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Figure 1: We introduce State Guidance and Image Guidance — two novel sampling methods for
T2V diffusion models that enhance their generative capabilities: A) Enable generation of dynamic
video scenes; B) Enable zero-shot generation conditioned on the input image (I2V); C) Enable
zero-shot generation conditioned on the first and last frames (II2V). The results are generated using

VideoCrafter2 [Chen et al (20244a)).

ABSTRACT

Current text-to-video (T2V) models have made significant progress in generating
high-quality video. However, these models are limited when it comes to generating
dynamic video scenes where the description can vary dramatically from frame to
frame. Changing the colour, shape, position and state of objects in the scene is
a challenge that current video models cannot handle. In addition, the lack of an
inexpensive image-based conditioning mechanism limits their creative application.
To address these challenges and extend the applicability of T2V models, we pro-
pose two innovative approaches: State Guidance and Image Guidance. State
Guidance uses advanced guidance mechanisms to control motion dynamics and
scene transformation smoothness by navigating the diffusion process between a
state triplet (initial state, transition state, final state). This mechanism enables the
generation of dynamic video scenes (Dynamic Scene T2V) and allows to control
the speed and expressiveness of the scene transformation by introducing temporal
dynamics through a guidance weighting schedule over video frames. Image Guid-
ance enables Zero-Shot Image-to-Video generation (Zero-Shot I12V) by injecting
reference image noise predictions into the initial diffusion steps. Furthermore, the
combination of State Guidance and Image Guidance allows zero-shot transitions
between two input reference frames of a video (Zero-Shot I12V). Finally, we intro-
duce the novel Dynamic Scene Benchmark to evaluate the ability of the models to
generate dynamic video scenes. Extensive experiments show that State Guidance
and Image Guidance successfully address the aforementioned challenges and
significantly improve the generation capabilities of existing T2V architectures.
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1 INTRODUCTION

Text-to-Video (T2V) generation is a rapidly growing area of computer graphics that aims to generate
photorealistic videos from input text prompt. These generated videos have tremendous potential to
revolutionize video content creation, from personalized short videos to CGI effects and the movie
industry.

Despite the rapid advancements in T2V models, significant room for improvement remains. Current
T2V generation techniques are primarily limited to synthesizing simple scenes and often lack visual
details and dynamic motion Zeng et al.|(2023)); Qing et al.| (2023)); |Yuan et al.| (2024)). These models
particularly struggle with videos that require distinctly different textual descriptions for the first and
last frames, especially in dynamic scenes (see Figure [2). We identify two main reasons for this
limitation. First, pre-trained T2V models are rarely trained extensively on dynamic scenes due to
their scarcity in training datasets [Bain et al.| (2021)); [Chen et al.| (2024b). Second, major part of T2V
models use the text conditioning mechanism inherited from T2I models [Singer et al.| (2022)); [Ho et al/|
(2022); Blattmann et al.| (2023b) that conditions each frame on a uniform text prompt intended to
describe the entire video sequence. As a result, frames lack variability and uniqueness. Moreover,
standard T2V models do not typically support image conditioning, limiting their general applicability.
Implementing image conditioning often requires developing a separate, resource-intensive model
without offering a universal solution [Xing et al.| (2023)); [Blattmann et al.| (2023a).
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Figure 2: Contemporary T2V models fail to generate videos with scene progression over time ignoring
state dynamics described in the text prompt. State Guidance enables dynamic scene generation.
Models from top to bottom: Gen-2 [RunwayML) (2024), Pika[Labs| (2024)), LaVie Wang et al| (2023),
VideoCrafter2 |Chen et al.|(20244al), VC2 + SG denote VideoCrafter2 with State Guidance inference
approach.

To tackle the stated above problems, we propose two novel approaches - State Guidance and Image
Guidance aimed to extend possibilities of stantard T2V models in a training-free manner. Both
methods are built upon a modified diffusion sampling process via the guidance mechanism. State
Guidance provides an alternative view on the T2V model text conditioning. It defines a video scene
as a trajectory that has a start point - the initial state, an end point - the final state, and a trajectory of
motion - the fransition state. As a result, a video scene is described by a state triplet (initial state,
transition state, final state). During each diffusion step, State Guidance makes step in direction
of each state simultaneously with different strengths for each frame. Scheduling State Guidance
strengths across video frame dimension allows to control video scene dynamic so that first frame
corresponds to initial state, last frame corresponds to final state, and intermediate frames smoothly
transition between them. The proposed inference scheme enables T2V models to generate dynamic
scenes (see Figure[TJA and Figure[2).
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Image Guidance is a method that enables the injection of image conditions into a pre-trained T2V
model without the need for retraining. This process is accomplished by integrating the denoising
trajectory with the conditional image in the diffusion trajectory. Image Guidance facilitates T2V
models to operate in a zero-shot Image-to-Video (I2V) regime (see Figure[IB). Furthermore, the com-
bination of State Guidance and Image Guidance allows for zero-shot video generation conditioned
on the start frame, end frame, and text prompt (Zero-Shot 112V, see Figure [I[C).

To evaluate the ability of T2V models to generate dynamic video scenes, we introduce a novel
Dynamic Scene Benchmark, consisting of 106 textual descriptions for various dynamic scenes.
Extensive experiments show that State Guidance significantly improves the generation capabilities
of existing T2V architectures, enhancing text understanding and motion quality without a notable
decline in temporal consistency. Additionally, we compare our Zero-Shot I2V and II2V regimes
with training-based approaches, demonstrating that pre-trained T2V models augmented with State
Guidance and Image Guidance can achieve comparable results.

Contributions: 1) We introduce State Guidance, a novel, training-free framework for T2V diffusion
model inference that enables dynamic video scene generation (see Figure[TJA and Figure[2); 2) We
propose Image Guidance, a sampling technique that allows T2V models to condition on images
without the need for retraining, facilitating Zero-Shot 12V generation (refer to Figure [IB); 3) We
present a zero-shot image-to-video (Zero-Shot 112V) pipeline built upon a pre-trained T2V model,
leveraging the combined strengths of State Guidance and Image Guidance methods (refer to
Figure [T[C) 4) We present the Dynamic Scene Benchmark, the first benchmark in the literature
specifically designed to evaluate the ability of T2V models to generate dynamic video scenes.

