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9 Full Algorithms433

In this supplementary section, we explicitly define two versions of the LICRA algorithm. Algorithm434

2 describes the version where both agents use PPO. PPO_update() subroutine is a standard PPO435

gradient update done as in Algorithm 1 of [27] with clipping surrogate objective with parameter ϵ. The436

gradient update utilises batch size B, stepsize α and performs T update steps per episode. Algorithm437

3 defines the LICRA_SAC version, utilising SAC for the switching agent. Here SAC_update() is438

analogously a standard soft actor-critic update done as in Algorithm 1 of [14], where B, α and T439

play the same role as in the PPO update.

Algorithm 2: LICRA with PPO
1: Input: Stepsize α, batch size B, episodes K, steps per episode T , mini-epochs e,

clipping-parameter ϵ
2: Initialise: Policy network (acting) π, Policy network (switching) g,

Critic network (acting)Vπ ,Critic network (switching)Vg
3: Given reward objective function, R, initialise Rollout Buffers Bπ , Bg

4: for Nepisodes do
5: Reset state s0, Reset Rollout Buffers Bπ , Bg

6: for t = 0, 1, . . . do
7: Sample at ∼ π(·|st)
8: Sample gt ∼ g(·|st)
9: if gt = 0 then

10: Apply at so st+1 ∼ P (·|at, st),
11: Receive rewards rt = R(st, at)
12: Store (st, at, st+1, rt) in Bπ
13: else
14: Apply the null action so st+1 ∼ P (·|0, st),
15: Receive rewards rt = R(st, 0).
16: end if
17: Store (st, gt, st+1, rt) in Bg

18: end for
19: // Learn the individual policies
20: PPO_update(π, Vπ , Bπ , B, α, T )
21: PPO_update(g, Vg , Bg, B, α, T )
22: end for

440
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Algorithm 3: LICRA with SAC
1: Input: Stepsize α, batch size B, episodes K, steps per episode T , mini-epochs e
2: Initialise: Policy network (acting) π, Policy network (switching) g,

Critic network (acting)Vπ ,Q-Critic network (switching )Qg,V-Critic network (switching)Vg
3: Given reward objective function, R, initialise Rollout Buffer Bπ Replay Buffer Bg

4: for Nepisodes do
5: Reset state s0, Reset Rollout Buffer Bπ
6: for t = 0, 1, . . . do
7: Sample at ∼ π(·|st)
8: Sample gt ∼ g(·|st)
9: if gt = 0 then

10: Apply at so st+1 ∼ P (·|at, st),
11: Receive rewards rt = R(st, at)
12: Store (st, at, st+1, rt) in Bπ
13: else
14: Apply the null action so st+1 ∼ P (·|0, st),
15: Receive rewards rt = R(st, 0).
16: end if
17: Store (st, gt, st+1, rt) in Bg

18: end for
19: // Learn the individual policies
20: PPO_update(π, Vπ , Bπ , B, α, T )
21: Sample a batch of |Bg| transitions Bg from Bg

22: SAC_update(g, Vg, Qg , Bg, B, α, T )
23: end for
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10 Fuel Budget441

We test the ability of LICRA (LICRA_SAC) in a budgeted Drive environment. We modified the Drive442

environment in Sec. 7 so that there is an additional scarce fuel level for the controlled vehicle. This443

fuel level decreases in proportion to the magnitude of the action taken by the agent. If the controlled444

vehicle runs out fuel then it receives a large negative reward, and therefore it is important that the445

agent learns to use minimal acceleration/braking to reach the final destination.446

Fig. 5 shows the performance of LICRA and corresponding baselines. The majority of the baselines447

fail to learn anything in the environment, which we expect is due to the difficult of exploration due to448

low fuel levels (LICRA can counter this by exploring using the null action) and how easy it is to run449

out of fuel. In some seeds CPO is able to solve the environment to the same level as LICRA, but is450

not as stable over seeds and it is not as fast as LICRA in improving performance.
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451

11 Ablation studies452

Fig. 3 shows the performance of LICRA variants and baselines when c(s, a) ≡ 5. In this section, we453

analyse LICRA’s ability to handle various functional forms of the intervention cost.454

11.1 Ablation Study 2: Testing Different functional forms of the intervention costs455

Intervention costs of the form c(s, a) ≡ 0.456

In Sec. 4, we claimed that LICRA’s impulse control mechanism which first determines the set of457

states to perform actions then only learns the optimal actions at these states can induce a much quicker458

learning proceess. In particular, we claimed that LICRA enables the RL agent to rapidly learns which459

states to focus on to learn optimal actions.460

In our last ablation analysis, we test LICRA’s ability to handle the case in which the agent faces461

no fixed costs so c(s, a) ≡ 0, therefore deviating from the form of the impulse control objective462

(1). In doing so, we test the ability of LICRA to prioritise the most important states for learning463

the correct actions in a general RL setting. As shown in Fig. 6 we present the average returns when464

c(s, a) ≡ 0. For this case, LICRA_SAC both learns the fastest indicating the benefits of the impulse465

control framework even in the setting in which the agent does not face fixed minimal costs for each466

action. Strikingly, LICRA also achieves the highest performance which demonstrates that LICRA467

also improves overall performance in complex tasks.468

Intervention costs of the form c(s, a) ≡ k > 0.469

We first analyse the behaviour of LICRA and leading baselines when the environment has intervention470

costs of the form c(s, a) = k where the fixed part k > 0 is a strictly positive constant. Intervention471
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Figure 6: Ablation Study when c(s, a) ≡ 0 in Lunar Lander.

costs of this kind are frequently found within economic settings where they are characterised as472

