
Under review as a conference paper at ICLR 2024

APPENDICES

A PROOF OF BINDER’S CONVERGENCE TO LOCAL OPTIMAL SOLUTION

BINDER’s algorithm literally solves a combinatorial satisfiability task, a known NP-complete prob-
lem. By computing gradient and then utilizing the gradient in deciding bit flipping probability, it
works as a gradient descent scheme in the combinatorial space to minimize the objective function
defined in Equation 4. However, note that the bit flipping probability decreases gradually as the
number of violated constraints decreases with each subsequent epochs. This gives BINDER’s learn-
ing algorithm a flavor of local search with simulated annealing. The following theorems and lemmas
are provided to establish the claim of BINDER’s local optimality.

Lemma 1. When bias bℓ = 0, for any word a, if the j’th bit in the binary representation vector a is
updated by BINDER’s probabilistic flipping (keeping the remaining bits the same), the loss function
value decreases in the successive iteration.

Proof. Let S be the set of positive data instances (a, b) where the first entity is the given a. θ is a
d-dimensional embedding vector of a and L(θ) is the component of loss function associated with
a. Suppose in an iteration, we probabilistically flip bit j of θ. To compute this probability, BINDER
computes the ∆aj

LossP , which is L(θ)−L(θ′j) , where θ′j is the same as θ except that the bit value
of j’th position is different. (Recall that we define our gradient to be positive when flipping bit j
improves our model, thus decreasing the loss function.) Based on Eq. 5, this gradient value is +1
only for the case when a constraint aj → bj is violated (where b is the other element in a training
pair) i.e. aj = 0, but bj = 1 (see the 3rd column of Table II). Using Line 7 of Algorithm 2 for
bℓ = 0, this yields a positive flip probability (tanh is asymmetric function), and with the flip the
loss function value decreases by Kα (through Eq. 2), where 0 ≤ K ≤ |S|; here K is the number
of pairs in S that violate implication constraint with a in the left side. For the other three choices
of aj and bj , (0, 0), (1, 0), (1, 1), the contribution to gradient value is 0 or −1, yielding zero flip
probability. In all scenarios, the loss value decreases in the successive iteration.

Lemma 2. When bias bℓ = 0, for any word b, if the j’th bit in the binary representation vector
of b is updated by BINDER’s probabilistic flipping (keeping the remaining bits the same), the loss
function value decreases in the successive iteration.

Proof. The proof is identical to the proof of Lemma 1, except that we use gradient value in Eq.
6 instead of Eq. 5. In this case also when only one position of b’s embedding vector is flipped
probabilistically, the loss function value decreases.

Lemma 3. When bias bℓ = 0, given a collection of negative data instances, say, (a′, b′), if the j’th
bit in the vectors of a′ or b′ independently (not simultaneously) is updated by BINDER’s probabilistic
flipping (keeping the remaining bits same), the loss function value decreases or remains the same in
the successive iteration.

Proof. The proof is identical to proof of Lemma 1, except that we use gradient value in Eq. 7 (or
Eq. 9) for the case of a′, and gradient value of Eq. 8 (or Eq. 10) for b′, and the loss function value
decreases through Eq. 3.

These proofs also apply if rℓα ≥ bℓ > 0 and rℓβ ≥ bℓ > 0. In that case, we can flip a bit with zero
gradient. Such flips do not immediately increase or decrease the loss function; however, they can
allow BINDER to improve from a weak local optimum. In our experiments, rℓα and rℓβ are much
larger than bℓ, so our algorithm prioritizes actual improvements over zero-gradient steps.

Theorem 4. When bias bl = 0, if Line 8 of Algorithm 2 is executed sequentially for each index
value j for each of the entities, BINDER reaches a local optimal solution considering a 1-hamming
distance neighborhood.

Proof. Using earlier Lemmas, each bit flipping in any embedding vector of any of the entities, either
decreases the loss function or keeps it the same. When Line 8 of Algorithm 2 is executed sequentially
for each index j (only one change in one iteration) for each of the entities, the loss function value

14

Under review as a conference paper at ICLR 2024

monotonically decreases in each successive iteration, At a local optimal point, none of the single bit
flip improves the value of loss function. Now, if the bias bl = 0, for each entity, the probability of
bit-flipping for each index is computed to be 0 (by Line 7 in Algorithm 2), embedding of none of the
entities changes any further and BINDER reaches a local optimal solution considering a 1-hamming
distance neighborhood. In other words, for an entity a, considering that all the entity embedding is
fixed, if we change any single bit of a’s embedding, the original embedding of a is guaranteed to be
at least as good as the changed embedding.

