
SWAD: Domain Generalization
by Seeking Flat Minima — Appendix

Junbum Cha1† Sanghyuk Chun2∗ Kyungjae Lee3∗

Han-Cheol Cho4 Seunghyun Park4 Yunsung Lee5 Sungrae Park6†

1 Kakao Brain 2 NAVER AI Lab 3 Chung-Ang University
4 NAVER Clova 5 Korea University 6 Upstage AI Research

A Potential Societal Impacts

In this study, we theoretically and empirically demonstrate that domain generalization (DG) is
achievable by seeking flat minima, and propose SWAD to find flat minima. With SWAD, researchers
and developers can make a model robust to domain shift in a real deployment environment, without
relying on a task-dependent prior, a modified objective function, or a specific model architecture.
Accordingly, SWAD has potential positive impacts by developing machines less biased towards
ethical aspects, as well as potential negative impacts, e.g., improving weapon or surveillance systems
under unexpected environment changes.

B Implementation Details

B.1 Hyperparameters of SWAD

The evaluation protocol by Gulrajani and Lopez-Paz [1] is computationally too expensive; it requires
about 4,142 models for every DG algorithm. Hence, we reduce the search space of SWAD for
computational efficiency; batch size and learning rate are set to 32 for each domain and 5e-5,
respectively. We set dropout probability and weight decay to zero. We only search Ns, Ne and r. Ns
and Ne are searched in PACS dataset, and the searched values are used for all experiments, while r is
searched in [1.2, 1.3] depending on dataset. As a result, we use Ns = 3, Ne = 6, and r = 1.2 for
VLCS and r = 1.3 for the others. We initialize our model by ImageNet-pretrained ResNet-50 and
batch normalization statistics are frozen during training. The number of total iterations is 15, 000 for
DomainNet and 5, 000 for others, which are sufficient numbers to be converged. Finally, we slightly
modify the evaluation frequency because it should be set to small enough to detect the moments
that the model is optimized and overfitted. However, too small frequency brings large evaluation
overhead, thus we compromise between exactness and efficiency: 50 for VLCS, 500 for DomainNet,
and 100 for others.

B.2 Hyperparameter search protocol for reproduced results

We evaluate recently proposed methods, SAM [2] and Mixstyle [3], and compare them with previous
results. For a fair comparison, we follow the hyperparameter (HP) search protocol proposed by Gul-
rajani and Lopez-Paz [1], with a modification to reduce computational resources. They searched HP
by training a total of 58,000 models, corresponding to about 4,142 runs for each algorithm. It is too
much computational burden to train 4,142 models whenever evaluate a new algorithm. Therefore,
we re-design the HP search protocol efficiently and effectively. In the HP search protocol of Do-
mainBed [1], training domains and algorithm-specific parameters are included in the HP search space,
∗Equal contribution †Part of work done while at NAVER Clova

Correspondence to: Junbum Cha <junbum.cha@kakaobrain.com>, Sungrae Park <sungrae.park@upstage.ai>

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table 1: Hyperparameter search space comparison. U and list indicate Uniform distribution and random
choice, respectively.

Parameter Default value DomainBed Ours

batch size 32 2U(3,5.5) 32
learning rate 5e-5 10U(-5,-3.5) [1e-5, 3e-5, 5e-5]
ResNet dropout 0 [0.0, 0.1, 0.5] [0.0, 0.1, 0.5]
weight decay 0 10U(-6,-2) [1e-4, 1e-6]

and HP is found for every data split independently by random search. Instead, we do not sample
training domains, use HP found in the first data split to the other splits, search algorithm-specific
HP independently, and conduct grid search on the more effectively designed HP space as shown in
Table 1. Through the proposed protocol, we find HP for an algorithm under only 396 runs. Although
the number of total runs is reduced to about 10% (4, 142 → 396), the results of reproduced ERM
is improved 0.9pp in average (63.3% → 64.2%). It demonstrates both the effectiveness and the
efficiency of our search protocol.

B.3 Algorithm-specific hyperparameters

We search the algorithm-specific hyperparameters independently in PACS dataset, based on the values
suggested from each paper. For Mixstyle [3], we insert Mixstyle block with domain label after the
1st, 2nd, and 3rd residual blocks with α = 0.1 and p = 0.5. We train SAM [2] with ρ = 0.05, and
VAT [4] with ε = 1.0 and α = 1.0. In Π-model [5], wmax = 1 is chosen among various wmax
values such as 1, 10, 100, and 300. We use EMA [6] with decay = 0.99, Mixup [7] with α = 0.2,
and CutMix [8] with α = 1.0 and p = 0.5.