‘menu costs’. This name derives from the fixed costs associated to a vendor adjusting their prices and473

serves as an explanation for price rigidities within the macroeconomy [8, 21].474

We next test the average returns when c(s, a) ≡ 10, c(s, a) ≡ 20, as shown in Fig. 7. Note that the475

action space is discrete and the intervention costs only occur when a ̸= 0. In this case, LICRA_SAC476

both learns the fastest and achieves the highest performance. Moreover, unlike PPO which produces477

declining performance and does not converge, LICRA_PPO converges to a high reward stable point.478

Intervention costs of the form c(s, a) = k + λa.479

We next analyse the behaviour of LICRA and leading baselines when the environment has intervention480

costs of the form c(s, a) = k + λa where the fixed part and proportional part λ, k > 0 are strictly481

positive constants. Intervention costs of this kind are frequently found within financial settings in482

which an investor incurs a fixed cost for investment decisions e.g. broker costs [10, 20]. Note that the483

action space is discrete and the intervention costs only occur when a ̸= 0.484

We present the average returns when c(s, a) = 5+ |a|, c(s, a) = 5+5 · |a| in Fig. 7. As with previous485

case, LICRA_SAC both learns the fastest and achieves the highest performance. Moreover, unlike486

PPO which produces declining performance and does not converge, LICRA_PPO converges to a high487

reward stable point.488

Intervention costs of the form c(s, a) = k + f(s, a).489

In general, the intervention costs incurred by an agent for each intervention can be allowed to be a490

function of the state. For example, activating an actuator under adverse environment conditions may491

incur greater wear to machinery than in other conditions. The functional form of the cost function is492

the most general and produces the most complex decision problem out of the aforementioned cases.493

To capture this general case, we lastly analysed the behaviour of LICRA and leading baselines when494

the environment has intervention costs of the form c(s, a) = k + f(s, a) where the fixed part k > 0495

and f : S ×A → R>0 is a positive function.496

As shown in Fig. 7, for this case we present the average returns when c(s, a) = 5+ |ds−dtarget| · |a|,497

where |ds−dtarget| represents the distance between the current position to the destination (determined498

by the state s). As before, the action space is discrete and the intervention costs only occur when a ̸= 0.499

As with previous cases, LICRA_SAC both learns the fastest and achieves the highest performance,500

demonstrating LICRA’s ability to solve the more complex task. Moreover, as in the previous cases,501

unlike PPO which produces declining performance and does not converge, LICRA_PPO converges502

to a high reward stable point.503
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(a) c(s, a) ≡ 10 (b) c(s, a) ≡ 20
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(c) c(s, a) = 5 + |a| (d) c(s, a) = 5 + 5 · |a|
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(e) c(s, a) = 5 + |ds − dtarget| · |a|

Figure 7: Ablation Study when (a) c(s, a) ≡ 10, (b) c(s, a) ≡ 20, (c) c(s, a) = 5 + |a|, (d)
c(s, a) = 5 + 5 · |a| and (e) c(s, a) = 5 + |ds − dtarget| · |a| in Lunar Lander.
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11.2 Ablation Study 3: Benefits of LICRA in Smaller Intervention Region504

In Sec. 4, we claimed that LICRA enables efficient learning in setting in which the set of states505

in which the agent should act, which we call the intervention region is a subset of the state space.506

Moreover, we claimed that this advantage over existing methods is increased as the intervention507

region becomes small in relation to the entire state space.508

To test these claims, we modified the Drive environment in Sec. 7 to a problem setting in which the509

agent is required to bring a moving vehicle to rest in a particular subregion of the lane or stop gap510

which we denote by SI ⊂ S. If the agent brings the vehicle to rest within SI the agent receives a511

reward R > 0 and the episode terminates. If however the agent brings the vehicle to rest outside of512

SI the agent receives a lower reward r < R the episode terminates. Lastly, if the agent fails to bring513

the vehicle to rest before the end of the lane the episode terminates and the agent receives 0 reward.514

The length of the entire lane S is 500 units and we ablate the size of the region SI in which the agent515

is required to stop to receive the maximum reward. Now the agent gets to decide a magnitude which516

decelerates the vehicle i.e. how heavily to brake (at any given point, the agent can also choose not517

to brake at all). Each deceleration a ∈ [0, 1] incurs a fixed minimal cost of c(s, a) = κ+ λa where518

κ, λ > 0.519

Fig. 8 shows the results of the ablation on the stop gap SI when SI is a length of 50 units or 10% of520

the entire state space S through to SI ≡ S i.e. when the intervention region is the entire state space.521

As can be observed in Fig. 8, when the intervention region is comparatively small, LICRA_PPO522

produces a significant performance advantage over the base learner PPO. This performance gap is523

gradually decreased as the size of the stop gap increases and eventually becomes the entire state524

space (which is the case when the stop gap is 500). Interestingly, LICRA_PPO still maintains a525

performance advantage over PPO even when SI ≡ S.526

Figure 8: Ablation on the intervention region. The ’Stop Gap’ represents the intervention region
in our modified Drive environment. When the Stop Gap is 50 units, the intervention region is 10%
of the entire state space. When the Stop Gap is 509 units, the intervention region is the entire state
space.
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12 Analysis of LICRA Q-learning Variant527

In order to validate the convergence of the Q learning variant of LICRA (c.f. (4)), we ran an528

experiment where the LICRA Q learning variant given in (4) can choose whether to act or not to529

act in a given discrete state (and continuous action space). In keeping with the problem setting we530

consider, there is a cost associated with any non-zero action. LICRA decides whether to act or not to531

act based on a tabular Q-learning rule given in (4) (using a normalised advantage function (NAF) to532

handle the continuous action space), where we store expected value for non acting in each cell. Fig.533