When we change only one bit at a time keeping everything else the same (as in the proof), our opti-
mization algorithm becomes a greedy hill climbing algorithm. However, this would make BINDER
extremely slow to converge, and it may get stuck in a bad local optimal solution. Thus, we allow
all bits to change simultaneously, so it behaves like gradient descent: Suppose θ is an embedding
vector of an entity and L(θ) is the component of loss function associated with this entity. For
minimizing L(θ), at each iteration, a hill climbing method would adjust a single element in θ to
decrease L(θ); on the other hand, gradient descent will adjust all values in θ in each iteration by
using θnew = θold−α∆θL(θ

old). During early iterations, BINDER works like gradient descent, but
as iteration progresses, it behaves more like a hill climbing method as gradient values for most bit
positions decrease, causing fewer bits to flip.

B PSEUDO-CODE

Pseudo-code of BINDER is shown in Algorithm 2. We initialize the embedding matrix with all 0’s.
The algorithm goes for at most T epochs (for loop in Line 4-17), updating bit vectors of each vocab-
ulary word in each iteration by flipping bits with probability based on gradient computed through
Algorithm 1. The balanced-accuracy metric, defined as 1

2

(
TP

TP+FN + TN
TN+FP

)
, is computed at the

end of each epoch and best accuracy is recorded. We exit early if no improvement on validation data
is seen over two consecutive windows of ω epochs, for user-specified ω. The overall computational
complexity is O(ndT (|P |+ |N |)), for n words and d dimensions, which is linear in each variable.

Algorithm 1 Gradient Computation
Require: Zero-one Embedding Matrix B of size n × d initialized with all 0; positive Is-A relation set P =

{(ai, bi)}mi=1; negative set N = {(a′i, b′i)}m
′

i=1; positive and negative sample weights α, β
1: ∆+ ← zero matrix, same size as B
2: ∆− ← zero matrix, same size as B
3: for (a, b) ∈ P do ▷ ∗ is element-wise product
4: ∆+[a, :]← ∆+[a, :] +B[b, :] ∗ (1− 2B[a, :])
5: ∆+[b, :]← ∆+[b, :] + (1−B[a, :]) ∗ (2B[b, :]− 1)
6: end for
7: for (a′, b′) ∈ N do
8: G← B[b′, :] ∗ (1−B[a′, :]) ▷ “good” bit pairs (a vector)
9: if

∑
j Gj = 0 then ▷ false positive, flip something

10: ∆−[a′, :]← ∆−[a′, :] +B[a′, :] ∗B[b′, :]
11: ∆−[b′, :]← ∆−[b′, :] + (1−B[a′, :]) ∗ (1−B[b′, :])
12: else if

∑
j Gj = 1 then ▷ close to being wrong, so protect

13: ∆−[a′, :]← ∆−[a′, :]−G ▷ note only one element of G is 1
14: ∆−[b′, :]← ∆−[b′, :]−G
15: end if
16: end for
17: return ∆ := α∆+ + β∆−

C TRAINING SETUP AND HYPERPARAMETER TUNING

For BINDER, we learn a d-bit array for each concept in the hierarchy. For all tasks, we train BINDER
for 10000 epochs, where each epoch considers the full batch for training. We tune our hyper-
parameters: dimension d, positive and negative sample weights α, β, negative sample multiplier n−,
and the learning rate and bias rℓ, bℓ manually by running separate experiments for each dataset. We

15

Under review as a conference paper at ICLR 2024

Algorithm 2 Training Algorithm
Require: Word list W = (w1, . . . , wn); Dimension d; Positive training set P = {(ai, bi)}mi=1; validation sets

V P, V N ; gradient weights α, β, learning params rℓ, bℓ, negative sample multiplier n− (must be even);
maximum epochs T , early stop width ω

1: B ← zero matrix of size |W | × d
2: Acc← empty list
3: (BestEmbedding,BestAcc)← (B, 0)
4: for t = 1 to T do
5: N ← negative samples (Section 2.3)
6: ∆← gradient from Algorithm 1
7: X ← max