B.4 Pseudo code

Algorithm 1: Stochastic Weight Averaging Densely
Input: initial weight θ0, constant learning rate α, tolerance rate r, optimum patience Ns, overfit

patience Ne, total number of iterations T , training loss E(i)
train, validation loss E(i)

val
Output: averaged weight θSWAD from ts to te

1 ts ← 0 // start iteration for averaging
2 te ← T // end iteration for averaging
3 l← None // loss threshold
4 for i← 1 to T do
5 θi ← θi−1 − α∇E(i−1)

train
6 if l = None then
7 if E(i−Ns+1)

val = min0≤i′<Ns E
(i−i′)
val then

8 ts ← i−Ns + 1

9 l← r
Ns

∑Ns−1
i′=0 E

(i−i′)
val

10 else if l < min0≤i′<Ne E
(i−i′)
val then

11 te ← i−Ne
12 break

13 θSWAD ← 1
te−ts+1

∑te
i′=ts

θi
′

B.5 Loss surface visualization

Following Garipov et al. [9], we choose three model weights θ1, θ2, θ3 and define two dimensional
weight plane from the weights:

2

u = θ2 − θ1, v =
(θ3 − θ1)− 〈θ3 − θ1, θ2 − θ1〉
‖θ2 − θ1‖2 · (θ2 − θ1)

, (1)

where û = u/‖u‖ and v̂ = v/‖v‖ are orthonormal bases of the weight plane. Then, we build Carte-
sian grid near the weights on the plane. For each grid point, we calculate the weight corresponding to
the point and compute loss from the weight. The results are visualized as a contour plot, as shown in
Figure 4 in the main text.

B.6 ImageNet robustness experiments

We investigate the extensibility of SWAD via three robustness benchmarks (Section 4.4 in the main
text), namely ImageNet-C [10], ImageNet-R [11], and background challenge (BGC) [12]. ImageNet-
C measures the robustness against common corruptions such as Gaussian noise, blur, or weather
changes. We follow Hendrycks and Dietterich [10] for measuring mean corruption error (mCE).
The lower ImageNet-C implies that the model is robust against corruption noises. BGC evaluates
the robustness against background manipulations as well as the adversarial robustness. The BGC
dataset has two groups, foreground and background. BGC manipulates images by combining the
foregrounds and backgrounds, and measures whether the model predicts a consistent prediction
with any manipulated image. ImageNet-R tests the robustness against different domains. ImageNet-
R collects very different domain images of ImageNet, such as art, cartoons, deviantart, graffiti,
embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, and video game renditions. Showing better performances in ImageNet-R leads to the
same conclusion as other domain generalization benchmarks.

Experiment details. We use ResNet-50 architecture and mostly follow standard training recipes.
We use SGD optimizer with momentum of 0.9, base learning rate of 0.1 with linear scaling rule [13]
and polynomial decay, 5 epochs gradual warmup, batch size of 2048, and total epochs of 90. For
SWA, the learning rate is decayed to 1/20 until 80% of training (72 epochs), and the cyclic learning
rate with 3 epochs cycle length is used for the left 20% of training. SWAD follows the same learning
rate decay until 80% of training, but averages every weight from every iteration after 80% of training
with constant learning rate.

C Proof of Theorems

C.1 Technical Lemmas

Consider an instance loss function `(y1, y2) such that ` : Y × Y → [0, 1] and `(y1, y2) = 0 if and
only if y1 = y2. Then, we can define a functional error as EP(f(·; θ), h) := EP [`(f(x; θ), h(x))].
Note that if we set h as a true label function which generates the label of inputs, y = h(x), then, it
becomes a population loss EP(θ) = EP(f(·; θ), h). Given two distributions, P and Q, the following
lemma shows that the difference between the error with P and the error with Q is bounded by the
divergence between P and Q.