9 shows that the TD-error of this tabular Q learning setting converges to zero which validates the534

results of Theorem 2 and Theorem 3.535

Figure 9: TD error of tabular version of LICRA (smoothed).
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13 Hyperparameter Settings536

In the table below we report all hyperparameters used in Merton Investment problem experiments.537

Hyperparameter Value (PPO methods) Value (SAC)
Clip Gradient Norm 0.5 None

Discount Factor 0.99 0.99
Learning rate 1x10−3 1x10−4

Batch size 32 1024
Steps per epoch 2000 2000

Optimisation algorithm ADAM ADAM

538

In the next table, we report hyperparameters used in remaining experiments.539

Hyperparameter Value
Clip Gradient Norm 1

γE 0.99
λ 0.95

Learning rate 1x10−4

Number of minibatches 4
Number of optimisation epochs 4

Number of parallel actors 16
Optimisation algorithm ADAM

Rollout length 128
Sticky action probability 0.25

Use Generalized Advantage Estimation True

540
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14 Notation & Assumptions541

We assume that S is defined on a probability space (Ω,F ,P) and any s ∈ S is measurable with542

respect to the Borel σ-algebra associated with Rp. We denote the σ-algebra of events generated by543

{st}t≥0 by Ft ⊂ F . In what follows, we denote by (V, ∥∥) any finite normed vector space and by H544

the set of all measurable functions.545

The results of the paper are built under the following assumptions which are standard within RL and546

stochastic approximation methods:547

Assumption 1. The stochastic process governing the system dynamics is ergodic, that is the process548

is stationary and every invariant random variable of {st}t≥0 is equal to a constant with probability 1.549

Assumption 2. The function R is in L2.550

Assumption 3. For any positive scalar c, there exists a scalar µc such that for all s ∈ S and for any551

t ∈ N we have: E [1 + ∥st∥c|s0 = s] ≤ µc(1 + ∥s∥c).552

Assumption 4. There exists scalars C1 and c1 such that for any function J satisfying |v(s)| ≤553

C2(1 + ∥s∥c2) for some scalars c2 and C2 we have that:
∑∞
t=0 |E [v(st)|s0 = s]− E[v(s0)]| ≤554

C1C2(1 + ∥st∥c1c2).555

Assumption 5. There exists scalars c and C such that for any s ∈ S we have that: |R(s, ·)| ≤556

C(1 + ∥s∥c).557

15 Proof of Technical Results558

We begin the analysis with some preliminary lemmata and definitions which are useful for proving559

the main results.560

Definition 1 A.1 An operator T : V → V is said to be a contraction w.r.t a norm ∥ · ∥ if there exists561

a constant c ∈ [0, 1[ such that for any V1, V2 ∈ V we have that:562

∥TV1 − TV2∥ ≤ c∥V1 − V2∥. (9)

Definition 2 A.2 An operator T : V → V is non-expansive if ∀V1, V2 ∈ V we have:563

∥TV1 − TV2∥ ≤ ∥V1 − V2∥. (10)

Lemma 2 For any f : V → R, g : V → R, we have that:564 ∥∥∥∥max
a∈V

f(a)−max
a∈V

g(a)

∥∥∥∥ ≤ max
a∈V

∥f(a)− g(a)∥ . (11)

Proof 1 We restate the proof given in [23]:565

f(a) ≤ ∥f(a)− g(a)∥+ g(a) (12)
=⇒ max

a∈V
f(a) ≤ max

a∈V
{∥f(a)− g(a)∥+ g(a)} ≤ max

a∈V
∥f(a)− g(a)∥+max

a∈V
g(a). (13)

Deducting max
a∈V

g(a) from both sides of (13) yields:566

max
a∈V

f(a)−max
a∈V

g(a) ≤ max
a∈V

∥f(a)− g(a)∥ . (14)

After reversing the roles of f and g and redoing steps (12) - (13), we deduce the desired result since567

the RHS of (14) is unchanged.568

Lemma 3 A.4 The probability transition kernel P is non-expansive, that is:569

∥PV1 − PV2∥ ≤ ∥V1 − V2∥. (15)

Proof 2 The result is well-known e.g. [31]. We give a proof using the Tonelli-Fubini theorem and the570

iterated law of expectations, we have that:571

∥PJ∥2 = E
[
(PJ)2[s0]

]
= E

(
[E [J [s1]|s0])2

]
≤ E

[
E
[
J2[s1]|s0

]]
= E

[
J2[s1]

]
= ∥J∥2,

where we have used Jensen’s inequality to generate the inequality. This completes the proof.572
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Proof of Theorem 1573

Proof 3 (Proof of Lemma 1) Recall we define the Bellman operator T acting on a function vπ,g :574

S → R by575

Tvπ,g(sτk) := max

{
Mπ,gQπ,g(sτk , aτk),

[
R(sτk , 0) + γ

∑
s′∈S

P (s′; 0, sτk)v
π,g(s′)

]}
(16)

In what follows and for the remainder of the script, we employ the following shorthands:576

Pass′ =:
∑
s′∈S

P (s′; a, s), Pπss′ =:
∑
a∈A

π(a|s)Pass′ , Rπ(st) :=
∑
at∈A

π(at|s)R(st, at)

For notational simplicity, where it will not cause confusion we also drop the dependence of the577

functions vπ,g, Qπ,g on the policy pair (π, g) and with a slight abuse of notation we will write578