{
0, 1

2
tanh(2(rℓ∆+ bℓ))

}
▷ flip probabilities

8: Flip each bit B[w, j] with (independent) probability X[w, j]
9: acc← BalancedAccuracy(Evaluate(B, V P, V N))

10: if acc > BestAcc then
11: (BestEmbedding,BestAcc)← (B, acc)
12: end if
13: Append acc to list Acc
14: if mean(last 2ω elements of Acc) ≥ mean(last ω elements of Acc) then
15: Exit Loop ▷ Early Exit Criterion if no improvement
16: end if
17: end for
18: return BestEmbedding

find that the optimal learning rate rℓ and learning bias bℓ are 0.008 and 0.01 respectively for all data
sets and tasks. The learning bias bℓ = 0.01 means that bits whose gradient was exactly neutral had a
1% chance of flipping. We fix β at 10 and tuned α; we always find that α ≤ β gives far too many
false negatives. By compressing the expressiveness of the model, we force the binary embeddings
to make “decisions” about which attributes to merge, thus increasing its predictive power. For
reconstruction task we need more bits to increase the capacity of our model to better reconstruct
training edges. Optimal (bits, α, n−) for reconstruction task on Medical, Music, Shwartz Lex and
Shwartz Random datasets is (50, 30, 32), and for WordNet Nouns dataset it is (80, 15, 8). For
link prediction transitive closure experiment on Medical, Music, Shwartz Lex and Shwartz Random
datasets with transitive closure 0% and 10%: (100, 25000, 12) and for 25% and 50%: (100, 50000,
12). Optimal (bits, α, n−) for link prediction transitive closure task on WordNet Nouns dataset
with all transitive closure configurations (0%, 10%, 25%, 50%) is (120, 25000, 12). We use these
hyper parameters to obtain results of Table 3, 4 and 5. For the competing models, except T-Box,
we exhaustively tuned dimensions d = 5, 10, 20, 50, 100, 200 keeping other hyperparmeters similar
to original papers. Since T-Box requires 2*d dimension for its representation, to be fair with other
models, we tuned T-Box for dimensions d = 2, 5, 10, 20, 50, 100 keeping other hyperparmeters
similar to original paper implementation. All the models were run on a Tesla V100 GPU.

D CASE STUDY

We present a case-study experiment, which will provide the reader a sketch of BINDER’s embedding
results. For this we run our model with 8 bits on the toy lattice from Vendrov et al. (2015). Because
the lattice is very small, it is possible for BINDER to achieve perfect accuracy. Figure 1 shows the
final embedding. Given the embeddings for boy, person, and city, a human can determine that,
according to the model, boy is-a person but not is-a city. In theory, each bit can correspond to
some “attribute” of each object, where all attributes are passed down to hyponyms. This can help to
build an explainable embedding. For instance, the second circle clearly denotes an attribute which
could be named has-life. Sometimes, however, bits are used with different meanings in different
words: the right-most bit is 1 on man, girl, and SanJuan. This is partly because the toy lattice
is very sparse, with only two sub-components of city compared to ten of livingThing, and
adult and child were not included in the lattice, as they are in WordNet.

16

Under review as a conference paper at ICLR 2024

Figure 1: Visual representation of toy dataset results. White circles represent 1 and black circles 0.

Table 6: Edge distribution for all datasets
Edge Counts

Dataset Direct Edge Transitive (Indirect) Edge Full Transitive Closure (Direct + Transitive)

Medical 2616 1692 4308
Music 3920 2608 6528

Shwartz Lex 5566 7940 13506
Shwartz Random 13740 42437 56177
WordNet Nouns 84363 576764 661127

E DATASET STATISTICS

We have explained before that since BINDER does not rely on transitive edges for link prediction,
unlike its competitors, BINDER performance is superior compared to its competitors at 0% transitive
closure. The difference margin with the competitors are larger for large datasets where transitive
edge percentages are significantly higher compared to direct edge percentages, as shown in Table 6
and figure 2. Hence it proves the superiority of BINDER embedding.

