 2.828 173.01 1.534 346.06
+rm softmax 2.570 -0.034 2.822 -0.006 173.01 1.534 346.06
+half vdim+proj 2.556 -0.014 2.800 -0.022 178.47 1.529 356.98
+share query 2.560 +0.004 2.803 +0.003 173.46 1.529 346.96
+split big mem&skip 2.554 -0.006 2.788 -0.015 161.64 1.536 323.32
+query/key LN 2.553 -0.001 2.789 +0.001 161.64 1.536 323.54
+IVE 2.544 -0.009 2.772 -0.017 172.37 1.536 344.98
+TDQKR 2.538 -0.006 2.764 -0.008 172.37 1.536 344.98
+MCS 2.521 -0.017 2.761 -0.003 172.37 1.536 344.98
+improved init 2.518 -0.003 2.758 -0.003 172.37 1.536 344.98
+value lr decay 2.494 -0.024 2.736 -0.022 172.37 1.536 344.98
+query conv 2.493 -0.001 2.736 -0.000 172.38 1.536 345.02

Total Diff -0.111 -0.092 -0.64 +0.002 -1.04

3. Tucker Decomposition Query-Key Retrieval introduces negligible additional parameters
while reducing computation, here r = 2.

4. Multi-Core Scoring significantly reduces training loss, and slightly reduces validation loss,
here h = 2.

5. Implicit Value Expansion slightly increases both the parameter count and computational
cost, but the improvement is significant, here E = 4.

6. The LR for the value parameters starts at ten times that of the other parameters and linearly
decays to match them by the end of training.

Among other changes, sharing the query helps cut computational costs with a minor trade-off in
performance. Normalizing the query/key greatly reduces spikes in training perplexity and enhances
training stability, as shown in Figure 10.(a). Improved initialization prevents score and output variance
explosions in the early to middle training stages, detailed in Figure 10.(b) and (c). Additionally,
employing convolution further limits the variance divergence in UltraMem outputs(Figure 10.(c)).
The above results are based on incremental ablation. Results from independent ablation can be found
in the Table 8 in Appendix, and they align with our expectations.

Beside, We conduct another ablation studies on IVE, TDQKR, and MCS with different configurations,
which are documented in Table 3. For IVE, as E increases, there is a consistent improvement in
model performance alongside a notable increase in computational cost. However, the marginal gains
decrease as E rises, leading us to recommend E = 4. For TDQKR and MCS, increasing r and h
does not significantly change the computational load, but the effectiveness no longer shows marked
improvement, hence we suggest using r = 2 and h = 2.

Table 3: Ablation of different config on IVE, TDQKR, and MCS

IVE TDQKR MCS

Baseline E=4 E=9 E=16 Baseline r=2 r=3 r=4 Baseline h=2 h=4 h=8

Training loss↓ 2.553 -0.009 -0.016 -0.019 2.544 -0.006 -0.0065 -0.0063 2.538 -0.017 -0.017 -0.012
Validation loss↓ 2.789 -0.017 -0.025 -0.027 2.772 -0.008 -0.0084 -0.0082 2.764 -0.003 +0.001 +0.006
FLOPs(G) 323.54 +6.6% +14.9% +26.4% 344.98 +0.001% +0.002% +0.003% 344.98 +0.001% +0.003% +0.007%

6 CONCLUSION

In this paper, we introduce UltraMem, which, compared to MoE, has minimal memory access and
therefore achieves up to a sixfold speed advantage. Concurrently, in terms of performance, UltraMem
surpasses MoE with the same parameters and computation as model capacity increases, indicating
its superior scaling capability. This work presents a promising direction for developing more efficient
and scalable language models.
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A ULTRAMEM INITIALIZATION

We initialize value with N (0, E
2kHL ), where k is the activated value number, H is the head number,

E is the value expansion times. To ensure that the output distribution of UltraMem is N (0, 1
2L ), We

need to confirm that the mean of top-m score is 1.