2 RELATED WORK

Text-to-Video generation. Recent breakthroughs in T2I generation using diffusion models have
significantly advanced T2V generation. Major T2V models extend T2I architectures by leveraging
pre-trained weights and adding temporal layers for frame consistency Blattmann et al.| (2023b); |Guo
et al.| (2023); |Girdhar et al.| (2023); |Qing et al.|(2023)); [Zeng et al.|(2023). They typically integrate
temporal convolutional and attention layers into the 2D UNet of a Stable Diffusion model Rombach
et al.[(2022)), generating in the latent space of a pre-trained VAE [Esser et al.|(2021)); Rombach et al.
(2022)). While this approach enhances training efficiency and reduces costs, it restricts scene variation
by conditioning each frame on a single prompt. Consequently, standard T2V models struggle to
produce video scenes with significant frame-by-frame variability. Our work introduces an innovative
sampling mechanism for T2V models, enabling dynamic scene generation in pre-trained models
without the need for retraining.

Image-to-Video generation. A natural way to enhance the capabilities and improve the controllability
of the T2V model is through the incorporation of image conditioning. This involves extending the
architecture and training for this new task |[Blattmann et al.| (2023a); |Girdhar et al.| (2023); |Xing
et al.| (2023); Zeng et al.| (2023); [Zhang et al.| (2023)). For example, 12VGen-XL [Zhang et al.
(2023) and DynamiCrafter Xing et al.|(2023) add cross-attention layers for input image conditioning.
EmuVideo|Girdhar et al.| (2023)) and PixelDance Zeng et al.| (2023) modify the 3D U-Net by integrating
first-frame latent features into the input noise. Stable Video Diffusion [Blattmann et al.| (2023a)
replaces text embeddings with CLIP image embeddings and combines a noisy first frame with the 3D
U-Net input. In contrast to prior works, our sampling method allows a pre-trained T2V diffusion
model to perform zero-shot 12V generation without additional optimization or fine-tuning.

Image-Image-to-Video generation. Transient video generation from two images (II2V generation)
is a newly explored task in video diffusion models. PixelDance |[Zeng et al.|(2023) trains a model to
generate videos using the first and last frames with textual instructions. SIENE |Chen et al.| (2023)
employs a random mask model for text-guided scene transitions, while DiffMorpher Zhang et al.
(20244a)) uses LoRA parameter interpolation for smooth semantic shifts. TVG Zhang et al.| (2024b)
builds its [I2V pipeline on the pre-trained 12V model DynamiCrafter Xing et al.|(2023)) model using
Gaussian process regression. In contrast, we demonstrate the feasibility of a zero-shot 112V model on
a T2V framework without architectural changes or fine-tuning.

Text-to-Video benchmarks. A conventional T2V evaluation approach assesses the quality of
generated frames using FVD [Unterthiner et al.| (2019) and IS [Salimans et al.| (2016), while measuring
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text similarity with CLIPSIM [Radford et al.| (2021). However, recent studies indicate that these
metrics have a weak correlation with human ratings |Girdhar et al.| (2023)). To address this, several
papers propose advanced benchmarks to evaluate generation quality |[Liu et al.| (2024bjal)); |[Huang
et al.| (2023); [Wu et al.| (2024)). Notably, EvalCrafter [Liu et al.| (2024a) evaluates videos across
four key parameters: visual quality, text-video alignment, motion quality, and temporal consistency.
VBench|Huang et al.| (2023) evaluates using 16 parameters linked to specific prompts, while FETV |Liu
et al.| (2024b)) introduces automatic metrics like UMT Score and FVD-UMT, correlating better with
user ratings. Despite these advancements, existing benchmarks primarily focus on low-dynamic
video scenes, where the description of a single frame applies to the entire video. To address this
limitation, we propose a new benchmark called the Dynamic Scenes Benchmark, which emphasizes
videos featuring substantial scene progression from frame to frame.

Diffusion guidance. An important feature of Diffusion Models is their ability to customize outputs
without the need for retraining. Diffusion Guidance is a technique that modifies the backward
diffusion trajectory by adjusting the outputs of the denoising model. Classifier guidance |Dhariwal
& Nichol| (2021)) facilitates class-conditional generation from an unconditional model by utilizing
gradients from a pre-trained classifier during sampling. Classifier-Free Guidance Ho & Salimans
(2021) allows for a balance between sample quality and diversity by combining class-conditional
and unconditional estimations and controlling the weight of their mixture. Moreover, MUSE [Chang
et al.| (2023)) and MDTv2|Gao et al.|(2023) introduce a dynamic guidance scale that changes over
the course of the sampling process, resulting in samples with greater diversity in the early steps and
higher fidelity in the later stages. In this work, we propose a guidance schedule across the frame
dimension of the generated video to manipulate the dynamics of the video effectively and mixing
backward diffusion trajectory with denoising direction to inject image conditioning in the T2V model.

3 METHOD

3.1 BACKGROUND

Diffusion Models. A diffusion model|Ho et al.|(2020); Song et al.[(2020) is a neural network ey that is
trained to denoise a noisy data z; = /20 ++/1 — € point into 2zg a clean data point using a mean
squared error loss £ = E. ¢[||€g(2¢, t, ¢) — €||3], where ¢ is diffusion time step, ¢ denotes conditioning,
e ~ N(0,1) is a noise added to a data point, {c;}7= denote a noise scales schedule. Trained
denoising network €y enables an Markov chain transitions ¢(z;—1|z;) between diffusion time steps
called generative process, or the backward diffusion process. Iterative applying backward diffusion
transitions allows to sampling zy from pure noise zr ~ A(0, I). Diffusion model is connected with
noise-conditioned score network |Song & Ermon|(2019)) s that is trained to estimate gradients of
the data distribution s¢(2¢,t) &~ V., logq(z). It can be shown that eg(z¢,t) = —v/1 — 89 (24, ).
Therefore, trained eg(z¢, t) provides access to a estimation of score function.