Lemma 1. |EP(h1, h2)− EQ(h1, h2)| ≤ 1
2Div(P,Q)

Proof. We employ the same technique in Zhao et al. [14] for our loss function `. From the Fubini’s
theorem, we have,

Ex∼P [`(h1(x), h2(x))] =

∫ ∞
0

PP (`(h1(x), h2(x)) > t) dt (2)

3

By using this fact,

|Ex∼P [`(h1(x), h2(x))]− Ex∼Q[`(h1(x), h2(x))]| (3)

=

∣∣∣∣∫ ∞
0

PP (`(h1(x), h2(x)) > t) dt−
∫ ∞

0

PQ (`(h1(x), h2(x)) > t) dt

∣∣∣∣ (4)

≤
∫ ∞

0

|PP (`(h1(x), h2(x)) > t)− PQ (`(h1(x), h2(x)) > t)| dt (5)

≤M sup
t∈[0,M]

|PP (`(h1(x), h2(x)) > t)− PQ (`(h1(x), h2(x)) > t)| (6)

≤M sup
h1,h2

sup
t∈[0,M]

|PP (`(h1(x), h2(x)) > t)− PQ (`(h1(x), h2(x)) > t)| (7)

≤M sup
h̄∈H̄

∣∣PP (h̄(x) = 1
)
− PQ

(
h̄(x) = 1

)∣∣ (8)

≤M sup
A
|PP (A)− PQ (A)| (9)

where H̄ := {I[`(h(x), h′(x)) > t]|h, h′ ∈ H, t ∈ [0,M]}.

Lemma 2. Consider a distribution S on input space and global label function f : X → Y . Let{
Θk ⊂ Rd, k = 1, · · · , N

}
be a finite cover of a parameter space Θ which consists of closed balls

with radius γ/2 where N :=
⌈
(diam(Θ)/γ)

d
⌉

. Let θk ∈ arg maxΘk∩Θ ES(θ) be a local maximum
in the k-th ball. Let a VC dimension of Θk be vk. Then, for any θ ∈ Θ, the following bound holds
with probability at least 1− δ.

ES(θ)− ÊγS(θ) ≤ max
k

√
(vk [ln (n/vk) + 1] + ln (N/δ))

2n
(10)

where ÊγS(θk) is an empirical robust risk with n samples.

Proof. We first show that the following inequality holds for the local maximum of N covers,

P
(

max
k

[
ES(θk)− ÊS(θk)

]
> ε

)
≤

N∑
k=1

P
(
ES(θk)− ÊS(θk) > ε

)
(11)

≤
N∑
k=1

P
(

sup
θ∈Θk

[
ES(θ)− ÊS(θ)

]
> ε

)
(12)

≤
N∑
k=1

(
en

vk

)vk
e−2nε2 . (13)

Now, we introduce a confidence error bound εk :=
√

(vk[ln(n/vk)+1]+ln(N/δ))
2n . Then, we set ε :=

maxk εk. Then, we get,

P
(

max
k

[
ES(θk)− L̂S(θk)

]
> ε

)
≤

N∑
k=1

(
en

vk

)vk
e−2nε2 (14)

≤
N∑
k=1

(
en

vk

)vk
e−2nε2k (15)

=

N∑
k=1

δ

N
= δ, (16)

since ε >
√

(vk[ln(n/vk)+1]+ln(N/δ))
2n for all k. Hence, the inequality holds with probability at least

1− δ.

4

Based on this fact, let us consider the set of events such that maxk

[
ES(θk)− ÊS(θk)

]
≤ ε. Then,

for any θ, there exists k′ such that θ ∈ Θk′ . Then, we get

ES(θ)− ÊγS(θ) ≤ ES(θ)− ÊS(θk′) (17)
≤ ES(θ)− ES(θk′) + ε (18)
≤ ES(θk′)− ES(θk′) + ε = ε, (19)

where the second inequality holds since ES(θk′) − ÊS(θk′) ≤ maxk

[
ES(θk)− ÊS(θk)

]
≤ ε and

the final inequality holds since θk′ is the local maximum in Θk′ . In this regards, we know that
maxk

[
ES(θk)− ÊS(θk)

]
≤ ε implies ES(θ)− ÊγS(θ) ≤ ε. Consequently, ES(θ)− ÊγS(θ) ≤ ε holds

with probability at least 1− δ.

C.2 Proof of Theorem 1

Proof. The proof consists of two parts. First, we show that the following inequality holds with high
probability.

ET (θ) ≤ ÊγS(θ) +
1

2
Div (S, T) + max

k

√
(vk [ln (n/vk) + 1] + ln (N/δ))

2n
.

Then, secondly, we apply the inequality for multiple source domains.

The first part can be proven by simply combining Lemma 1 and Lemma 2. Then, we get,

ET (θ) ≤ ES(θ) +
1

2
Div (S, T) (20)

≤ ÊγS(θ) +
1

2
Div (S, T) + max

k

√
(vk [ln (n/vk) + 1] + ln (N/δ))

2n
(21)

where Div (S, T) is a divergence between S and T .

