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ABSTRACT

Diffusion models (DMs) require large annotated datasets for training, limiting
their applicability in medical imaging where datasets are typically smaller and
sparsely annotated. We introduce DiNO-Diffusion, a self-supervised method for
training DMs that conditions the generation process on image embeddings ex-
tracted from DiNO, a pretrained vision transformer. By not relying on anno-
tations, our training leverages over 868k unlabelled images from public chest
X-Ray (CXR) datasets. DiNO-Diffusion shows comprehensive manifold cover-
age, with FID scores as low as 4.7, and emerging properties when evaluated in
downstream tasks, allowing to generate semantically-diverse synthetic datasets
even from small data pools, demonstrating up to 20% AUC increase in clas-
sification performance when used for data augmentation. Results suggest that
DiNO-Diffusion could facilitate the creation of large datasets for flexible training
of downstream AI models from limited amount of real data, while also holding
potential for privacy preservation. Additionally, DiNO-Diffusion demonstrates
zero-shot segmentation performance of up to 84.4% Dice score when evaluating
lung lobe segmentation, evidencing good CXR image-anatomy alignment akin to
textual descriptors on vanilla DMs. Finally, DiNO-Diffusion can be easily adapted
to other medical imaging modalities or state-of-the-art diffusion models, allowing
large-scale, multi-domain image generation pipelines for medical imaging.

1 INTRODUCTION

Diffusion models (DMs) have recently emerged as robust and proficient foundational models in
medical imaging, exhibiting substantial capabilities in image generation, image enhancement, re-
construction, and segmentation (Kazerouni et al., 2023). The field of synthetic image generation
in particular has greatly shifted to text-to-image DMs, generating images that are nearly indistin-
guishable from real ones (Osorio et al., 2024; Chambon et al., 2022a; Ye et al., 2023; Aversa et al.,
2023; Pinaya et al., 2022) and facilitating remarkable zero-shot performance in segmentation and
classification tasks (Tian et al., 2023; Zhang et al., 2023a). However, DMs depend on the availabil-
ity of large datasets containing images paired with corresponding descriptors (usually text) to guide
the generation process, a requirement that presents a considerable obstacle in the medical domain
(Beddiar et al., 2023). Medical imaging datasets are typically small, contain free-form and inconsis-
tent annotations including captions, binary labels or segmentations, and are generally prohibitively
costly to compile and curate (Beddiar et al., 2023). To address these challenges, some works have
proposed pseudo-labeling with vision-language models (VLMs; Betker et al. (2023)) or have trained
lean mapping networks over frozen pretrained backbones to reduce the number of required annotated
samples (Li et al., 2023; Zhang et al., 2023b). However, despite their promise, pseudo-labelling ap-
proaches find limited applicability in the medical field given a lack of high-quality medical imaging
captioners (Beddiar et al., 2023). In addition, while some authors have successfully trained mapping
networks to bridge the gap between unimodal foundation models, they still require relatively large
annotated datasets to be trained (Beddiar et al., 2023).

These limitations represent important roadblocks for medical DMs. While the natural imaging lit-
erature focuses on saturating generation quality by improving the base architecture, optimization
process or condition alignment (Esser et al., 2024; Betker et al., 2023; Liu et al., 2024), the medi-
cal imaging community navigates these hurdles by leveraging smaller or custom-annotated datasets
(Chambon et al., 2022a; Ye et al., 2023; Osorio et al., 2024; Aversa et al., 2023; Pinaya et al., 2022).
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Figure 1: DiNO-Diffusion’s training (a) and evaluation (b) protocols. (a) the training image is both
embedded into latents z0 with a frozen (`) VAE, and processed by a frozen image encoder to
generate global tokens that act as condition cGLB . Then, the latents are noised at timestep zt and
fed along the condition to the UNet, which denoises the latent ẑ0. Then, the loss LLDM (z0, ẑ0) is
computed. (b) the trained UNet is used to produce: (b-i) “reconstructions” of a given image; (b-ii)
“interpolated” synthetic images from the embeddings of a source (cs) and a target (ct) real images
at interpolation fraction r; or (b-iii) segmentations, by iteratively merging latent attention maps.