F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDY

For an ablation study, we observe the effect on model accuracy on the validation data by removing β
and bℓ separately while keeping other parameters at best value. For Nouns data set on reconstruction
task, setting β = 0 (i.e. ignoring the negative samples) gives accuracy 76% after 500 iterations. If
we set bℓ to 0 then we don’t see any significant effect on accuracy. For the 0% transitive closure pre-
diction task on Nouns data set, when we set β = 0 accuracy saturates at 86% after 800 iterations.If
we set bℓ to 0 then we see accuracy drops by several percentages from the best result.

F.2 JUSTIFICATION OF BALANCED ACCURACY METRIC OVER F1-SCORE

For classification over imbalance data, F1 measure is a good metric; however some argue (and we
agree with them) that balanced accuracy (BA) is actually a better metric, which is defined as the
average of positive class recall+ = TP

TP+FN , and negative class recall− = TN
TN+FP . Balanced ac-

curacy is a better metric than F1-score for imbalanced datasets, because F1-score does not care about
how many true negatives are being classified. F1-score uses precision and recall, which together use
only three entries of the confusion matrix (TP, FP, FN); on the other hand, balanced accuracy uses
all four entries of the confusion matrix. For an example, say a dataset has 1000 negative and 10
positive examples. If the model predicts there are 15 positive (TP = 5, FP = 10), and predicts the
rest as negative (TN = 990, FN = 5), we get Precision = 5

15 ≈ 0.33, and Recall = 5
10 = 0.5

it yields F1 = 0.4. The model does not get much credit for correctly predicting 990 out of 1000

17

Under review as a conference paper at ICLR 2024

Figure 2: Distribution of Direct and Transitive (Indirect) edges for all datasets.

examples as negative. However, the balanced accuracy is 1
2 ∗ (5

10 + 990
1000) = 0.745, which provides

somewhat a more realistic picture.

Additionally, balanced accuracy does not depend on the ratio of positive to negative edges, which is
important because our datasets have different negative edge ratios: Medical has about 1400 entities
and 4300 edges, for a negative ratio of about 450, while the ratio for Nouns is about 9000, and
evaluating the entire negative edge set is impractical. In practice, we chose a 10:1 ratio of negative
to positive test cases, but this choice was arbitrary and made because Nickel & Kiela (2017) used
the same ratio. Balanced accuracy is unaffected by these arbitrary decisions, provided the samples
are large enough to avoid statistical error.

We actually used an F1 measure with the 10:1 ratio, but found it to be very harsh for the competitors.
In the Table below, we show F1-score results for the four transitive link prediction experiments. As
can be seen BINDER’s F1-scores (bold numbers) are significantly better than all other methods on
all datasets. The competitor methods suffer severely due their poor precision. We have reported
F1-score for all our experiments in Tables 7, 8 and 9.

F.3 BINDER: RESULTS FURTHER DISCUSSION

For reconstruction task, OE achieves better performance than BINDER on two smaller datasets
(Edges: Medical: 4.3k, Music: 6.5k) and achieves equal performance on mid-sized datasets (Edges:
Shwartz Lex: 13.5k, Shwartz Random: 56.2k) for fewer dimensions. For smaller datasets, OE
achieves 100% accuracy by using d = 10 and 20, but BINDER achieves 99.9% accuracy by using
50 bits. Based on this observation, one can conclude that BINDER does not show superiority over
OE. However, we argue that BINDER still wins because it uses bits, whereas other methods operates
in real number domain. We need at least 4 bytes (32 bits) to represent a real number. So, the
claim that OE is using fewer dimension is untrue, because OE is using d ≥ 10 (10 × 32 = 320
bits), whereas BINDER is using only d = 50 bits. If BINDER is allowed only 50 bits, for a fair
comparison other methods should be allowed [50/32] = 2 dimensions. From our experiments,

18

Under review as a conference paper at ICLR 2024

Table 7: Reconstruction Results F1-score(%) (dim)
Medical Music Shwartz Shwartz WordNet

Lex Random Nouns
Model entities = 1.4k entities = 1k entities = 5.8k entities = 13.2k entities = 82k

edges = 4.3k edges = 6.5k edges = 13.5k edges = 56.2k edges = 743k

OE 100 (20) 100 (20) 100 (20) 100 (50) 97.5 (200)
Poincaré 61.0 (100) 45.0 (50) 40.1 (10) 28.6 (100) 97.2 (50)

HEC 87.5 (100) 73.2 (100) 97.7 (20) 88.6 (10) 91.3 (100)
T-Box 100 (25) 100 (50) 100 (25) 100 (50) 99.9 (50)

BINDER 99.9 (50) 99.9 (50) 100 (50)* 100 (50)* 99.9 (80)*
*For Shwartz Lex and Random dataset, BINDER dimension is higher compared to OE but considering space

complexity (1 bit vs 4 bytes) for each dimension we conclude BINDER as the wining model.