For the second part, we set D :=
∑I
i=1Di/I which is a mixture of source distributions. Then, by

applying D to the first part, we obtain the following inequality,

ET (θ) ≤ ÊγD(θ) +
1

2
Div (D, T) + max

k

√
(vk [ln (In/vk) + 1] + ln (N/δ))

2In
(22)

≤ ÊγD(θ) +
1

2I

I∑
i=1

Div (Di, T) + max
k

√
(vk [ln (In/vk) + 1] + ln (N/δ))

2In
(23)

where the total number of training data set is In and, for the second inequality, we use the fact that
1
2Div (D, T) ≤ 1

2I

∑I
i=1 Div (Di, T), which has been proven in [14].

C.3 Proof of Theorem 2

Proof. First, let θ̄ ∈ arg maxθ∈Θ ET (θ). Then, from generalization error bound of ED(θ̄), the
following inequality holds with probability at most δ2 ,

ÊD(θ̄)− ED(θ̄) >

√
v ln (In/v) + ln (2/δ)

In
, (24)

where v is a VC dimension of Θ. Furthermore, from Theorem 1, we have the following inequality
with probability at most δ2 ,

ET (θ̂γ) > EγD(θ̂γ) +
1

2
Div(D, T) + max

k∈[1,N]

√
vk ln (In/vk) + ln(2N/δ)

In
. (25)

Finally, let us consider the set of event such that ÊD(θ̄)−ED(θ̄) ≤
√

v ln(In/v)+ln(2/δ)
In and ET (θ̂γ) ≤

EγD(θ̂γ) + 1
2Div(D, T) + maxk∈[1,N]

√
vk ln(In/vk)+ln(2N/δ)

In whose probability is at least greater

5

than 1− δ. Then, under this set of event, we have,

min
θ′
ÊD(θ′) ≤ ÊD(θ̄) ≤ ED(θ̄) +

√
v ln (In/v) + ln (2/δ)

In
(26)

≤ ET (θ̄) +
1

2
Div(D, T) +

√
v ln (In/v) + ln (2/δ)

In
(27)

≤ min
θ′
ET (θ′) +

1

2
Div(D, T) +

√
v ln (In/v) + ln (2/δ)

In
(28)

Consequently, we have,

ET (θ̂γ)−min
θ′
ET (θ′)

≤ EγD(θ̂γ)−min
θ′
ÊD (θ′) + Div(D, T) + max

k∈[1,N]

√
vk ln (In/vk) + ln(2N/δ)

In

+

√
v ln (In/v) + ln (2/δ)

In
(29)

≤ EγD(θ̂γ)−min
θ′
ÊD (θ′) +

1

I

I∑
i=1

Div(Di, T) + max
k∈[1,N]

√
vk ln (In/vk) + ln(2N/δ)

In

+

√
v ln (In/v) + ln (2/δ)

In
(30)

D Additional Experiments

D.1 Comparison of flatness-aware solvers

Table 2: Flatness-aware solvers comparison. SWAs collect 10 weights from the last 20% of training.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM (baseline) 85.5 ±0.2 77.5 ±0.4 66.5 ±0.3 46.1 ±1.8 40.9 ±0.1 63.3
SAM 85.8 ±0.2 79.4 ±0.1 69.6 ±0.1 43.3 ±0.7 44.3 ±0.0 64.5
SWAw/ cyclic 87.1 ±0.1 76.5 ±0.2 68.5 ±0.2 49.6 ±1.0 45.6 ±0.0 65.5
SWAw/ const 86.9 ±0.2 76.6 ±0.1 69.3 ±0.3 49.2 ±1.2 45.9 ±0.0 65.6
SWAD 88.1 ±0.1 79.1 ±0.1 70.6 ±0.2 50.0 ±0.3 46.5 ±0.1 66.9

Interestingly, the average performance ranking of flatness-aware solvers is the same as the results
of the local flatness test (See Figure 3 in the main text). In both experiments, SWAD performs best,
followed by SWAs, SAM, and ERM. It is another evidence of our claim that domain generalization is
achievable by seeking flat minima.

On the other hand, comparing SWAs and SWAD demonstrates the effectiveness of the proposed
dense and overfit-aware sampling strategy. SWAD improves average performance up to 1.4pp, and
surpasses both SWAs on every benchmark.

E Full Results

In this section, we show detailed results of Table 2 in the main text. † and ‡ indicate results from
DomainBed’s and our HP search protocols, respectively. Standard errors are reported from three
trials, if available.