T2V architecture limitation. T2V models aim to model the conditional data distribution p (z|p.).
This allows for the generation of a coherent video sequence z = {z/ }f;l, where 27 is video frame
(or its VAE latent|Rombach et al.|(2022)) given a conditional text prompt p..

In this paper, we identify a key limitation in modern T2V models: their inability to generate videos
with dynamically changing scenes. Specifically, these models struggle to produce video scenes,
where the description of the first frame 2! and the last frame 2" differ significantly. For example,
the prompt "A young woman turns into an elderly grandmother" should result in the initial frames
depicting "A young woman" and the final frames showing "An elderly grandmother"”. However, as
illustrated in Figure@ both commercial models like Gen-2 RunwayML|(2024) and Pika |Labs|(2024),
as well as open-source models like LaVie [Wang et al.|(2023)) and VideoCrafter2 |Chen et al.|(2024a)),
uniformly misinterpret this prompt, rendering all frames as "An elderly grandmother". We attribute
this limitation to two main factors: (1) Training Data: Current T2V models are trained on datasets
predominantly composed of static video scenes|Bain et al.|(2021); (Chen et al.|(2024b). (2) Model
Architecture: Many contemporary T2V models [Singer et al.| (2022); |Ho et al.| (2022)); |Blattmann
et al.| (2023b) rely heavily on spatial cross-attention between text and latent features for text-guided
generation. This method imposes a strong prior, resulting in all frames of the generated video sharing
the same description.
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In this section, we present a pioneering T2V model inference approach, termed State Guidance,
which significantly improves the model’s capability to generate dynamic video scenes (see Figure[2).
Additionally, we introduce Image Guidance. When combined with State Guidance, these methods
empower the T2V model to achieve zero-shot I2V and zero-shot 112V generation.

3.2 STATE GUIDANCE

To address the aforementioned problem, we introduce State Guidance - a novel sampling approach
for T2V models that requires no architectural modifications or fine-tuning. First, we define a dynamic
video scene as a trajectory with an initial state, a transition state, and a final state. The state
triplet (initial state, transition state, final state) is represented by three prompts (p;s, pts, Pfs), €ach
corresponding to one state. This triplet can be derived from the original prompt p. through manual
rewriting or automatic generation via LLMs (see Appendix [A.4). Second, we adapt the sampling
model from p (z|p.) to p (2|(pis, Pts, Dfs)). allowing different impacts of (p;s, prs, prs) on each
frame, using the score-based formulation of a diffusion model:

V. 1og p (2| (Piss Pess Prs)) = Vo (log p (2¢|pis) +1og p (2¢|pes) +log p (2¢]pys)) =

(1)

Vz Ing (Zt|pis) + Vz 1ng (Zt|pts) + Vz logp (Zt |pfs)
The equation above demonstrates that if we have a diffusion model that approximates V. log p (z¢|pc),
we can also approximate V log p (2¢|(pss, Pts; Pfs)). To introduce fine-grained control to either
encourage or discourage the model to consider the conditioning information from each element of the
state triplet (p;s, Dts, D fs> in relation to each video frame f, we scale each component of the equation

by the frame-wise hyperparameters ’yi);, *y{( s *y}csz

Viogp! (20/(pis: prs: prs)) = 7,V ogp (zlpis) + 4V log pf (zelpis) + 71,V log pf (zlpys)
2

By reverting to the definition of a diffusion model through the noise prediction network ey and
integrating Equation 2] with Classifier-Free Guidance Ho & Salimans| (2021)), we arrive at the final
formulation of State Guidance:

&0 (20, (Piss Drss Dps)) = (W + 1) - & (21, (Dis, Prss Prs)) — w - € (20, D)

(3)
69 (zta <pi87pt5apfs>) = %fs : Eg(ztvpis) + ’Yg; . €£(Ztapts) + ’V}CS : eg(ztapfs)

Varying the values of 7;’;, *ytfs, 7}; across the dimension of video frames f facilitates smooth transi-

tions between states in the generated dynamic video scenes. In our experiments, we employ Partial
Linear and Negative Linear schedules for the prompt triplet (p;s, prs, pys), as detailed in Table

Guidance interval We observe that in some cases State Guidance can generate dynamic video
scenes with completely unrelated initial and final states (see Figure [3]A). We solve this problem
by exploiting the fact that diffusion models generate a global scene details at early stages. Thus,
we perform first denoising iterations ¢ > & without State Guidance by conditioning only on p;4

Table 1: Guidance schedule description.

Schedule Frame index %fs 7}05 %fs

Partial lincar ; E %%} fnear fr?)m Hed linear fr(())m Oto1l 1= %fs o ’}/J{S
et 5] freion2i00 inerion 1100y
Partial quadr. jz E %71%] quadr. fr(())m o0 quadr. ﬁgm 0to 1 1—v) - ’Y}cs
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(’y{; =1,v,=0, 'yjfs = 0). Then, at ¢ < &, we turn on State Guidance, and the guide video frames
to the predefined states. Figure[3B shows that it allows to synchronize initial and final state scenes.

"The big storm stops and the sun comes

through the clouds"
b’ A

. A\
B) Guidance interval, £ = 0.95

Figure 3: State Guidance may lead to video scenes that combine two poorly related videos (A). To
resolve this issue, we turn off guidance during first steps (B).

3.3 IMAGE GUIDANCE

Standard pre-trained T2V do not support image conditions. To address this issue, we introduce
Image Guidance that injects image conditions %. into pre-trained T2V model convert sampling
model from p (z|p.) to p (2[pe, i.). To do so, similar to Section[3.2] we use a score-based formulation
of a diffusion model:

1/at~ic—zf

1—O[t

Vlogp (z|pe,ic) = V(logp (z¢|pe) +logp (2¢]ic)) = nV logp (z¢]pe) +(1—n) “)

Where 7 is a parameter that controls image guidance strength that we set equal to 0.7. By reverting to
the definition of a diffusion model through the noise prediction network €y Image Guidance takes
form:

I _ i
(el pesic) = coleupe) + (1 =) € ie) = - coleupe) + (1= ) T2 9)

Consequently, by mixing a denoising direction that from ztf to i, with denoising network prediction
€o(z:), we can induce image conditioning into backward diffusion process.