Mvπ
′,g′

(sτk) := max
a∈A

{
R(sτk , a)− c(sτk , a) + γ

∑
s′∈S P (s

′; a, s)vπ
′,g′

(s′)
}

.579

To prove that T is a contraction, we consider the three cases produced by (16), that is to say we prove580

the following statements:581

i)
∣∣∣∣R(st, at) + γmax

a∈A
Pas′stv(s

′)−
(
R(st, at) + γmax

a∈A
Pas′stv

′(s′)

)∣∣∣∣ ≤ γ ∥v − v′∥582

ii) ∥Mv −Mv′∥ ≤ γ ∥v − v′∥ , (and hence M is a contraction).583

iii)
∥∥∥∥Mv −

[
R(·, a) + γmax

a∈A
Pav′

]∥∥∥∥ ≤ γ ∥v − v′∥.584

We begin by proving i).585

Indeed, for any a ∈ A and ∀st ∈ S,∀s′ ∈ S we have that586 ∣∣∣∣R(st, at) + γmax
a∈A

Pas′stv(s
′)−

[
R(st, at) + γmax

a∈A
Pas′stv

′(s′)

]∣∣∣∣
≤ max

a∈A

∣∣γPas′stv(s′)− γPas′stv
′(s′)

∣∣
≤ γ ∥Pv − Pv′∥
≤ γ ∥v − v′∥ ,

again using the fact that P is non-expansive and Lemma 2.587

We now prove ii).588

For any τ ∈ F , define by τ ′ = inf{t > τ |st ∈ SI , τ ∈ Ft}. Now using the definition of M we have589

that for any sτ ∈ S590

|(Mv −Mv′)(sτ )|

≤ max
aτ∈A

∣∣∣∣∣R(sτ , aτ ) + c(sτ , aτ ) + γPπs′sτP
av(sτ )−

(
R(sτ , aτ ) + c(sτ , aτ ) + γPπs′sτP

av′(sτ )
) ∣∣∣∣∣

= γ
∣∣Pπs′sτPav(sτ )− Pπs′sτP

av′(sτ )
∣∣

≤ γ ∥Pv − Pv′∥
≤ γ ∥v − v′∥ ,

using the fact that P is non-expansive. The result can then be deduced easily by applying max on591

both sides.592

We now prove iii). We split the proof of the statement into two cases:593

Case 1:594

Mv(sτ )−
(
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)
< 0. (17)
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We now observe the following:595

Mv(sτ )−R(sτ , aτ ) + γmax
a∈A

Pas′sτ v
′(s′)

≤ max
{
R(sτ , aτ ) + γPπs′sτP

av(s′),Mv(sτ )
}
−R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

≤

∣∣∣∣∣max
{
R(sτ , aτ ) + γPπs′sτP

av(s′),Mv(sτ )
}
−max

{
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′),Mv(sτ )

}

+max

{
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′),Mv(sτ )

}
−R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

∣∣∣∣∣
≤

∣∣∣∣∣max

{
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v(s

′),Mv(sτ )

}
−max

{
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′),Mv(sτ )

} ∣∣∣∣∣
+

∣∣∣∣∣max

{
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′),Mv(sτ )

}
−R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

∣∣∣∣∣
≤ γmax

a∈A

∣∣Pπs′sτPav(s′)− Pπs′sτP
av′(s′)

∣∣
+

∣∣∣∣max

{
0,Mv(sτ )−

(
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)}∣∣∣∣
≤ γ ∥Pv − Pv′∥
≤ γ∥v − v′∥,

where we have used the fact that for any scalars a, b, c we have that |max{a, b} −max{b, c}| ≤596

|a− c| and the non-expansiveness of P .597

Case 2:598

Mv(sτ )−
(
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)
≥ 0.

For this case, first recall that for any τ ∈ F , −c(sτ , aτ ) > λ for some λ > 0.599

Mv(sτ )−
(
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)
≤ Mv(sτ )−

(
R(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)
− c(sτ , aτ )

≤ R(sτ , aτ ) + c(sτ , aτ ) + γPπs′sτP
av(s′)

−
(
R(sτ , aτ ) + c(sτ , aτ ) + γmax

a∈A
Pas′sτ v

′(s′)

)
≤ γmax

a∈A

∣∣Pπs′sτPa (v(s′)− v′(s′))
∣∣

≤ γ |v(s′)− v′(s′)|
≤ γ ∥v − v′∥ ,

again using the fact that P is non-expansive. Hence we have succeeded in showing that for any600

v ∈ L2 we have that601 ∥∥∥∥Mv −max
a∈A

[v(·, a) + γPav′]
∥∥∥∥ ≤ γ ∥v − v′∥ . (18)

Gathering the results of the three cases gives the desired result.602

To prove part ii), we make use of the following result:603

Theorem 5 (Theorem 1, pg 4 in [15]) Let Ξt(s) be a random process that takes values in Rn and604

given by the following:605

Ξt+1(s) = (1− αt(s)) Ξt(s)αt(s)Lt(s), (19)
then Ξt(s) converges to 0 with probability 1 under the following conditions:606
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i) 0 ≤ αt ≤ 1,
∑
t αt = ∞ and

∑
t αt <∞607

ii) ∥E[Lt|Ft]∥ ≤ γ∥Ξt∥, with γ < 1;608

iii) Var [Lt|Ft] ≤ c(1 + ∥Ξt∥2) for some c > 0.609

To prove the result, we show (i) - (iii) hold. Condition (i) holds by choice of learning rate. It therefore610

remains to prove (ii) - (iii). We first prove (ii). For this, we consider our variant of the Q-learning611

update rule:612

Qt+1(st, at) = Qt(st, at)

+ αt(st, at)

[
max

{
MQt(st, at),R(st, at) + γmax

a′∈A
Qt(st+1, a

′)

}
−Qt(st, at)

]
.