6

E.1 PACS

Table 3: Out-of-domain accuracies (%) on PACS.
Algorithm A C P S Avg

CDANN† 84.6 ±1.8 75.5 ±0.9 96.8 ±0.3 73.5 ±0.6 82.6
MASF 82.9 80.5 95.0 72.3 82.7
DMG 82.6 78.1 94.5 78.3 83.4
IRM† 84.8 ±1.3 76.4 ±1.1 96.7 ±0.6 76.1 ±1.0 83.5
MetaReg 87.2 79.2 97.6 70.3 83.6
DANN† 86.4 ±0.8 77.4 ±0.8 97.3 ±0.4 73.5 ±2.3 83.7
ERM‡ 85.7 ±0.6 77.1 ±0.8 97.4 ±0.4 76.6 ±0.7 84.2
GroupDRO† 83.5 ±0.9 79.1 ±0.6 96.7 ±0.3 78.3 ±2.0 84.4
MTL† 87.5 ±0.8 77.1 ±0.5 96.4 ±0.8 77.3 ±1.8 84.6
I-Mixup 86.1 ±0.5 78.9 ±0.8 97.6 ±0.1 75.8 ±1.8 84.6
MMD† 86.1 ±1.4 79.4 ±0.9 96.6 ±0.2 76.5 ±0.5 84.7
VREx† 86.0 ±1.6 79.1 ±0.6 96.9 ±0.5 77.7 ±1.7 84.9
MLDG† 85.5 ±1.4 80.1 ±1.7 97.4 ±0.3 76.6 ±1.1 84.9
ARM† 86.8 ±0.6 76.8 ±0.5 97.4 ±0.3 79.3 ±1.2 85.1
RSC† 85.4 ±0.8 79.7 ±1.8 97.6 ±0.3 78.2 ±1.2 85.2
Mixstyle‡ 86.8 ±0.5 79.0 ±1.4 96.6 ±0.1 78.5 ±2.3 85.2
ER 87.5 79.3 98.3 76.3 85.3
pAdaIN 85.8 81.1 97.2 77.4 85.4
ERM† 84.7 ±0.4 80.8 ±0.6 97.2 ±0.3 79.3 ±1.0 85.5
EISNet 86.6 81.5 97.1 78.1 85.8
CORAL† 88.3 ±0.2 80.0 ±0.5 97.5 ±0.3 78.8 ±1.3 86.2
SagNet† 87.4 ±1.0 80.7 ±0.6 97.1 ±0.1 80.0 ±0.4 86.3
DSON 87.0 80.6 96.0 82.9 86.6

Ours 89.3 ±0.2 83.4 ±0.6 97.3 ±0.3 82.5 ±0.5 88.1

E.2 VLCS

Table 4: Out-of-domain accuracies (%) on VLCS.
Algorithm C L S V Avg

GroupDRO† 97.3 ±0.3 63.4 ±0.9 69.5 ±0.8 76.7 ±0.7 76.7
RSC† 97.9 ±0.1 62.5 ±0.7 72.3 ±1.2 75.6 ±0.8 77.1
MLDG† 97.4 ±0.2 65.2 ±0.7 71.0 ±1.4 75.3 ±1.0 77.2
MTL† 97.8 ±0.4 64.3 ±0.3 71.5 ±0.7 75.3 ±1.7 77.2
ERM‡ 98.0 ±0.3 64.7 ±1.2 71.4 ±1.2 75.2 ±1.6 77.3
I-Mixup 98.3 ±0.6 64.8 ±1.0 72.1 ±0.5 74.3 ±0.8 77.4
ERM† 97.7 ±0.4 64.3 ±0.9 73.4 ±0.5 74.6 ±1.3 77.5
MMD† 97.7 ±0.1 64.0 ±1.1 72.8 ±0.2 75.3 ±3.3 77.5
CDANN† 97.1 ±0.3 65.1 ±1.2 70.7 ±0.8 77.1 ±1.5 77.5
ARM† 98.7 ±0.2 63.6 ±0.7 71.3 ±1.2 76.7 ±0.6 77.6
SagNet† 97.9 ±0.4 64.5 ±0.5 71.4 ±1.3 77.5 ±0.5 77.8
Mixstyle‡ 98.6 ±0.3 64.5 ±1.1 72.6 ±0.5 75.7 ±1.7 77.9
VREx† 98.4 ±0.3 64.4 ±1.4 74.1 ±0.4 76.2 ±1.3 78.3
IRM† 98.6 ±0.1 64.9 ±0.9 73.4 ±0.6 77.3 ±0.9 78.6
DANN† 99.0 ±0.3 65.1 ±1.4 73.1 ±0.3 77.2 ±0.6 78.6
CORAL† 98.3 ±0.1 66.1 ±1.2 73.4 ±0.3 77.5 ±1.2 78.8