Assuming the candidate score follows N (0, 1), and k ≪ K. We can simplify the problem as
follows: Given N standard Gaussian distributed random variables X1, ..., Xn, and the random
variable Y = mean(topm(X1, ..., Xn)), find the expected value E(Y ). It is difficult to obtain an
analytical solution for E(Y), so we approximate E(Y) by sampling M times N points from a Gaussian
distribution and calculating the mean of the top-m values.

Then we initialize the query layer norm weight as 1/
√

E(Y ), the keys layer norm weight as 1/
√
Dk

to ensure the expected of candidate score is 1.

B INFERENCE TIME AND MEMORY ACCESS

Figure 7 shows that UltraMem has a much slower growth in memory access compared to MoE, only
aligning with MoE in terms of memory access when the batch size reaches 131,072, and it continues
to have an advantage in inference speed.
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Figure 7: Inference time and memory access of Transformer, MoE and UltraMem. We ensured that
three models have the same computation, and MoE and UltraMem have the same parameters. The
x-axis and y-axis are both plotted on a logarithmic scale. The sequence length is 1 because during
inference, we can only predict one token at a time, and the key/value cache length is 2048. The modes
run on the A100-SXM.

C MEGATRON SUPPORT FOR TRAINING EFFICIENCY

As memory table scales towards billions even trillions of parameters, model parallelism becomes
essential to distribute model parameters and optimizer states across multiple devices to ensure they
fit into device memory and are trainable within a reasonable time frame. We leverages Megatron’s
(Shoeybi et al., 2019; Narayanan et al., 2021) 3D parallelism (pipeline parallelism, data parallelism,
and tensor parallelism) for training. However, several parallelism modifications are required to
support the memory table effectively. Because pipeline parallelism cannot address scenarios where a
single layer’s parameters exceed the memory capacity of a single device, and tensor parallelism is
typically limited to a relatively small group of GPUs, making it insufficient to meet the memory table’s
memory requirements. Consequently, we propose sharding the memory table across a combination of
data parallel and tensor parallel groups or its subgroups, to ensure efficient distribution and scalability.

The memory table can be partitioned either number-wise or dimension-wise. The entire process of
number-wise and dimension-wise partitioning, along with their communication volume analysis and
guidance on how to choose the appropriate partitioning method, is detailed in Appendix D. In our
structural improvements, halving v dim can simultaneously reduce the communication overhead for
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(a) Number-wise partitioning (b) Dimension-wise partitioning

Figure 8: Process of Number-wise partitioning and Dimension-wise-partitioning. The weighted sum
pooling step is omitted in the diagram.

both number-wise and dimension-wise partitioning. However, increasing top-m will proportionally
increase the communication overhead. Additionally, Implicit Value Expansion, due to the increase in
the size of values after weighted sum pooling, will further impact the communication volume for
dimension-wise partitioning.

To further augment performance, several key modifications have been implemented:

Fused Lookup-Reduce Operator: This newly introduced operator accelerates computations and
reduces memory usage by combining the lookup and weighted sum pooling operations into a single,
more efficient step.

Asynchronous Execution Strategy: Recognizing the benefits of cross-layer utilization of the memory
layer, we have adopted an asynchronous execution strategy. This strategic choice allows for the
concurrent processing of memory calculations alongside dense network operations, substantially
enhancing the overall system performance.

These enhancements demonstrate the efficacy of our parallelism strategy within the Megatron
framework, paving the way for more efficient training of large-scale models.

D NUMBER-WISE AND DIMENSION-WISE PARTITION DETAILS

Figure 8 shows the process of number-wise and dimension-wise partition. For number-wise partition-
ing, we first perform an all-to-all on indices to distribute them to the corresponding devices. After
the lookup operation, the results are sent back to the original devices, then do weighted sum pooling.
For dimension-wise partitioning, we need to perform an all-gather operation on indices to obtain all
indices across devices. The lookup operation is then performed, dimension-wise partitioning allows
the results to be sent back to each device after completing the weighted sum pooling.
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Figure 9: Relationship between P and v dim for communication volume of number-wise / dimension-
wise equals 1, the shaded area is number-wise / dimension-wise greater than 1

Assuming the memory table is distributed across P processors, the communication volume can be
described as follows:

Number-wise Partitioning Communication Volume (not considering indices deduplication):