Zero-Shot 12V Generation. To facilitate Zero-Shot 12V Generation using T2V models, we modify
the backward diffusion process as follows:

& 2,0.), t>¢

6
eg(ztvpC)a t<€ ( )

gg(ztapm Z.c) = {

During first diffusion timesteps ¢ > &, we form a scene layout that is semantically close to a reference
image . using Image Guidance. During further diffusion timesteps ¢ < &, we generate a temporal
dynamics defined in prompt p. using standard T2V model sampling. We also combine Equation[6]
with Classifier-Free Guidance Ho & Salimans|(2021).

3.4 COMBINING STATE AND IMAGE GUIDANCE

State Guidance (Equation [3) allows to transform a sampling p (z|p.) into p (z|(pis, Pts, Pfs))-
Adding Image Guidance (Equation [5) to this combination allows to obtain p (z|(iss, pts,ifs))
sampling model, where i;, and i ;4 are reference image for the first and the last frame on the video.
In other words, applying combination of State Guidance and Image Guidance to pre-trained T2V
model, enables Zero-Shot Image-Image-to-Video (II2V) Generation:
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& (2, lis, Prosifs)) = (w4 1) - & (20, liis, Prasifs)) — w - € (2, D)

)
) @)
g(ztvpts) + rYJJjS : Eg(ztaptsazfs)

& (24, (iss Prsy i) = V- € (21, Drsy is) + iy - €

Guidance strength schedule. We use quadratic guidance schedule (described in Table[T)). We also

use guidance interval to achieve a better temporal consistency of the scene, during the first ¢ > ¢

diffusion time steps, we set v;, = %, %st =1- %, 7{; =

3.5 DYNAMIC SCENES BENCHMARK

Our literature review has shown that there is a lack of benchmarks to evaluate a dynamic scene
generation for T2V models. To fill this gap, we present Dynamic Scenes Benchmark - a collection
of prompts for dynamic scene generation. We manually collect 106 prompts that describe a video
scene with noticeable scene changes throughout the video. We divide scene changes into two broad
categories: object property changes and object position changes. Object property changes include a
wide variety of possible scenarios: object growth time lapse (plant, animal, human), color change,
human mood change, weather change, etc. Object position change has only two types of changes:
object position change, objects appear/disappear. For each prompt in prompt list we provide Initial
state, Transition state, and End state text descriptions, the example is shown in Table E}

Table 2: Example of samples in Dynamic Scenes Benchmark.

Prompt Initial state Transition state End state
Empty glass fills An empty A glass is being A glass with
with water glass filling with water water
The foggy forest The foggy The forest landscape, The clear and
landscape, the fog lifts forest the fog is lifting and sunny forest
and it’s clear and sunny landscape it’s clear and sunny landscape
A girl stands straight A girl stands A standing girl is A girl stands with
and then raises her straight, raising her hands hands raised up,
hands up, frontal view frontal view up, frontal view frontal view

4 EXPERIMENTS

Implementation details: We evaluate possibilities of State Guidance and Image Guidance, by
combining them with three representative open-source T2V models: VideoCrafter2 |Chen et al.
(20244a) and base LaVie Wang et al.|(2023)), that generate 16-frame videos in 320 x 512 resolution and
CogVideoX-5B |Yang et al.|(2024) generate 49-frame videos in 480 x 720. Code and checkpoints are
taken from their official GitHub repositories: |generation team of Shanghai Al Laboratory. Partner with
OpenGVLab| (2024)), |Center (2024). VideoCrafter2 |Chen et al.| (2024a)), base LaVie Wang et al.
(2023), and CogVideoX-5B |at Tsinghua University.| (2024)) were inferenced with 50 steps DDIM
sampling |[Song et al.| (2020), other models were inferenced with their default parameters. All
generations were performed locally on a single Nvidia A100 80 Gb GPU with frozen random state or
using the available generative models APIL.

Metrics: We quantitatively evaluate generated videos by estimating: Text Similarity — TextSim,
average absolute Optical Flow — OF Score, Temporal consistency — TC, and Image Similarity —
ImSim (used for I2V experiments). We estimate TextSim using UMT Score |Liu et al.|(2024b). This
metric uses Vision-Language Model (VLM) [Li et al.| (2024) and shows superior correlation with
human evaluations |[Liu et al.| (2024b)). OF Score estimates amount of motion in the video and is
calculated by averaging absolute value of optical flow map predicted by RAFT large model |Teed
& Deng|(2020). TC is calculated by averaging CLIP |[Radford et al.| (2021) similarity between the
subsequent frames of the video. ImSim is calculated by averaging CLIP similarity between the
generated video frames and reference image.

Benchmarks: 1) We analyze T2V dynamic video generation capabilities via the Dynamic Scenes
Benchmark defined in Section measuring TextSim, OF Score, and TC. 2) For the 12V evaluation,
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Table 3: Dynamic scene T2V generation quantitative results. SG columns indicates whether State
Guidance inference scheme was used or not. For all models with State Guidance we user Negative
linear guidance schedule and £ = 0.95.

Model SG TextSim1T OF Score T TC, % 1
Gen-2 RunwayML, (2024) X 2.64 1.23 99.3
Pika|Labs (2024) X 258 176 98.9
FreeBloom [Huang et al.| (2024) X 2.63 3.40 92.3
DirecT2V |Hong et al.|(2023) X 2.50 49.41 86.8
LaVieWang et al] (2023) ST 4 e
VideoCrafter2 [Chen et al| 2024) gf; g'gg gg'j
CogVideoX Yang et al.| (2024) ‘); ggi ?%g gg'g
CogVideoX (PE)[Yang et al] (2024) ‘); g'(l)é g'}g gg'g

we manually collected a Custom 12V Benchmark comprising 111 image-prompt pairs from five
open-domain 12V methods (Girdhar et al.[(2023) - 4,|Gong et al.|(2024)) - 20, | Xing et al.| (2023) - 22,
Zeng et al.|(2023)) - 24,Zhang et al.[(2023) - 41). The metrics assessed include TextSim, ImSim, OF
Score, and TC. 3) 12V evaluations were executed using MorphBench|Zhang et al.| (2024a), where we
assessed the fidelity and smoothness of the video output using traditional metrics such as Frechet
Inception Distance (FID) |[Heusel et al.|(2017) and Perceptual Path Length (PPL) Karras et al.| (2020)),
further details of which can be found in the Appendix [A-3]