Ours 98.8 ±0.1 63.3 ±0.3 75.3 ±0.5 79.2 ±0.6 79.1

7

E.3 OfficeHome

Table 5: Out-of-domain accuracies (%) on OfficeHome.
Algorithm A C P R Avg

Mixstyle‡ 51.1 ±0.3 53.2 ±0.4 68.2 ±0.7 69.2 ±0.6 60.4
IRM† 58.9 ±2.3 52.2 ±1.6 72.1 ±2.9 74.0 ±2.5 64.3
ARM† 58.9 ±0.8 51.0 ±0.5 74.1 ±0.1 75.2 ±0.3 64.8
RSC† 60.7 ±1.4 51.4 ±0.3 74.8 ±1.1 75.1 ±1.3 65.5
CDANN† 61.5 ±1.4 50.4 ±2.4 74.4 ±0.9 76.6 ±0.8 65.7
DANN† 59.9 ±1.3 53.0 ±0.3 73.6 ±0.7 76.9 ±0.5 65.9
GroupDRO† 60.4 ±0.7 52.7 ±1.0 75.0 ±0.7 76.0 ±0.7 66.0
MMD† 60.4 ±0.2 53.3 ±0.3 74.3 ±0.1 77.4 ±0.6 66.4
MTL† 61.5 ±0.7 52.4 ±0.6 74.9 ±0.4 76.8 ±0.4 66.4
VREx† 60.7 ±0.9 53.0 ±0.9 75.3 ±0.1 76.6 ±0.5 66.4
ERM† 61.3 ±0.7 52.4 ±0.3 75.8 ±0.1 76.6 ±0.3 66.5
MLDG† 61.5 ±0.9 53.2 ±0.6 75.0 ±1.2 77.5 ±0.4 66.8
ERM‡ 63.1 ±0.3 51.9 ±0.4 77.2 ±0.5 78.1 ±0.2 67.6
I-Mixup 62.4 ±0.8 54.8 ±0.6 76.9 ±0.3 78.3 ±0.2 68.1
SagNet† 63.4 ±0.2 54.8 ±0.4 75.8 ±0.4 78.3 ±0.3 68.1
CORAL† 65.3 ±0.4 54.4 ±0.5 76.5 ±0.1 78.4 ±0.5 68.7

Ours 66.1 ±0.4 57.7 ±0.4 78.4 ±0.1 80.2 ±0.2 70.6

E.4 TerraIncognita

Table 6: Out-of-domain accuracies (%) on TerraIncognita.
Algorithm L100 L38 L43 L46 Avg

MMD† 41.9 ±3.0 34.8 ±1.0 57.0 ±1.9 35.2 ±1.8 42.2
GroupDRO† 41.2 ±0.7 38.6 ±2.1 56.7 ±0.9 36.4 ±2.1 43.2
Mixstyle‡ 54.3 ±1.1 34.1 ±1.1 55.9 ±1.1 31.7 ±2.1 44.0
ARM† 49.3 ±0.7 38.3 ±2.4 55.8 ±0.8 38.7 ±1.3 45.5
MTL† 49.3 ±1.2 39.6 ±6.3 55.6 ±1.1 37.8 ±0.8 45.6
CDANN† 47.0 ±1.9 41.3 ±4.8 54.9 ±1.7 39.8 ±2.3 45.8
ERM† 49.8 ±4.4 42.1 ±1.4 56.9 ±1.8 35.7 ±3.9 46.1
VREx† 48.2 ±4.3 41.7 ±1.3 56.8 ±0.8 38.7 ±3.1 46.4
RSC† 50.2 ±2.2 39.2 ±1.4 56.3 ±1.4 40.8 ±0.6 46.6
DANN† 51.1 ±3.5 40.6 ±0.6 57.4 ±0.5 37.7 ±1.8 46.7
IRM† 54.6 ±1.3 39.8 ±1.9 56.2 ±1.8 39.6 ±0.8 47.6
CORAL† 51.6 ±2.4 42.2 ±1.0 57.0 ±1.0 39.8 ±2.9 47.7
MLDG† 54.2 ±3.0 44.3 ±1.1 55.6 ±0.3 36.9 ±2.2 47.8
I-Mixup 59.6 ±2.0 42.2 ±1.4 55.9 ±0.8 33.9 ±1.4 47.9
SagNet† 53.0 ±2.9 43.0 ±2.5 57.9 ±0.6 40.4 ±1.3 48.6
ERM‡ 54.3 ±0.4 42.5 ±0.7 55.6 ±0.3 38.8 ±2.5 47.8