Moreover, although mapping networks have found their footing in the diffusion literature with ap-
proaches such as ControlNet (Zhang et al., 2023b), these would still rely on large-scale medical
DMs trained with prohibitively extensive amounts of annotated images. In this context, applying
a self-supervised approach to DM training would be highly beneficial for medical image synthe-
sis. Self-supervision enables models to learn from unlabelled data, providing exceptional results in
multiple downstream tasks when used as image embedders (Caron et al., 2021; Oquab et al., 2023;
Pérez-Garcı́a et al., 2024; Dippel et al., 2024; Moutakanni et al., 2024).

With that in mind, we introduce DiNO-Diffusion, a novel self-supervised methodology for train-
ing medical DMs at scale which conditions the image generation process on image-derived tokens
extracted from a frozen DiNO model (Caron et al., 2021; Oquab et al., 2023), as opposed to tex-
tual descriptors. DiNO-Diffusion allows independence from existing annotations, circumventing the
limitations imposed by the scarcity and inconsistency of medical image labels. Moreover, it is ag-
nostic to the choice of DM architecture, medical imaging modality or optimization strategy. To test
this, a model was trained on a large corpus of open-source CXR data found in the literature which
do not share any common labeling or descriptor required to train regular DMs (e.g., text captions),
achieving low FID scores and high image quality. DiNO-Diffusion can generate medical images
despite using DiNO embeddings, which are derived from natural images. To test the alignment
between DiNO embeddings and generated images, several downstream evaluation tasks were per-
formed, comprising classification and segmentation, which addressed the model’s ability to improve
classification performance when adding synthetic data to a pool of real data or when fully replacing
real with synthetic data; and assessing whether a self-supervised DM can be used to create zero-shot
segmentation masks for distinct anatomical structures.

In summary, our main findings are as follows: (1) DiNO-Diffusion allows training large DMs given
its independence from specific architectures, imaging modalities, available annotations, dataset sizes
or optimization strategies. (2) DiNO’s embeddings are descriptive enough for image generation de-
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Images generated with DiNOv1-Diffusion Images generated with DiNOv2-Diffusion

(a
) 
R
ec
on
st
ru
ct
io
n

Real Image

(b
) 
In
te
rp
ol
at
io
n

Images generated by increasing interpolation fraction with DiNOv1-Diffusion

Images generated by increasing interpolation fraction with DiNOv2-Diffusion

Real Image 1 Real Image 2

Real Image 1 Real Image 2

Figure 2: Examples of generated images with DiNO-Diffusion. In the reconstruction experiment (a),
each row represents randomly generated examples from two base images within MIMIC and for both
DiNOv1- and DiNOv2-Diffusion, showing semantic variability. In the interpolation experiment (b),
each row depicts two real images and the result from generating synthetic images by interpolating
the embeddings incrementally for DiNOv1-Diffusion (b-top) and DiNOv2-Diffusion (b-bottom).

spite not being trained on medical images. Using DiNO’s global tokens seemed to bottleneck enough
information to introduce semantic variability during DiNO-Diffusion’s generation, thus avoiding
replication of the input data. (3) DiNO-Diffusion was used to generate semantically-diverse syn-
thetic datasets even from small data pools. These samples were used for data augmentation, im-
proving classification performance on different data regimes. In addition, training on only synthetic
data showed potential for mitigating privacy concerns. (4) DiNO-Diffusion can be leveraged for
zero-shot medical image segmentation through iterative attention map merging. This demonstrates
its ability to learn semantic coherence and its good alignment with anatomic structures. To our
knowledge, this is the first application of zero-shot segmentation applied to medical DMs.

2 METHODS

This Section explains the methodology employed for studying the self-supervised DM. In Section
2.1, the datasets used for training and evaluation are described. In Section 2.2, the model’s archi-
tecture and theoretical background is outlined. In Section 2.3, the designed mechanisms for self-
supervised conditioning are detailed. In Section 2.4, the evaluation protocol employed to benchmark
model performance is defined. Finally, in Section 2.5, the specific parameters used for model train-
ing and evaluation are enumerated. Figure 1 visually describes the training and evaluation pipeline.