4.1 DYNAMIC SCENE T2V GENERATION

We compare VideoCrafter2 |(Chen et al.|(2024a)), LaVie Wang et al.|(2023)), CogVideoX |Yang et al.
(2024)), and CogVideoX (PE) [Yang et al. (2024) on the Dynamic Scenes Benchmark both under
standard inference and with State Guidance. CogVideoX (PE) enhances both the original prompt and
state prompt triplets using the CogVideoX prompt enhancer from CogVideoX-5B-Spacel Quantitative
results (Table [3) and user studies (Table[d) show that State Guidance improves the alignment between
generated videos and prompts and enhances video dynamism, with only a negligible decrease in
temporal consistency (TC). This minor reduction is expected, as the TC metric favors static videos.
Qualitative effects of State Guidance are illustrated in Figure[TJA and Figure[2]in the Supplementary
materials. Details on the user study and analysis of State Guidance hyperparameters are provided in
Appendix [A3] Qualitatively, the effect of State Guidance can be seen in the Figure[T]A and Figure 2}

Additionally, we include reference results for two commercial T2V frameworks: Gen-2 RunwayML
(2024) and Pika|Labs| (2024), as well as two models that utilize multiple prompts generated by LLM
to enhance video generation: FreeBloom [Huang et al.| (2024) and DirecT2V Hong et al.| (2023).
Table[3]shows that all these methods exhibit low TextSim, indicating their failure to correctly generate
dynamic video scenes (see Figure[2). While Gen-2 and Pika demonstrate higher TC scores, this
can be attributed to their tendency to produce videos with reduced dynamics, as evidenced by low
OF Scores. In contrast, DirecT2V achieves the highest OF Score, though this is accompanied by
inconsistencies in video output (with a TC score below 87).

Table 4: Dynamic scene T2V generation user study results. v'SG: percentage preferring State
Guidance inference; XSG: percentage preferring standard inference; Equal: percentage rating both
equally. For all models with State Guidance we user Negative linear guidance schedule and £ = 0.95.

Model Text Alignment Dynamism

VSG,% Equal,% XSG,% SG,% Equal,% XSG, %
LaVie[Wang et al.[(2023) 70.6 13.0 16.4 74.3 5.1 20.6
VideoCrafter2 |Chen et al.|{(2024a) 66.7 222 11.1 68.1 14.3 17.6
CogVideoX [Yang et al.|(2024) 42.8 22.6 34.6 41.0 11.1 47.9
CogVideoX (PE)|Yang et al.|(2024) 57.2 17.9 249 50.2 9.2 40.6
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"A panda standing on a surfboard, in the ocean in sunset, 4k" "A lighthouse is beaming over turbulent seas at night" 6
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Figure 4: Illustration of zero-shot 12V outputs with VideoCrafter2 + State Guidance with different £
parameters. Decreasing ¢ increases image similarity and decreases motion.

4.2 ZERO-SHOT I2V

We evaluate our Zero-Shot Image-to-Video (I2V) pipeline, which is built upon the pre-trained T2V
model VideoCrafter2 [Chen et al] (2024a) using Image Guidance. Table [3] presents a quantitative
comparison with another Zero-Shot 12V method, TI2V-Zero (2024) on Custom 12V Bench-
mark described in the beginning of this section. We provide results using Image Guidance with
three hyperparameters, &: 0.98, 0.95, and 0.90. Our findings indicate that our method outperforms
TI2V-Zero in terms of Text Similarity, Image Similarity, and Temporal Consistency (TC). Although
TI2V-Zero achieves a higher Optical Flow (OF) Score, this comes at the cost of lower temporal
consistency, as evidenced by a TC score below 93.

Hyperparameters analysis: By varying £, we can modulate both Image Similarity (ImSim) and
Text Similarity (TextSim). Setting £ = 1.0 allows for generation without image conditioning (T2V),
while decreasing & enhances image similarity and reduces motion in the video (as reflected in the OF
Score). This effect is illustrated in Figure ] and Table[5]

Comparison with I2V: We also include in Table[5]results for I2V models that were specially trained
for this task: 12VGen-XL [Zhang et al.|(2023), SVD [Zhang et al. (2023)), and DynamiCrafter Xing|
(2023). Our zero-shot pipeline demonstrates superior text similarity and comparable temporal
consistency when compared to these training-based methods. However, it shows lower performance
in image similarity and OF Score, which is expected for a zero-shot approach.

Table 5: Quantitative Evaluation of 12V Generation on the Custom 12V Benchmark. In the Mode col-
umn, 12V and I12V-Z represent training-based and zero-shot image-to-video generation, respectively.

Model Mode & TextSim 1 ImSim 7T OF Score T TC, % 1
12VGen-XL |Zhang et al. (2023} - 2.99 0.919 1.86 98.9
SVD [Zhang et al. 2v - 2.66 0.906 4.60 97.9
DynamiCrafter Xing et al.|(2023) - 2.87 0.934 1.95 99.1
TI2V-Zero|Ni et al.|(2024 - 3.39 0.764 20.48 924
R et ol 1024 vz 098 3.49 0.799 1.17 98.8
VC2 + 1IG (Ours) 0.95 345 0.817 0.58 99.1
0.90 3.37 0.831 0.32 99.3

4.3 ZERO-SHOT II2V

We evaluate our Zero-Shot Image-Image-to-Video (II2V) pipeline, which is built upon the pre-
trained T2V model VideoCrafter2 [Chen et al.|(2024al). This pipeline uses the combination of State
Guidance and Image Guidance with £ = 0.5 and a partial quadratic guidance schedule. Table [6]
presents a quantitative comparison of our zero-shot pipeline against other II2V models on the
MorphBench benchmark [Zhang et al| (2024a). This comparison includes training-based models

such as DynamiCrafter Xing et al. (2023), DiffMorpher Zhang et al.|(2024a), and TVG
(2024b), which rely on a pre-trained I2V model in a zero-shot context. Notably, our model operates