Ours 55.4 ±0.0 44.9 ±1.1 59.7 ±0.4 39.9 ±0.2 50.0

8

E.5 DomainNet

Table 7: Out-of-domain accuracies (%) on DomainNet.
Algorithm clip info paint quick real sketch Avg

MMD† 32.1 ±13.3 11.0 ±4.6 26.8 ±11.3 8.7 ±2.1 32.7 ±13.8 28.9 ±11.9 23.4
GroupDRO† 47.2 ±0.5 17.5 ±0.4 33.8 ±0.5 9.3 ±0.3 51.6 ±0.4 40.1 ±0.6 33.3
VREx† 47.3 ±3.5 16.0 ±1.5 35.8 ±4.6 10.9 ±0.3 49.6 ±4.9 42.0 ±3.0 33.6
IRM† 48.5 ±2.8 15.0 ±1.5 38.3 ±4.3 10.9 ±0.5 48.2 ±5.2 42.3 ±3.1 33.9
Mixstyle‡ 51.9 ±0.4 13.3 ±0.2 37.0 ±0.5 12.3 ±0.1 46.1 ±0.3 43.4 ±0.4 34.0
ARM† 49.7 ±0.3 16.3 ±0.5 40.9 ±1.1 9.4 ±0.1 53.4 ±0.4 43.5 ±0.4 35.5
CDANN† 54.6 ±0.4 17.3 ±0.1 43.7 ±0.9 12.1 ±0.7 56.2 ±0.4 45.9 ±0.5 38.3
DANN† 53.1 ±0.2 18.3 ±0.1 44.2 ±0.7 11.8 ±0.1 55.5 ±0.4 46.8 ±0.6 38.3
RSC† 55.0 ±1.2 18.3 ±0.5 44.4 ±0.6 12.2 ±0.2 55.7 ±0.7 47.8 ±0.9 38.9
I-Mixup 55.7 ±0.3 18.5 ±0.5 44.3 ±0.5 12.5 ±0.4 55.8 ±0.3 48.2 ±0.5 39.2
SagNet† 57.7 ±0.3 19.0 ±0.2 45.3 ±0.3 12.7 ±0.5 58.1 ±0.5 48.8 ±0.2 40.3
MTL† 57.9 ±0.5 18.5 ±0.4 46.0 ±0.1 12.5 ±0.1 59.5 ±0.3 49.2 ±0.1 40.6
ERM† 58.1 ±0.3 18.8 ±0.3 46.7 ±0.3 12.2 ±0.4 59.6 ±0.1 49.8 ±0.4 40.9
MLDG† 59.1 ±0.2 19.1 ±0.3 45.8 ±0.7 13.4 ±0.3 59.6 ±0.2 50.2 ±0.4 41.2
CORAL† 59.2 ±0.1 19.7 ±0.2 46.6 ±0.3 13.4 ±0.4 59.8 ±0.2 50.1 ±0.6 41.5
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6
ERM‡ 63.0 ±0.2 21.2 ±0.2 50.1 ±0.4 13.9 ±0.5 63.7 ±0.2 52.0 ±0.5 44.0

Ours 66.0 ±0.1 22.4 ±0.3 53.5 ±0.1 16.1 ±0.2 65.8 ±0.4 55.5 ±0.3 46.5

F Assets

In this section, we discuss about licenses, copyrights, and ethical issues of our assets, such as code
and datasets.

F.1 Code

Our work is built upon DomainBed [1]2, which is released under the MIT license.

F.2 Datasets

While we use public datasets only, we track how the datasets were built to discuss licenses, copyrights,
and potential ethical issues. For DomainNet [15] and OfficeHome [16], we use the datasets for
non-profit academic research only following their fair use notice. TerraIncognita [17] is a subset
of Caltech Camera Traps (CCT) dataset, distributed under the Community Data License Agreement
(CDLA) license. PACS [18] and VLCS [19] datasets have images collected from the web and we could
not find any statements about licenses, copyrights, or whether consent was obtained. Considering
that both datasets contain person class and images of people, there may be potential ethical issues.

G Reproducibility

To provide details of our algorithm and guarantee reproducibility, we provide the source code3

publicly. The code also specifies detailed environments, dependencies, how to download datasets,
and instructions to reproduce the main results (Table 1 and 2 in the main text).