After subtracting Q⋆(st, at) from both sides and some manipulation we obtain that:613

Ξt+1(st, at)

= (1− αt(st, at))Ξt(st, at)

+ αt(st, at)

[
max

{
MQt(st, at),R(st, at) + γmax

a′∈A
Qt(st+1, a

′)

}
−Q⋆(st, at)

]
,

where Ξt(st, at) := Qt(st, at)−Q⋆(st, at).614

Let us now define by615

Lt(sτk , a) := max

{
MQ(sτk , a),R(sτk , a) + γmax

a′∈A
Q(s′, a′)

}
−Q⋆(st, a).

Then616

Ξt+1(st, at) = (1− αt(st, at))Ξt(st, at) + αt(st, at)) [Lt(sτk , a)] . (20)

We now observe that617

E [Lt(sτk , a)|Ft] =
∑
s′∈S

P (s′; a, sτk)max

{
MQ(sτk , a),R(sτk , a) + γmax

a′∈A
Q(s′, a′)

}
−Q⋆(sτk , a)

= TϕQt(s, a)−Q⋆(s, a). (21)
Now, using the fixed point property that implies Q⋆ = TϕQ

⋆, we find that618

E [Lt(sτk , a)|Ft] = TϕQt(s, a)− TϕQ
⋆(s, a)

≤ ∥TϕQt − TϕQ
⋆∥

≤ γ ∥Qt −Q⋆∥∞ = γ ∥Ξt∥∞ . (22)
using the contraction property of T established in Lemma 1. This proves (ii).619

We now prove iii), that is620

Var [Lt|Ft] ≤ c(1 + ∥Ξt∥2). (23)
Now by (21) we have that621

Var [Lt|Ft] = Var

[
max

{
MQt(st, at),R(st, at) + γmax

a′∈A
Qt(st+1, a

′)

}
−Q⋆(st, a)

]
= E

[(
max

{
MQ(sτk , a),R(sτk , a) + γmax

a′∈A
Q(s′, a′)

}

−Q⋆(st, a)− (TQt(s, a)−Q⋆(s, a))

)2]

= E

[(
max

{
MQ(sτk , a),R(sτk , a) + γmax

a′∈A
Q(s′, a′)

}
− TQt(s, a)

)2
]

= Var

[
max

{
MQt(st, at),R(st, at) + γmax

a′∈A
Qt(st+1, a

′)

}
− TQt(s, a))

2

]
≤ c(1 + ∥Ξt∥2),

for some c > 0 where the last line follows due to the boundedness of Q (which follows from622

Assumptions 2 and 4). This concludes the proof of the Theorem.623
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Proof of Convergence with Linear Function Approximation624

First let us recall the statement of the theorem:625

Theorem 3 LICRA converges to a limit point r⋆ which is the unique solution to the equation:626

ΠF(Φr⋆) = Φr⋆, a.e. (24)

where we recall that for any test function ψ ∈ V , the operator F is defined by Fψ := R +627

γP max{Mψ,ψ}.628

Moreover, r⋆ satisfies the following:629

∥Φr⋆ −Q⋆∥ ≤ c ∥ΠQ⋆ −Q⋆∥ . (25)

The theorem is proven using a set of results that we now establish. To this end, we first wish to prove630

the following bound:631

Lemma 4 For any Q ∈ V we have that632

∥FQ−Q′∥ ≤ γ ∥Q−Q′∥ , (26)

so that the operator F is a contraction.633

Proof 4 Recall, for any test function ψ , a projection operator Π acting ψ is defined by the following634

Πψ := argmin
ψ̄∈{Φr|r∈Rp}

∥∥ψ̄ − ψ
∥∥ .

Now, we first note that in the proof of Lemma 1, we deduced that for any ψ ∈ L2 we have that635 ∥∥∥∥Mψ −
[
R(·, a) + γmax

a∈A
Paψ′

]∥∥∥∥ ≤ γ ∥ψ − ψ′∥ ,

(c.f. Lemma 1).636

Setting ψ = Q and ψ′ = Q′ it can be straightforwardly deduced that for any Q, Q̂ ∈ L2:637 ∥∥∥MQ− Q̂
∥∥∥ ≤ γ

∥∥∥Q− Q̂
∥∥∥. Hence, using the contraction property of M, we readily deduce638

the following bound:639

max
{∥∥∥MQ− Q̂

∥∥∥ ,∥∥∥MQ−MQ̂
∥∥∥} ≤ γ

∥∥∥Q− Q̂
∥∥∥ , (27)

We now observe that F is a contraction. Indeed, since for any Q,Q′ ∈ L2 we have that:640

∥FQ− FQ′∥ = ∥R+ γP max{MQ,Q} − (R+ γP max{MQ′, Q′})∥
= γ ∥P max{MQ,Q} − P max{MQ′, Q′}∥
≤ γ ∥max{MQ,Q} −max{MQ′, Q′}∥
≤ γ ∥max{MQ−MQ′, Q−MQ′,MQ−Q′, Q−Q′}∥
≤ γmax{∥MQ−MQ′∥ , ∥Q−MQ′∥ , ∥MQ−Q′∥ , ∥Q−Q′∥}
= γ ∥Q−Q′∥ ,

using (27) and again using the non-expansiveness of P .641

We next show that the following two bounds hold:642

Lemma 5 For any Q ∈ V we have that643

i)
∥∥ΠFQ−ΠFQ̄

∥∥ ≤ γ
∥∥Q− Q̄

∥∥,644

ii) ∥Φr⋆ −Q⋆∥ ≤ 1√
1−γ2

∥ΠQ⋆ −Q⋆∥.645
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Proof 5 The first result is straightforward since as Π is a projection it is non-expansive and hence:646 ∥∥ΠFQ−ΠFQ̄
∥∥ ≤