Under review as a conference paper at ICLR 2025

without the need for training-based image conditioning, yet achieves robust quantitative results that
surpass previous approaches. Figure 5] showcases comparative examples of the generated results. The
analysis of hyperparameter ¢ selection can be found in Appendix [A.3]

Table 6: Quantitative evaluation of II2V generation on MorphBench. We report FID (]) and PPL ({)
to assess the fidelity and smoothness of the transition videos, respectively, across the Metamorphosis,

Animation, and Overall categories.
Model Metamorphosis Animation Overall
FID| PPL| |FID] PPL| |FID| PPL|
DynamiCrafter Xing et al.|(2023) | 87.32 42.09 | 4331 11.16 | 69.13 33.84
SEINE |Chen et al. 82.03 47.72 | 4825 16.26 | 67.60 39.33
DiffMorpher Zhang et al. (2024a) | 7049  18.19 | 43.15 5.14 | 54.69 21.10

TVG Zhang et al.| (2024b 86.92 35.18 | 4299 1246 | 64.05 29.08
S&IG (Ours) 3546 12.26 | 3144 6.58 | 30.15 10.75

Metamorphosis Animation

M

Dynami i
Crafter

Figure 5: Examples of 12V generations from the MorphBench benchmark for Metamorphosis and
Animation categories. In contrast to other models, our pipeline employs a method that does not
require training-based image conditioning, yet it achieves comparable quality.

5 CONCLUSION

In this paper, we introduced two novel sampling methods for T2V diffusion models: State Guidance
and Image Guidance. These methods enhance the capabilities of pre-trained T2V models without
requiring additional training or architectural modifications. State Guidance enables T2V models
to generate dynamic video scenes, overcoming the limitations imposed by their text conditioning
mechanisms. The efficiency of the proposed solution has been measured on the proposed first in
the literature Dynamic Scenes Benchmark. Meanwhile, Image Guidance incorporates image
conditioning into pre-trained T2V models, allowing them to generate content in a Zero-Shot 12V
mode. The combination of State Guidance and Image Guidance facilitates the generation of
zero-shot transition videos based on two reference images and a text prompt, namely Zero-Shot I12V.

While our approach has yielded significant results, there is substantial potential for further research.
First, we believe the text conditioning mechanism currently employed in most T2V models has
critical shortcomings and should be replaced with more modern architectural techniques. Second,
the framework introduced in State Guidance can be combined with trainable adapters for state
conditioning, which may enhance output video quality and controllability. Finally, the proposed
zero-shot I12V and zero-shot I2V schemes can be integrated with existing training-based methods to
further improve final video quality.

10
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6 ETHICS & REPRODUCIBILITY

The use of T2V foundation models raises several ethical concerns. These models have the potential
for misuse, such as generating misleading or counterfeit content, which could have harmful societal
impacts. Our work relies heavily on two models, VideoCrafter2 (Chen et al.| (2024a) and LaVie Wang
et al.| (2023), making it vulnerable to these risks. Furthermore, the video datasets used to train these
models may contain inappropriate content or biases that the models could inadvertently perpetuate,
resulting in the generation of inappropriate material. In addition, our Custom 12V Benchmark scoring
is based on qualitative results from prior work, which could also be misused. To address these
concerns and promote reproducibility, we will release our source code and benchmarks under a
license that encourages ethical and legal use. Additional information about implementation details,
metrics can be found in the Experiments section and in the Appendix.
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A APPENDIX

A.1 LIMITATIONS

While State Guidance and Image Guidance enhance the pre-trained T2V models by introducing
new features and capabilities without the need for retraining, their generation quality is ultimately
constrained by the original T2V model. This limitation is illustrated in Figure[6} In the first example,
we attempt to generate a video with camera control. However, due to the inherent limitations of
standard T2V models in this area Hu et al.| (2024), State Guidance inference simply inherits this issue:
instead of producing a video with a rotating camera, it results in a video featuring a rotating horse.
The second and third examples highlight challenges that the original model struggles to address,
such as "the sunflower turning into an astronaut" and "the lorry transforming into a robot." Although
State Guidance generates coherent and temporally consistent videos, it often fails to achieve the
transformations exactly as requested. We attribute this to a possible lack of relevant transformations
in the original training samples of the T2V model.

Figure 6: The generation ability of State Guidance is limited by the pre-trained T2V model. Rows: (i)
Single prompt: "the camera rotates around the horse from the side view to the front view", Prompt

triplet: { "horse, side view", "the camera rotates around the horse", "horse, front view"); (ii) Single

non

prompt: "the sunflower turns into an astronaut", Prompt triplet: ( "the sunflower", "the sunflower is

turning into an astronaut", "an astronaut" ); (iii) Single prompt: "the lorry turns into a transformer

robot", Prompt triplet: { "the lorry", "the lorry is turning into a transformer robot", "a transformer
robot"). The provided results are generated using VideoCrafter2 and State Guidance.

Another significant limitation is that State Guidance and its combination with Image Guidance
requires more model inferences during sampling. While classifier-free guidance demands only two
model inferences per diffusion step — one conditional and one unconditional — State Guidance for
dynamic video scene generation and combination of State Guidance and Image Guidance for Zero-
Shot I12V pipeline require four: three for each state and one unconditional for classifier-free guidance.
This increases the inference time and resource consumption. Lastly, while State Guidance and Image
Guidance add new features and capabilities to the pre-trained T2V models, they also introduce
additional hyperparameters, such as the guidance schedule and guidance interval, complicating the
use of T2V models.

A.2 STATE DYNAMICS ANALYSIS

We demonstrate the impact of State Guidance on scene transitions. To achieve this, we calculate the
CLIP similarity between each frame of the video in Figure[7] the original prompt, and each prompt
in the state triplet. As shown in Figure[7] videos generated with standard inference exhibit nearly
constant CLIP similarity across all frames, indicating a lack of state dynamics. In contrast, videos
generated with State Guidance display significant scene progression: the similarity to the first state
decreases throughout the video, while the similarity to the last state increases.
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Figure 7: CLIP similarities between prompt, triplet (initial state, final state, transition state) for
original VideoCrafter2 and VideoCrafter2 with State Guidance (ours). VideoCrafter2 shows nearly
the same text alignments to both prompt and triplet states. However, State Guidance injection shows
gradually increasing/decreasing of final state/initial state text alignment with frame number.