2https://github.com/facebookresearch/DomainBed
3https://github.com/khanrc/swad

9

https://github.com/facebookresearch/DomainBed
https://github.com/khanrc/swad

G.1 Infrastructures

Every experiment is conducted on a single NVIDIA Tesla P40 or V100, Python 3.8.6, PyTorch 1.7.0,
Torchvision 0.8.1, and CUDA 9.2.

G.2 Runtime Analysis

The total runtime varies depending on datasets and the moment detected to overfit. It takes about 4
hours for PACS and VLCS, 8 hours for OfficeHome, 8.5 hours for TerraIncognita, and 56 hours
for DomainNet on average, when using a single NVIDIA Tesla P40 GPU. Each experiment includes
the leave-one-out cross-validations for all domains in each dataset.

G.3 Complexity Analysis

The only additional time overhead incurs from stochastic weights selection, which requires further
evaluations. To analyze the overhead, let the forward time tf , backward time tb, training and
validation split ratio r = |Xtrain|/|Xvalid|, total in-domain samples n, and evaluation frequency
v that indicates how many evaluations are conducted for each epoch. For conciseness, we assume
t = tf = tb and do not consider early stopping.

For one epoch, training time is 2tnr/(r + 1), and evaluation time is vtn/(r + 1). The total runtime
for one epoch is tn(2r + v)/(r + 1). Final overhead ratio is (2r + v)/(2r + vb) where vb is the
evaluation frequency of a baseline. In our main experiments, we use r = 4. Compared to the default
parameters of DomainBed [1], we use v = 2vb for DomainNet, v = 6vb for VLCS, and v = 3vb for
the others. Then, the total runtime of our algorithm takes from 1.07 (PACS) to 1.27 (DomainNet)
times more than the ERM baseline. In practice, it can be improved by conducting approximated
evaluations using sub-sampled validation set.

In terms of memory complexity, our method does not require additional GPU memory. Instead, we
leverage CPU memory to minimize training time overhead, which takes up to max(N,M) times
more than the baseline.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5 in the main text.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] See Appendix. While we use public datasets only, we track how the
datasets were built to discuss their potential ethical issue.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2

in the main text and more precise assumptions are stated in Appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] Proofs can be found

in the supplementary material. We omit the entire proofs in the main manuscript due to
the limitation of space.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We provide
the code publicly to reproduce our main results. The code include the instructions to
download data and to reproduce the results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We provide about the data splits, how they were chosen, and important
hyperparameters in the Section 4 of the main text. Further details are provided in
Appendix and the code.

10

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We report the standard error from three runs, follow-
ing Gulrajani and Lopez-Paz [1].

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix. We provide the
total computation time for each experiment and type of resources we used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1.
(b) Did you mention the license of the assets? [Yes] See Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include the URL for our code.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Appendix.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We neither use crowdsourcing nor conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We neither use crowdsourcing nor conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We neither use crowdsourcing nor conduct
research with human subjects.

References
[1] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International

Conference on Learning Representations, 2021.

[2] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[3] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle.
In International Conference on Learning Representations, 2021.

[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(8):1979–1993, 2018.

[5] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Interna-
tional Conference on Learning Representations, 2017.

[6] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

[7] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. International Conference on Learning Representations, 2018.

[8] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
International Conference on Computer Vision (ICCV), 2019.

[9] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew Gordon
Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Neural Information
Processing Systems, 2018.

11

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2018.

[11] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A
critical analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

[12] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal:
The role of image backgrounds in object recognition. In International Conference on Learning
Representations, 2020.

[13] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[14] Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. In Advances in Neural Information
Processing Systems, volume 31, 2018.

[15] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In IEEE/CVF International Conference on
Computer Vision, pages 1406–1415, 2019.

[16] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In IEEE conference on computer
vision and pattern recognition, pages 5018–5027, 2017.

[17] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In European
Conference on Computer Vision, pages 456–473, 2018.

[18] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In IEEE International Conference on Computer Vision, pages 5542–
5550, 2017.

[19] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In IEEE International Conference on
Computer Vision, pages 1657–1664, 2013.

12

	Potential Societal Impacts
	Implementation Details
	Hyperparameters of SWAD
	Hyperparameter search protocol for reproduced results
	Algorithm-specific hyperparameters
	Pseudo code
	Loss surface visualization
	ImageNet robustness experiments

	Proof of Theorems
	Technical Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Experiments
	Comparison of flatness-aware solvers

	Full Results
	PACS
	VLCS
	OfficeHome
	TerraIncognita
	DomainNet

	Assets
	Code
	Datasets

	Reproducibility
	Infrastructures
	Runtime Analysis
	Complexity Analysis