Table 8: Link Prediction (Transitive Closure) Results F1-score(%) (dim)
Medical Music Shwartz Shwartz Nouns

Model Lex Random

Transitive Closure 0%

OE 83.1 (10) 74.8 (10) 46.7 (10) 42.1(50) 48.9 (20)
Poincaré 44.0 (100) 27.5 (50) 28.8 (5) 31.9 (5) 33.1(200)

HEC 58.3 (100) 38.2 (20) 41.2 (50) 32.3 (5) 39.6 (200)
T-Box 29.8 (50) 29.5 (50) 25.5 (100) 22.8 (50) 25.7 (100)

BINDER 96.6 (100) 87.8 (100) 98.4 (100) 97.5 (100) 91.7 (120)
Transitive Closure 10%

OE 87.3 (100) 81.8 (20) 56.7 (5) 51.6 (5) 62.1 (5)
Poincaré 55.2 (50) 30.0 (10) 22.6 (5) 27.8 (200) 35.6 (10)

HEC 71.5 (50) 51.6 (50) 81.1 (200) 66.8 (50) 87.2 (200)
T-Box 38.7 (100) 35.2 (100) 28.3 (100) 28.5 (100) 35.6 (100)

BINDER 99.4 (100) 83.9 (100) 100 (100) 99.9 (100) 99.2 (120)
Transitive Closure 25%

OE 87.3 (10) 83.2 (20) 55.9 (10) 51.1 (10) 71.2 (10)
Poincaré 54.4 (10) 33.2 (20) 22.7 (20) 23.4 (10) 39.9 (50)

HEC 78.9 (100) 58.4 (5) 85.9 (20) 74.1 (50) 91.2 (200)
T-Box 39.6 (100) 35.4 (100) 28.4 (100) 28.5 (100) 45.6 (100)

BINDER 99.1 (100) 87.0 (100) 100 (100) 99.9 (100) 98.5 (120)
Transitive Closure 50%

OE 92.0 (50) 87.9 (10) 53.3 (5) 61.6 (10) 80.7 (10)
Poincaré 62.1 (50) 32.4 (200) 24.4 (100) 23.6 (20) 43.0 (200)

HEC 87.2 (200) 68.9 (5) 83.1 (50) 77.3 (100) 95.3 (50)
T-Box 48.8 (100) 42.5 (100) 28.1 (100) 28.5 (50) 57.9 (100)

BINDER 99.7 (100) 90.0 (100) 100 (100) 99.9 (100) 99.6 (120)

we observed that even with d = 5 (5 × 32 = 160 bits) and d = 10 (320 bits), OE achieves
99.4% and 98.6% accuracy respectively for Medical and Music, which is poorer than BINDER.
Most importantly, on the largest dataset (Nouns), which has 100 times more edges than the smaller
datasets, BINDER achieves 99.7% accuracy with 100 bits, whereas OE achieves 96.7% accuracy by
using 200 dimensions, or 200× 32 = 6400 bits.

To summarize, OE uses the smallest dimension of all the competitors because it uses real-number
space which is less constrained, whereas hyperbolic space is more constrained, and box embedding
requires two vectors per dimension. Comparing to BINDER, OE actually uses more memory, as OE
uses real space and BINDER uses binary vectors.

19

Under review as a conference paper at ICLR 2024

Table 9: Distribution of BINDER Results F1-score (µ± σ)%
Medical Music Shwartz Shwartz Nouns

Task Lex Random

Recon (100% TC) 99.9± 0.03 99.8± 0.04 99.9± 0.11 99.9± 0.07 99.8± 0.04

Pred (0% TC) 93.9± 2.4 78.2± 5.5 97.7± 0.5 96.9± 0.3 98.1± 0.2
Pred (10% TC) 93.8± 2.5 77.4± 3.7 99.4± 0.3 99.1± 0.1 97.8± 1.1
Pred (25% TC) 94.1± 0.2 79.6± 5.8 99.4± 0.3 99.5± 0.1 97.7± 0.9
Pred (50% TC) 97.1± 0.9 78.4± 6.5 99.8± 0.2 99.6± 0.1 99.4± 0.3

TC = Transitive Closure

F.4 BINDER: MODEL CONVERGENCE RESULTS

We run our models with a large number of iterations to maximize the accuracy. Although the model
attains high accuracy very quickly, it continues to improve steadily for reconstruction task, as shown
in the first graph in Figure 3. The 0% transitive closure prediction task accuracy saturates at around
1000 iterations and then start decreasing, as shown in the second graph in Figure 3.