A.3 ADDITIONAL DYNAMIC SCENE T2V GENERATION RESULTS

Hyperparameters analysis. State Guidance introduces additional hyperparameters to T2V model
inference: guidance strength schedule ({'yfs}?:l, {7{8}}’?:17 {7;5}?:1, values across video dimen-
sion f) and guidance interval parameter £. Table [/] shows that higher £ (smaller interval without
guidance) leads to higher text similarity and amount of motion in the video. However, inference
without guidance interval (¢ = 0) may lead to completely unrelated initial and final video scenes
(Figure ). That is why we set £ = 0.95 in dynamic T2V scenes generation. Table[7] also show
that using Negative linear guidance schedule is strictly better compared to Partial linear guidance
schedule.

Table 7: Quantitative results for different guidance schedule and guidance interval parameters .
Guidance schedule & TextSim T OF Score T TC, % 1

1.00 3.19 6.00 97.1
Negative linear 0.95 3.18 3.83 97.4
0.90 3.12 3.31 97.4
0.80 297 2.07 98.0
1.00 291 2.92 98.1
Partial linear 0.95 2.87 2.59 98.1
0.90 2.89 2.35 98.1
0.80 2.81 1.96 98.3

User study details. Users were asked two questions: "Which video better reflects the actions
described in the text description?" and "Which video is more dynamic (has more action and events,
including simultaneous events)?". Each question has three options: Video 1, Video 2, or Equal
(to account for instances where users are unable to prefer one option over the other). For each
side-by-side comparison, between 50 and 67 users participated, with each pair of videos assessed by
at least 5 unique users.

Quantitative results robustness. To demonstrate the statistical robustness of our results in Table [3]
we re-evaluated the metrics in Table 3 for LaVie and VideoCrafter2, with and without State Guidance,
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using five different random seeds (see Table [§). The low standard deviations observed affirm
robustness, and the non-overlapping value intervals further confirm the consistency of our findings.

Table 8: Dynamic scene T2V generation quantitative results robustness illustration. SG columns
indicates whether State Guidance inference scheme was used or not. For all models with State
Guidance we user Negative linear guidance schedule and £ = 0.95.

Model SG TextSim?T  OF Score 1 TC, % 1

) X 2772004 4772052 97.90%0.20
LaVie[Wang et al|(2023) /304005 9.00%0.72 9640+0.10
X 2842000 1972010 98.42%0.04
/ 312:005 370£025 97.30+0.20

VideoCrafter2 |Chen et al.| (2024al)

A.4 STATE TRIPLETS GENERATION

In this section, we outline the process of state triplet generation. This can be accomplished either
manually by the user adjusting the prompt or automatically using a large language model (LLM). Ta-
ble[9]presents a quantitative comparison of VideoCrafter2 with standard inference, and VideoCrafter2
with State Guidance sampling with both manually generated state prompts and those generated by the
GPT-40|Achiam et al.|(2023) model. Additionally, we detail the manual procedures for generating
state prompts and provide instructions for automatic generation using GPT-4o.

Table 9: In addition to the results from Table 3 in the main paper, we provide results for State
Guidance with state triplets automatically generated by GPT4o from original prompt and report
results for FreeBloom and DirecT2V - models that generate prompt for each frame with LLM. It is
important to note that State Guidance achives highest TextSim. Large OF Score for DirecT2V is a
result of low temporal consistency.

Model TextSim 1 OF Score T TC 1
VideoCrafter2 2.87 2.07 98.4
VideoCrafter2 + SG (manual prompts) 3.18 3.83 97.4
VideoCrafter2 + SG (GPT4o prompts) 3.01 5.15 97.2

Manual triplet generation. We describe the process of manually selecting prompts for our Dynamic
Scene Benchmark that describe dynamic changes in video scenes. The primary goal is to capture
evolving actions or transitions, such as objects changing properties (e.g., flowers blooming, ice
melting, or color changing) and changes in position (e.g., a person standing up or a bird flying away).
Prompts fall into two categories: those with an active main object that undergoes a clear evolution
while the background remains relatively static, and those where the background itself changes without
a main object. The key criterion for selection is that the changes must be gradual, allowing for
intermediate states, as opposed to instantaneous transitions that would not provide a smooth evolution
of motion. This distinction ensures that we focus on motion that can be meaningfully visualized over
time.

Automated triplet generation.While the triplet conditions for our experiments were generated
manually to ensure accuracy, we recognize the importance of automation for reproducibility. We have
explored the use of large language models (LLMs) to automate the generation of triplets, specifically
with GPT-40. We begin with serial prompting using the following startup instructions:

Then we use the following prompt to rewrite and consistent linguistic structure in the generated
triplets:

A.5 ADDITIONAL II2V RESULTS
Metric details: To quantitatively assess the quality of intermediate images and the smoothness of

transition video, we use the metrics adopted in TVG |Zhang et al.[(2024b) and incorporate some of
their results.
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Instruction:

Given a text prompt for dynamic video scenes, you must create 3 succinct text descriptions that
describe that text prompt. Before you write each description, you must follow these instructions.
These are of primary importance:

1. Describe an action or event in a dynamic sequence, providing a clear starting state
("initial prompt”), a transition state (“transition prompt”) and a contrasting ending state
("final prompt”).

2. Use language that implies transformation, evolution or change over time.
3. Linguistic structure of each sentence should be simple and similar.

4. Please be straightforward and do not use a narrative style.

non

Use the following output format: ["initial prompt", "transition prompt", "final prompt"]

In-context example:
Input:
1. "Empty glass fills with water";
2. "A sad woman becomes happy, close-up";
3. "Flower blooms from bud to flower";
4. "A graffiti drawing appears on a blank wall";

Output:

1. ["an empty glass", "a glass is being filling with water", "a glass with water"];

2. ["a sad woman, close-up", "A sad woman is becoming happy, close-up", "a happy woman,
close-up"];

3. ["abud", "a flower is blooming", "a flower"];

4. ["a blank wall", "a graffiti drawing appears on a blank wall", "a wall with a graffiti drawing"]

Input texts: [insert list of text prompts here]

Instruction:

Now perform Coreference Resolution on the sentences generated above, replace reflexive
pronouns with their original vocabulary, and eliminate the discourse cohesion. Keep the meaning
the same. Use the same output format.