∥∥FQ− FQ̄
∥∥ ≤ γ

∥∥Q− Q̄
∥∥ ,

using the contraction property of F. This proves i). For ii), we note that by the orthogonality property647

of projections we have that ⟨Φr⋆ −ΠQ⋆,Φr⋆ −ΠQ⋆⟩, hence we observe that:648

∥Φr⋆ −Q⋆∥2 = ∥Φr⋆ −ΠQ⋆∥2 + ∥Φr⋆ −ΠQ⋆∥2

= ∥ΠFΦr⋆ −ΠQ⋆∥2 + ∥Φr⋆ −ΠQ⋆∥2

≤ ∥FΦr⋆ −Q⋆∥2 + ∥Φr⋆ −ΠQ⋆∥2

= ∥FΦr⋆ − FQ⋆∥2 + ∥Φr⋆ −ΠQ⋆∥2

≤ γ2 ∥Φr⋆ −Q⋆∥2 + ∥Φr⋆ −ΠQ⋆∥2 ,
after which we readily deduce the desired result.649

Lemma 6 Define the operator H by the following: HQ(s, a) =650 {
MQ(s, a), if MQ(s, a) > Φr⋆,

Q(s, a), otherwise,
651

where we define F̃ by: F̃Q := R+ γPHQ.652

For any Q, Q̄ ∈ L2 we have that653 ∥∥∥F̃Q− F̃Q̄
∥∥∥ ≤ γ

∥∥Q− Q̄
∥∥ (28)

and hence F̃ is a contraction mapping.654

Proof 6 Using (27), we now observe that655 ∥∥∥F̃Q− F̃Q̄
∥∥∥ =

∥∥R+ γPHQ−
(
R+ γPHQ̄

)∥∥
≤ γ

∥∥HQ−HQ̄
∥∥

≤ γ
∥∥max

{
MQ−MQ̄,Q− Q̄,MQ− Q̄,MQ̄−Q

}∥∥
≤ γmax

{∥∥MQ−MQ̄
∥∥ ,∥∥Q− Q̄

∥∥ ,∥∥MQ− Q̄
∥∥ ,∥∥MQ̄−Q

∥∥}
≤ γmax

{
γ
∥∥Q− Q̄

∥∥ ,∥∥Q− Q̄
∥∥ ,∥∥MQ− Q̄

∥∥ ,∥∥MQ̄−Q
∥∥}

= γ
∥∥Q− Q̄

∥∥ ,
again using the non-expansive property of P .656

Lemma 7 Define by Q̃ := R+ γPvπ̃ where657

vπ̃(s) := R(sτk , a) + γmax
a∈A

∑
s′∈S

P (s′; a, sτk)Φr
⋆(s′), (29)

then Q̃ is a fixed point of F̃Q̃, that is F̃Q̃ = Q̃.658

Proof 7 We begin by observing that659

HQ̃(s, a) = H
(
R(s, ·) + γPvπ̃

)
=

{
MQ(s, a), if MQ(s, a) > Φr⋆,

Q(s, a), otherwise,

=

{
MQ(s, a), if MQ(s, a) > Φr⋆,

R(s, ·) + γPvπ̃, otherwise,

= vπ̃(s).

Hence,660

F̃Q̃ = R+ γPHQ̃ = R+ γPvπ̃ = Q̃. (30)

which proves the result.661
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Lemma 8 The following bound holds:662

E
[
vπ̂(s0)

]
− E

[
vπ̃(s0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1

∥ΠQ⋆ −Q⋆∥ . (31)

Proof 8 By definitions of vπ̂ and vπ̃ (c.f (29)) and using Jensen’s inequality and the stationarity663

property we have that,664

E
[
vπ̂(s0)

]
− E

[
vπ̃(s0)

]
= E

[
Pvπ̂(s0)

]
− E

[
Pvπ̃(s0)

]
≤
∣∣E [Pvπ̂(s0)]− E

[
Pvπ̃(s0)

]∣∣
≤
∥∥Pvπ̂ − Pvπ̃

∥∥ . (32)

Now recall that Q̃ := R+ γPvπ̃ and Q⋆ := R+ γPvπ
⋆

, using these expressions in (32) we find665

that666

E
[
vπ̂(s0)

]
− E

[
vπ̃(s0)

]
≤ 1

γ

∥∥∥Q̃−Q⋆
∥∥∥ .

Moreover, by the triangle inequality and using the fact that F(Φr⋆) = F̃(Φr⋆) and that FQ⋆ = Q⋆667

and FQ̃ = Q̃ (c.f. (31)) we have that668 ∥∥∥Q̃−Q⋆
∥∥∥ ≤

∥∥∥Q̃− F(Φr⋆)
∥∥∥+ ∥∥∥Q⋆ − F̃(Φr⋆)

∥∥∥
≤ γ

∥∥∥Q̃− Φr⋆
∥∥∥+ γ ∥Q⋆ − Φr⋆∥

≤ 2γ
∥∥∥Q̃− Φr⋆

∥∥∥+ γ
∥∥∥Q⋆ − Q̃

∥∥∥ ,
which gives the following bound:669 ∥∥∥Q̃−Q⋆

∥∥∥ ≤ 2 (1− γ)
−1
∥∥∥Q̃− Φr⋆

∥∥∥ ,
from which, using Lemma 5, we deduce that

∥∥∥Q̃−Q⋆
∥∥∥ ≤ 2

[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr⋆
∥∥∥,670

after which by (33), we finally obtain671

E
[
vπ̂(s0)

]
− E

[
vπ̃(s0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr⋆
∥∥∥ ,

as required.672

Let us rewrite the update in the following way:673

rt+1 = rt + γtΞ(wt, rt),

where the function Ξ : R2d × Rp → Rp is given by:674

Ξ(w, r) := ϕ(s) (R(s, ·) + γmax {(Φr)(s′),M(Φr)(s′)} − (Φr)(s)) ,

for any w ≡ (s, s′) ∈ S2 and for any r ∈ Rp. Let us also define the function Ξ : Rp → Rp by the675

following:676

Ξ(r) := Ew0∼(P,P) [Ξ(w0, r)] ;w0 := (s0, z1).