• All-to-all transmission of indices: sizeof(int)× bs× topm× (P − 1)/P

• All-to-all transmission of embeddings after lookup: sizeof(bfloat16) × bs × topm ×
v dim× (P − 1)/P

Dimension-wise Partitioning Communication Volume:

• AllGather indices: sizeof(int)× bs× topm× (P − 1)

• AllGather scores: sizeof(bfloat16)× bs× topm× (P − 1)

• All-to-all transmission of embeddings post-lookup reduction: sizeof(bfloat16) × bs ×
v dim× (P − 1)/P

Here v dim is the value dimension, bs is the batch size times sequence length. Figure 9 shows the
relationship between P and v dim for communication volume of these two partitioning methods,
helping us choose the appropriate partitioning method under a fixed configuration.
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E EXPERIMENT SETTING

Table 4 displays common hyper-parameter
settings for all experiments. “LR” stands
for Learning Rate, corresponding to the val-
ues 6e-4, 2.5e-4, 2e-4, and 1.2e-4 for dense
models with sizes 151M, 680M, 1.6B, and
6.5B, respectively (Brown, 2020). Regard-
ing the insertion of UltraMem and PKM, for
UltraMem-151M, it’s 3:5/6:8/9:11, where 3:5
indicates that UltraMem input is taken from
layer 3 and inserted back into the output of
layer 5, and so on. For UltraMem-680M, it’s
3:7/8:12/13:17/18:22. For UltraMem-1.6B,
it’s 3:7/8:12/13:17/18:22/23:27/28:32. For
PKM-151M, it’s 6:6. For PKM-680M, it’s
12:12. For PKM-1.6B, it’s 16:16. The set-
tings for UltraMem and MoE models align
with their dense counterparts based on dense
parameter size. Table 6 shows the model pa-
rameter setting used in scaling experiments.
What’s more, the common setting for Ultra-
Mem is shown in Table 5.

Configuration Key Value

Weight decay 0.1
β1 0.9
β2 0.95
LR 6e-4/2.5e-4/2e-4/1.2e-4
LR end ratio 0.1
LR schedule cosine
LR warmup ratio 0.01
Dropout 0.1
Batch size 2048
Sequence length 2048
Training step 238418

Table 4: Training hyper-parameters

Configuration Key Value

Tucker rank r 2
Multi-core scoring h 2
Virtual memory expansion E 4
Aux loss weight α 0.001
Aux loss margin τ 0.15

Table 5: Common UltraMem configuration

Evaludation datasets. We use 10 benchmarks to evaluate all kind of models.

1. Knowledge: Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2020),
TriviaQA (Joshi et al., 2017), Graduate-Level Google-Proof Q&A Benchmark (GPQA) (Rein
et al., 2023), AI2 Reasoning Challenge (ARC) (Clark et al., 2018).

2. Reasoning: BIG-Bench Hard (BBH) (Suzgun et al., 2022), Boolean Questions
(BoolQ) (Clark et al., 2019), HellaSwag (Hella) (Zellers et al., 2019), WinoGrande
(Wino) (Sakaguchi et al., 2021).

3. Reading comprehension: Discrete Reasoning Over Paragraphs (DROP) (Dua et al., 2019).
4. Comprehensive ability: AGIEval (Zhong et al., 2023)

Model Hidden
Dim

Inner
Dim

Attn
Head

Layer Top-
m

Expert Kdim Knum Mem
Layer

Param
(B)

FLOPs
(G)

Dense-151M 1024 4096 16 12 - - - - - 0.15 0.30
Dense-680M 1536 6144 16 24 - - - - - 0.68 1.36
Dense-1.6B 2048 8192 16 32 - - - - - 1.61 3.21
Dense-6.5B 4096 16384 32 32 - - - - - 6.44 12.88
MoE-151M-2in32 1024 2528 16 12 2 32 - - - 2.04 0.35
MoE-680M-2in33 1536 3584 16 24 2 33 - - - 8.95 1.50
MoE-1.6B-2in34 2048 4672 16 32 2 34 - - - 21.36 3.52
PKM-151M-x12 1024 4096 16 12 16x6 - 512 1347 1 2.04 0.35
PKM-680M-x12 1536 6144 16 24 35x8 - 768 2308 1 8.95 1.50
PKM-1.6B-x12 2048 8192 16 32 42x12 - 896 1792 1 21.44 3.52
UltraMem-151M-x10 1024 4096 16 12 16x2 - 256 1024 3 1.71 0.35
UltraMem-151M-x12 1024 4096 16 12 16x2 - 256 1100 3 2.03 0.35
UltraMem-680M-x12 1536 6144 16 24 35x2 - 384 1632 4 8.93 1.49
UltraMem-1.6B-x12 2048 8192 16 32 42x2 - 448 1792 6 21.41 3.50