* Frechet Inception Distance (FID, |) Heusel et al.| (2017)). The FID score is calculated by
comparing the distribution of the input images with that of the generated images. To estimate
the generated image distribution, we randomly select two images from the interpolation
video 10 times and calculate the average FID score. This serves as an indicator of the
accuracy and realism of the intermediate images.

* Perceptual Path Length (PPL, |) |Karras et al.| (2020). We measure the sum of the perceptual
loss|Zhang et al.|(2018]) between consecutive frames in the video. This metric reflects the
smoothness and consistency of transitions throughout the video.

* Temporal consistency (TC, % 1) evaluates whether the generated video frames remain
coherent and consistent with each other. To measure this, we calculate the CLIP Radford
et al.|(2021)) image similarity between each pair of adjacent frames in the generated video
and take the average.

Hyperparameters analysis: To validate the effectiveness of our Zero-Shot 112V method, we per-
formed an ablation study with different guidance interval parameters, with the results presented
in Table[I0] The results show that as the interval parameter increases, the Perceptual Path Length
(PPL) also increases, reaching its peak when both the first and last frames influence the predicted
noise at each diffusion step (¢ = 1.0). This occurs because the transition between the first and last
frames in the generated video becomes abrupt, causing most frames to closely resemble either the
starting or ending frame. Meanwhile, the FID and Temporal Consistency (TC) metrics stabilize
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at an intermediate interval (£ = 0.5), which allows the model to generate a more diverse range of
intermediate frames while maintaining a smooth transition between the first and last frames. We
select this interval value as our primary parameter. Notably, the metrics exhibit similar trends for the
entire DiffBench dataset (overall) and its individual categories (Animation, Metamorphosis).

Table 10: Ablation study. Quantitative results for different guidance interval parameters &, in the
Zero-Shot 112V pipeline S&IG on MorphBench.
Metamorphosis Animation Overall

¢ FID|, PPL| TC,%71 |FID| PPL| TC,%71 |FID| PPL] TC, %1
0.0 | 52.30  30.77 94.02 | 63.89 22.60 95.65 | 4843 2859 9445
0.1 | 4395 2257 95.70 | 43.82 11.84 97.72 | 38,55 1971  96.23
03] 3725 15.80 96.94 | 36.52 8.64 98.33 3292 13.89 9731
0.5 ] 3546 12.26 97.21 | 3144 6.58 98.61 30.15 10.75  97.58
0.7 | 36.14 10.46 97.08 3334 5.56 98.77 | 32.05 09.16 97.53
09 | 41.20 9.89 96.63 3371 4.3 98.69 | 35.61 8.51 97.18
1.0 | 60.58  8.27 96.80 | 45.14  4.00 98.76 | 51.33 7.13 97.32

Comparison with PixelDance: In Figure[8] we show qualitative results of video generation results
conditioned on the first and last video frames. The combination of VideoCrafter2 and State Guidance
allows to achieve visual effects comparable to PixelDance (2023) trained on image-text-
image triplets. Unfortunately, code and weights of PixelDance Zeng et al.|(2023) are not available,
that is why we compare with the generation samples from their project page.

"Half of the face turns into cyborg face, robot eye, titanium skull"

PixelDance

Vi 4r V7 \'78 '/ ir

"The ball |s in fire and furns into a dragon in fire"

VC2 + SG

PixelDance

VC2 + SG

Figure 8: Video generation conditioned on same first and last frames (II2V) by PixelDance|Zeng et al.
(2023)) and VideoCrafter2 Chen et al.| (2024a) + State Guidance (VC2+SG). State Guidance allows
to achieve competitive level of visual effects without training T2V model for I12V taks.

A.6 BROADER IMPACT

The goal of our work is to tackle problem of prompt condition limitations in current video generation
methods. State Guidance updates inference scheme of open source video generation models and
pushes up the quality of their generated samples. Thus, any existing biases in these models, as long as
potential harmful samples are explicitly inherited. Our method enhances quality of video generation,
exhibiting a positive influence on video applications.
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A.7 VIDEO & PROMPT SAMPLES

We attached video samples according to quantative results in Table 3} Table[5] Table[6] and illustration
figures and provide full description of our Dynamic Scenes Benchmark:

Videos from figures. See videos_from_figures/ folder folder videos that were used for all
illustrations in the paper. All subfolders contains video samples to each methods named
accordingly to figure numbers;

Text-to-Video generation. See example_videos_T2V/ folder. All subfolders contains video
samples to each methods named accordingly to Table [3}

Text-to-Video generation for CogvideoX. See example_videos_T2V/ CogvideoX.
Each subfolder corresponds to a generation with the prompt specified in the
folder name. Filenames denote following: cogvideox_5b.mp4 - standard infer-
ence with short prompt, cogvideox_5b_sg.mp4 - State Guidance inference with short
prompts, enhanced_cogvideox_5b.mp4 - standard inference with enhanced prompt, en-
hanced_cogvideox_5b_sg.mp4 - State Guidance inference with enhanced prompts;

Image-to-Video generation. See example_videos_I2V/ folder folder for [I2V generation
examples from Table 3}

Image-Image-to-Video generation. See example_videos_II12V/ folder for 112V generation
examples from Table [6));

Dynamic Scenes Benchmark. We provide manual splitting of each prompt into initial state,
end state, and transition state. See prompt labels and manually prompt splitting pages in
Prompts_T2V.xIsx file;

Prompts to Image-to-Video generation. See 111 prompts & initial frame paths for
Image-to-Video generation quantitative results [5] in Prompts_I2V.xIsx file. In folder
12V _reference_frame we attached initial frames.

Prompts to Image-Image-to-Video generation. See prompts that we use for Image-Image-
to-Video generation quantitative results [5]in Prompts_II2V.xIsx file.
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