677

Lemma 9 The following statements hold for all z ∈ {0, 1} × S:678

i) (r − r⋆)Ξk(r) < 0, ∀r ̸= r⋆,679

ii) Ξk(r
⋆) = 0.680

Proof 9 To prove the statement, we first note that each component of Ξk(r) admits a representation681

as an inner product, indeed:682

Ξk(r) = E [ϕk(s0)(R(s0, a0) + γmax {Φr(s1),MΦ(s1)} − (Φr)(s0)]

= E [ϕk(s0)(R(s0, a0) + γE [max {Φr(s1),MΦ(s1)} |z0]− (Φr)(s0)]

= E [ϕk(s0)(R(s0, a0) + γP max {(Φr,MΦ)} (s0)− (Φr)(s0)]

= ⟨ϕk,FΦr − Φr⟩ ,
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using the iterated law of expectations and the definitions of P and F.683

We now are in position to prove i). Indeed, we now observe the following:684

(r − r⋆)Ξk(r) =
∑
l=1

(r(l)− r⋆(l)) ⟨ϕl,FΦr − Φr⟩

= ⟨Φr − Φr⋆,FΦr − Φr⟩
= ⟨Φr − Φr⋆, (1−Π)FΦr +ΠFΦr − Φr⟩
= ⟨Φr − Φr⋆,ΠFΦr − Φr⟩ ,

where in the last step we used the orthogonality of (1 − Π). We now recall that ΠFΦr⋆ = Φr⋆685

since Φr⋆ is a fixed point of ΠF. Additionally, using Lemma 5 we observe that ∥ΠFΦr − Φr⋆∥ ≤686

γ∥Φr − Φr⋆∥. With this we now find that687

⟨Φr − Φr⋆,ΠFΦr − Φr⟩
= ⟨Φr − Φr⋆, (ΠFΦr − Φr⋆) + Φr⋆ − Φr⟩
≤ ∥Φr − Φr⋆∥ ∥ΠFΦr − Φr⋆∥ − ∥Φr⋆ − Φr∥2

≤ (γ − 1) ∥Φr⋆ − Φr∥2 ,

which is negative since γ < 1 which completes the proof of part i).688

The proof of part ii) is straightforward since we readily observe that689

Ξk(r
⋆) = ⟨ϕl,FΦr⋆ − Φr⟩ = ⟨ϕl,ΠFΦr⋆ − Φr⟩ = 0,

as required and from which we deduce the result.690

To prove the theorem, we make use of a special case of the following result:691

Theorem 6 (Th. 17, p. 239 in [5]) Consider a stochastic process rt : R× {∞} × Ω → Rk which692

takes an initial value r0 and evolves according to the following:693

rt+1 = rt + αΞ(st, rt), (33)

for some function s : R2d × Rk → Rk and where the following statements hold:694

1. {st|t = 0, 1, . . .} is a stationary, ergodic Markov process taking values in R2d695

2. For any positive scalar q, there exists a scalar µq such that E [1 + ∥st∥q|s ≡ s0] ≤696

µq (1 + ∥s∥q)697

3. The step size sequence satisfies the Robbins-Monro conditions, that is
∑∞
t=0 αt = ∞ and698 ∑∞

t=0 α
2
t <∞699

4. There exists scalars c and q such that ∥Ξ(w, r)∥ ≤ c (1 + ∥w∥q) (1 + ∥r∥)700

5. There exists scalars c and q such that
∑∞
t=0 ∥E [Ξ(wt, r)|z0 ≡ z]− E [Ξ(w0, r)]∥ ≤701

c (1 + ∥w∥q) (1 + ∥r∥)702

6. There exists a scalar c > 0 such that ∥E[Ξ(w0, r)]− E[Ξ(w0, r̄)]∥ ≤ c∥r − r̄∥703

7. There exists scalars c > 0 and q > 0 such that704 ∑∞
t=0 ∥E [Ξ(wt, r)|w0 ≡ w]− E [Ξ(w0, r̄)]∥ ≤ c∥r − r̄∥ (1 + ∥w∥q)705

8. There exists some r⋆ ∈ Rk such that Ξ(r)(r − r⋆) < 0 for all r ̸= r⋆ and s̄(r⋆) = 0.706

Then rt converges to r⋆ almost surely.707

In order to apply the Theorem 6, we show that conditions 1 - 7 are satisfied.708

Proof 10 Conditions 1-2 are true by assumption while condition 3 can be made true by choice of the709

learning rates. Therefore it remains to verify conditions 4-7 are met.710
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To prove 4, we observe that711

∥Ξ(w, r)∥ = ∥ϕ(s) (R(s, ·) + γmax {(Φr)(s′),MΦ(s′)} − (Φr)(s))∥
≤ ∥ϕ(s)∥ ∥R(s, ·) + γ (∥ϕ(s′)∥ ∥r∥+MΦ(s′))∥+ ∥ϕ(s)∥ ∥r∥
≤ ∥ϕ(s)∥ (∥R(s, ·)∥+ γ∥MΦ(s′)∥) + ∥ϕ(s)∥ (γ ∥ϕ(s′)∥+ ∥ϕ(s)∥) ∥r∥.