2.1 DATA

To explore DiNO-Diffusion’s self-supervision capability, a large-scale dataset comprised of every
openly accessible CXR dataset found in the literature (de la Iglesia Vayá et al., 2023; Irvin et al.,
2019; Goldberger et al., 2000; Johnson et al., 2019; Demner-Fushman et al., 2015; Tabik et al.,
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2020; Jaeger et al., 2014; Candemir et al., 2014; Bustos et al., 2020; Cohen et al., 2021; Reis et al.,
2022; Shiraishi et al., 2000; Kermany et al., 2018; Cohen et al., 2020; Chowdhury et al., 2020;
Rahman et al., 2021; JF Healthcare, 2020; Nguyen et al., 2022; Pham et al., 2023; Zawacki et al.,
2019; Liu et al., 2020; Rahman et al., 2024; Fedorov et al., 2021)1 was collected, reaching over
1.2M total images from 21 distinct data providers. Three different subsets were taken from this
compound dataset for different purposes. Firstly, a subset comprising every dataset minus MIMIC-
CXR (Johnson et al., 2019) was selected for training the DiNO-Diffusion models. Their labels were
discarded and label balancing was not performed, resulting in 868 394 samples with a variety of
image sources, resolutions and patient characteristics. Secondly, MIMIC-CXR was used solely for
evaluating the model via two classification tasks (see Section 2.4). MIMIC-CXR is composed of
chest radiographs with free-text radiology reports, for which multi-label classification information
is available. The MIMIC-CXR dataset was preprocessed to match similar literature (Chambon et al.,
2022a) by discarding lateral views, by restricting the labels to those whose prevalence was of at least
4% (Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion, Pneumonia and Pneumoth-
orax), and by splitting its p10-p18 subsets for classifier training and leaving p19 as a held-out test
set. Finally, the third subset for the segmentation task relied on three small datasets containing an-
notated masks: the JSRT (N = 247), Montgomery (N = 138) and Shenzhen (N = 663) datasets
(Shiraishi et al., 2000; Jaeger et al., 2014).

2.2 GENERATIVE ARCHITECTURE - STABLE DIFFUSION

Latent Diffusion Models (LDMs) approach image generation as an iterative denoising process, trans-
forming pure noise xT into a defined image x0 over T steps with a parameterized DM ϵθ(zt, t, c),
where c represents an optional condition. LDMs address the prohibitive computational demands
of traditional DMs by reducing the dimensionality of the input. LDMs currently find active de-
velopment with ongoing research in different parameterised models, optimization strategies and
dimensionality reduction pipelines.

This study adopts the Stable Diffusion (SD) framework (version 1, Rombach et al. (2022)) as its
baseline. Despite being outperformed by more recent models and its output size limitation of
512x512 pixels, SD’s lightweight architecture, open-source nature, and community adoption makes
it ideal for our proof of concept. SD comprises a frozen variational autoencoder (VAE) and a
trainable conditional denoising UNet.

The VAE consists of an encoder (E) and a decoder (D). The encoder compresses fixed-size images
x ∈ RH×W×3 into a latent z = E(x) ∈ R(H/d)×(W/d)×k, where k = 4 is number of channels
extracted by the VAE and d = 8 is the downsampling factor. The decoder maps latents back to the
original image space x̂ = D(z). Stable Diffusion’s VAE has been shown to generalize to medical
data (Chambon et al., 2022a;b). The UNet serves as the diffusion component and uses a ResNet
architecture as its convolutional backbone, where the condition c is incorporated through attention
mechanisms (see Section 2.3).

With this model, training with conditional information involves two phases: the forward and reverse
diffusion processes. During the forward diffusion, an image x0 (or its latent representation z0) and
condition c are chosen. A timestep t is randomly selected (t ∼ U(1, ..., T )) so a noisy latent zt is
generated by mixing z0 with noise ϵ ∼ N (0, 1), resulting in a partially noised latent. The reverse
process uses the UNet to estimate the original noise ϵ from zt, t and c.