Noun Reconstruction Validation Acc

Noun Zero Transitive Prediction Validation Acc

Figure 3: Graph of validation Acc score of the two types of Noun experiments, for the first 250
iterations (left) and the last 750 and 1750 (right).

F.5 BINDER: RESOURCE CONSUMPTION RESULTS

One of the main advantages of using binary vectors is their efficiency compared to floating-point
vectors. The algorithms for BINDER are fast since BINDER uses only basic integer arithmetic ex-
cept for the tanh function in the flip probability. On Nouns dataset the Reconstruction task takes
22m 50s for 1000 iterations and the 0% transitive closure task takes 2m 09s for 2000 iterations.
Furthermore, the final representation of the concepts using BINDER are binary vectors; the storage
required for n words and d dimensions is dn

8 bytes instead of Order Embedding’s 4dn bytes if 32-
bit floating point values are used. We want to add the following table where we consider WordNet
Nouns dataset and calculate the size of final embedding of different models for d=100 in table 10

20

Under review as a conference paper at ICLR 2024

Table 10: Space complexity for all models
Model Storage

OE 34.2 MB
Hyperbolic methods 34.2 MB

T-Box 67.0 MB
BINDER 2.36 MB

G FURTHER JUSTIFICATION OF BINDER’S ALGORITHM

G.1 COMPARISON OF BINDER WITH SPARSE ADJACENCY LIST (SAL)

Sparse adjacency list (SAL) does not provide fixed-size vector embedding of entities, but BINDER’s
bit-vector representation provides that. SAL does not capture order between entities, but BINDER’s
bit-vector provides that. SAL only captures the edges of the relation, but BINDER’s bit-vector is
an order-embedding, which represents nodes as vectors which are transferable to other subsequent
knowledge discovery task. For the Noun dataset, which has 743K edges and 82K vertices, BINDER’s
bit vector will take 82 kB · 100/8 = 1025 kB, whereas a sparse adjacency list will take at least
(743k + 82k) ∗ 4 = 3300 Kbytes (considering 4 bytes for integer).

G.2 COMPARISON OF BINDER’S RANDOMIZED ALGORITHM WITH DETERMINISTIC
ALGORITHM FOR GENERATING BIT-VECTOR EMBEDDINGS

A deterministic algorithm offers no learning, it is simply memorizing the edges. It can only be used
when an entire minimal set of edges of the DAG is given. But, one cannot expect that all the edges
between entity pairs are already known/given in the training data. If that is the case, no learning or
embedding is needed and a fixed deterministic method can be used.

The advantage of BINDER is that it has learning capability. It assign bit-vectors so that it can infer
missing edges. In other words, if we remove some direct edges in the training data, BINDER will
still be able to embed entities reasonably. We performed link prediction experiments to prove this
claim on Mammals and Nouns dataset; this setup is identical to that of Vendrov et al. (2015). For
Mammals dataset (6.5k edges) and Nouns dataset (743k edges) we randomly take out 300 and 3500
edges2 respectively, which may or may not be direct edges, to construct positive test data. We create
negative test data by corrupting positive pairs. Results from this experiment are reported in table 11.
For Nouns, Vendrov et al. (2015) reported an accuracy of 90.6% in their work, which is worse than
BINDER’s 93.9%.

Table 11: Results of Vendrov et al. (2015) style Link Prediction experiment
Model Dataset

Mammals Nouns
Acc(%) F1-score(%) Acc(%) F1-score(%)

BINDER 94.2± 1.1 94.1± 1.1 93.9± 0.4 93.6± 0.5

2Vendrov et al. (2015) removed 4000 edges from their Nouns dataset. However, they appear to have used
a different version of WordNet Nouns with about 838,000 edges, and so we remove fewer edges to maintain
approximate proportion.

21