Table 6: Model parameter setting. Top-m means chosen expert number in MoE, means chosen value
number times head number in PKM and UltraMem. Kdim means the key dimension in PKM and
UltraMem. Knum means the number of keys, Knum2 is the number of values.

F MORE EXPERIMENT RESULTS
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Figure 10: Model training state details. “Top1 Score” refers to the highest score among the retrieved
keys. “UltraMem Output Std” represents the standard deviation of the outputs from the last layer of
UltraMem.

Table 7: All performance metrics of various models

Model Param FLOPs ARC-C↑ GPQA↑ Trivia MMLU↑ BBH BoolQ↑ Hella Wino AGI DROP↑ Avg↑
Model (B) (G) QA↑ cot↑ Swag↑ Grande↑ Eval↑

Dense-151M 0.15 0.30 25.60 19.98 12.67 26.50 22.57 50.15 35.07 52.49 9.03 13.60 26.77
PKM-151M-x12 2.04 0.35 25.94 17.30 24.66 25.69 23.14 53.48 42.25 51.38 9.65 13.10 28.66
MoE-151M-2in32 2.04 0.35 26.96 17.30 33.27 26.58 23.24 55.96 48.44 55.96 9.34 18.57 31.56
UltraMem-151M-x12 2.03 0.35 25.68 19.42 28.97 25.62 22.65 47.74 43.96 50.83 10.00 14.08 28.89

Dense-680M 0.68 1.36 24.06 21.09 27.16 24.64 24.65 46.42 48.83 54.93 9.44 22.97 30.42
PKM-680M-x12 8.95 1.50 25.51 20.65 46.31 25.22 26.98 41.80 57.32 61.72 8.94 25.20 33.97
MoE-680M-2in33 8.95 1.50 25.17 20.54 34.19 24.38 26.63 43.70 62.71 59.98 7.39 26.54 33.13
UltraMem-680M-x12 8.93 1.49 23.72 21.99 55.17 24.97 26.62 48.20 64.15 60.54 8.26 25.14 35.88

Dense-1.6B 1.61 3.21 26.30 21.76 39.65 26.19 26.41 51.50 58.6 61.72 9.22 22.63 34.81
PKM-1.6B-x12 21.13 3.48 26.71 22.99 48.92 24.80 28.98 60.06 65.46 63.93 9.51 27.55 37.89
MoE-1.6B-2in34 21.36 3.52 25.43 21.32 59.56 26.18 29.46 42.78 67.34 63.93 6.63 28.81 37.14
UltraMem-1.6B-x12 21.41 3.50 25.94 24.66 66.38 24.67 30.63 59.8 71.52 66.38 8.77 29.99 40.88

Dense-6.5B 6.44 12.88 28.16 19.98 57.28 27.68 31.14 68.2 69.73 65.9 9.23 33.12 41.04

Table 8: Independent ablation study of model improvements

Train Loss ↓ Valid. Loss ↓

PKM-151M-x10 2.604 2.828
+ rm softmax -0.034 -0.006
+ half vdim+proj -0.027 -0.02
+ share query -0.003 -0.002
+ split big mem -0.003 -0.005
+ query/key LN -0.002 +0.003
+ IVE -0.025 -0.023
+ TDQKR -0.003 -0.007
+ TDQKR + MCS -0.02 -0.009
+ value lr decay -0.017 -0.007
+ query conv -0.005 -0.001
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(b) BBH-cot-3shot accuracy
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Figure 11: The changes in accuracy for all observable evaluation throughout the training.
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