The network is optimized using the Mean Squared Error (MSE) loss between the predicted and
actual noise to adjust the weights of the UNet:

LLDM = Ez∼ϵ(x), c, ϵ∼N (0,1), t

[
||ϵ− ϵθ(zt, t, c)||22

]
(1)

After training, image synthesis begins with sampling a noisy latent zT ∼ N (0, 1), progressively
denoising it with condition c to obtain z0 so that ẑ0 = ϵθ(zT :0, c), and by using the VAE’s decoder,
so that x̂ = D(ẑ0) = D(ϵθ(zT :0, c)).

1Thanks, among others, to the National Library of Medicine, National Institutes of Health, Bethesda, MD,
USA.
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Table 1: AUC scores (mean ± SD; 5-fold cross-validation) for (a) data augmentation experiments
and (b) full synthetic trainings across DiNO-Diffusion variants, image synthesis strategies (recon-
struction, interpolation), real-to-synthetic ratios (rs) and data regimes (N ). The baseline (i.e., train-
ing with real data only) test performances are depicted at the top in light-blue. Bold values repre-
sent best performance improvement relative to the real-only baseline for each data regime, DiNO-
Diffusion model and synthesis strategy. Asterisks (*) represent statistical significance (p < 0.05).

Strategy rs ratio AUCN=50 ↓ AUCN=100 ↓ AUCN=500 ↓ AUCN=1000 ↓ AUCN=5000 ↓
Real data 1:0 (real-only) 0.548± 0.013 0.566± 0.047 0.682± 0.011 0.715± 0.005 0.747± 0.006

1:1 0.551± 0.037 0.602± 0.025 0.685± 0.012 0.724± 0.002 * 0.756± 0.002 *
1:5 0.564± 0.050 0.626± 0.016 0.706± 0.010 * 0.725± 0.005 0.756± 0.003 *
1:10 0.608± 0.024 * 0.618± 0.030 0.701± 0.014 0.719± 0.007 0.745± 0.012

R
ec

on
s-

tr
uc

tio
n

1:50 0.650± 0.020 * 0.651± 0.013 * 0.698± 0.009 0.699± 0.012 0.735± 0.006
1:1 0.540± 0.036 0.589± 0.033 0.676± 0.007 0.682± 0.011 * 0.686± 0.009 *
1:5 0.579± 0.033 0.625± 0.011 0.696± 0.013 0.706± 0.007 * 0.703± 0.007 *
1:10 0.589± 0.039 * 0.618± 0.018 0.709± 0.009 * 0.709± 0.003 0.693± 0.018 *

D
iN

O
v1

-D
iff

us
io

n

In
te

r-
po

la
tio

n

1:50 0.632± 0.015 * 0.644± 0.014 * 0.702± 0.013 0.716± 0.013 0.743± 0.004
1:1 0.515± 0.026 0.566± 0.015 0.692± 0.022 0.716± 0.008 0.747± 0.003
1:5 0.552± 0.036 0.608± 0.035 0.705± 0.004 * 0.714± 0.006 0.744± 0.004
1:10 0.611± 0.010 * 0.631± 0.029 0.705± 0.006 * 0.717± 0.005 0.745± 0.006

R
ec

on
s-

tr
uc

tio
n

1:50 0.617± 0.018 * 0.627± 0.016 * 0.700± 0.016 0.710± 0.005 0.744± 0.004
1:1 0.574± 0.043 0.603± 0.049 0.685± 0.009 0.698± 0.007 * 0.681± 0.011 *
1:5 0.580± 0.018 * 0.594± 0.053 0.657± 0.023 0.688± 0.011 * 0.710± 0.008 *
1:10 0.608± 0.025 * 0.622± 0.026 0.681± 0.017 0.694± 0.005 * 0.689± 0.021 *

(a
)D

at
a

A
ug

m
en

ta
tio

n

D
iN

O
v2

-D
iff

us
io

n

In
te

r-
po

la
tio

n

1:50 0.618± 0.020 * 0.649± 0.016 * 0.690± 0.024 0.703± 0.008 * 0.702± 0.013 *

1:1 0.546± 0.017 0.571± 0.046 0.667± 0.008 * 0.696± 0.010 * 0.730± 0.004 *
1:5 0.574± 0.059 0.610± 0.029 * 0.701± 0.007 0.724± 0.004 * 0.752± 0.005
1:10 0.625± 0.020 * 0.631± 0.025 * 0.701± 0.010 0.722± 0.005 0.753± 0.006