Now using the definition of M, we readily observe that ∥MΦ(s′)∥ ≤ ∥R∥+ γ∥Pπs′stΦ∥ ≤ ∥R∥+712

γ∥Φ∥ using the non-expansiveness of P .713

Hence, we lastly deduce that714

∥Ξ(w, r)∥ ≤ ∥ϕ(s)∥ (∥R(s, ·)∥+ γ∥MΦ(s′)∥) + ∥ϕ(s)∥ (γ ∥ϕ(s′)∥+ ∥ϕ(s)∥) ∥r∥
≤ ∥ϕ(s)∥ (∥R(s, ·)∥+ γ∥R∥+ γ∥ϕ∥) + ∥ϕ(s)∥ (γ ∥ϕ(s′)∥+ ∥ϕ(s)∥) ∥r∥,

we then easily deduce the result using the boundedness of ϕ and R.715

Now we observe the following Lipschitz condition on Ξ:716

∥Ξ(w, r)− Ξ(w, r̄)∥
= ∥ϕ(s) (γmax {(Φr)(s′),MΦ(s′)} − γmax {(Φr̄)(s′),MΦ(s′)})− ((Φr)(s)− Φr̄(s))∥
≤ γ ∥ϕ(s)∥ ∥max {ϕ′(s′)r,MΦ′(s′)} −max {(ϕ′(s′)r̄),MΦ′(s′)}∥+ ∥ϕ(s)∥ ∥ϕ′(s)r − ϕ(s)r̄∥
≤ γ ∥ϕ(s)∥ ∥ϕ′(s′)r − ϕ′(s′)r̄∥+ ∥ϕ(s)∥ ∥ϕ′(s)r − ϕ′(s)r̄∥
≤ ∥ϕ(s)∥ (∥ϕ(s)∥+ γ ∥ϕ(s)∥ ∥ϕ′(s′)− ϕ′(s′)∥) ∥r − r̄∥
≤ c ∥r − r̄∥ ,

using Cauchy-Schwarz inequality and that for any scalars a, b, c we have that717

|max{a, b} −max{b, c}| ≤ |a− c|.718

Using Assumptions 3 and 4, we therefore deduce that719

∞∑
t=0

∥E [Ξ(w, r)− Ξ(w, r̄)|w0 = w]− E [Ξ(w0, r)− Ξ(w0, r̄)∥] ≤ c ∥r − r̄∥ (1 + ∥w∥l). (34)

Part 2 is assured by Lemma 5 while Part 4 is assured by Lemma 8 and lastly Part 8 is assured by720

Lemma 9. This result completes the proof of Theorem 1.721

Proof of Proposition 1722

Proof 11 First let us recall that the intervention time τk is defined recursively τk = inf{t >723

τk−1|st ∈ A, τk ∈ Ft} where A = {s ∈ S, g(st) = 1}. The proof is given by establishing a724

contradiction. Therefore suppose that Mψ(sτk) ≤ ψ(sτk) and suppose that the intervention time725

τ ′1 > τ1 is an optimal intervention time. Construct the π′ ∈ Π and π̃ ∈ Π policy switching times726

by (τ ′0, τ
′
1, . . . , ) and (τ ′0, τ1, . . .) respectively. Define by l = inf{t > 0;Mψ(st) = ψ(st)} and727

m = sup{t; t < τ ′1}. By construction we have that728

vπ
′
(s)

= E
[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + . . .+ γm−l−1E

[
R(sτ ′

1−1, aτ ′
1−1) + γMπ1,π′

vπ
′
(s′, I(τ ′1))

]]]]
< E

[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + γMπ̃vπ

′
(sτ1)

]]]
We now use the following observation729

E
[
R(sτ1−1, aτ1−1) + γMπ̃vπ

′
(sτ1)

]
(35)

≤ max

{
Mπ̃vπ

′
(sτ1), max

aτ1∈A

[
R(sτk , aτk) + γ

∑
s′∈S

P (s′; aτ1 , sτ1)v
π(s′)

]}
. (36)
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Using this we deduce that730

vπ
′
(s) ≤ E

[
R(s0, a0) + E

[
. . .

+ γl−1E

[
R(sτ1−1, aτ1−1) + γmax

{
Mπ̃vπ

′
(sτ1), max

aτ1∈A

[
R(sτk , aτk) + γ

∑
s′∈S

P (s′; aτ1 , sτ1)v
π(s′)

]}]]]
= E

[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + γ

[
Tvπ̃

]
(sτ1)

]]]
= vπ̃(s)),

where the first inequality is true by assumption on M. This is a contradiction since π′ is an optimal731

policy for Player 2. Using analogous reasoning, we deduce the same result for τ ′k < τk after which732

deduce the result. Moreover, by invoking the same reasoning, we can conclude that it must be the733

case that (τ0, τ1, . . . , τk−1, τk, τk+1, . . . , ) are the optimal switching times.734

30


	I Appendix
	Full Algorithms
	Fuel Budget
	Ablation studies
	Ablation Study 2: Testing Different functional forms of the intervention costs
	Ablation Study 3: Benefits of LICRA in Smaller Intervention Region

	Analysis of LICRA Q-learning Variant
	Hyperparameter Settings
	Notation & Assumptions
	Proof of Technical Results