R
ec

on
s-

tr
uc

tio
n

1:50 0.655± 0.015 * 0.645± 0.011 * 0.689± 0.018 0.709± 0.014 0.746± 0.006
1:1 0.515± 0.029 0.491± 0.033 0.530± 0.035 * 0.546± 0.016 * 0.538± 0.020 *
1:5 0.525± 0.015 * 0.576± 0.037 0.686± 0.011 0.695± 0.008 * 0.531± 0.009 *
1:10 0.572± 0.023 * 0.574± 0.013 0.701± 0.005 * 0.706± 0.005 * 0.686± 0.005 *

D
iN

O
v1

-D
iff

us
io

n

In
te

r-
po

la
tio

n

1:50 0.635± 0.018 * 0.644± 0.015 * 0.705± 0.013 * 0.711± 0.011 0.736± 0.007
1:1 0.509± 0.025 * 0.564± 0.044 0.646± 0.021 * 0.649± 0.005 * 0.711± 0.004 *
1:5 0.523± 0.019 * 0.591± 0.048 0.684± 0.009 0.700± 0.007 * 0.728± 0.007 *
1:10 0.574± 0.034 0.610± 0.021 * 0.687± 0.012 0.695± 0.011 * 0.730± 0.006 *

R
ec

on
s-

tr
uc

tio
n

1:50 0.603± 0.033 * 0.626± 0.015 * 0.699± 0.014 * 0.708± 0.006 0.741± 0.006
1:1 0.546± 0.045 0.567± 0.019 0.553± 0.035 * 0.558± 0.015 * 0.533± 0.024 *
1:5 0.536± 0.030 0.593± 0.040 0.631± 0.029 * 0.669± 0.008 * 0.646± 0.016 *
1:10 0.551± 0.030 0.602± 0.035 0.668± 0.017 0.660± 0.014 * 0.680± 0.017 *

(b
)F

ul
lS

yn
th

et
ic

Tr
ai

ni
ng

D
iN

O
v2

-D
iff

us
io

n

In
te

r-
po

la
tio

n

1:50 0.610± 0.052 * 0.625± 0.009 * 0.672± 0.018 0.677± 0.005 * 0.714± 0.016 *

2.3 SELF-SUPERVISED CONDITIONING

LDMs condition image generation using a semantic tensor c to guide the diffusion process. This
tensor is usually obtained from a frozen transformer model fΦ that maps the label information into
a tensor c = fΦ(x) ∈ RS×N , where S is the token length (of variable size), N is the embedding di-
mension and x represents whichever input the embedder model requires (text, image, etc.). Although
the current diffusion literature has mainly focused on using textual descriptors as their main condi-
tioning strategy, other conditioning mechanisms have been employed (Aversa et al., 2023; Pinaya
et al., 2022; Zhang et al., 2023b).

In this work we explore conditioning using image-derived semantic descriptors. Specifically, a
vision transformer trained with the DiNO method (Dosovitskiy et al., 2021; Caron et al., 2021)
was used to produce a semantic description of the image to be generated. Vision transformers split
an image into small patches (usually P = 14px2 or P = 16px2) representing “visual words”
and operate over them using a standard transformer architecture. The model outputs a tensor of
tokens c = fΦ(x) ∈ RS×N comprising a class token cCLS ∈ RN , sometimes a pooler token
cPLR ∈ RN , sometimes a predefined amount R of register tokens cREG ∈ RR×N (Darcet et al.,
2024), and finally a series of L patch tokens cLCL ∈ RL×N , where L = H/Py ∗ W/Px. Finally,
the conditioning tensor outputted by the embedder was reduced to the available global information
cGLB = [cCLS , cPLR, cREG] before feeding it to the UNet, as upon initial exploration the patch
tokens contained too much local information of the original image x and led to trivial models that
learnt to reconstruct images from redundant information (see Section A.1). Figure 1-(a) visually
describes the training pipeline.

Conditioning image generation on image embeddings offers flexibility on generation as long as a
conditioning embedding exists. In this work, two simple generation strategies were explored, to
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Figure 3: FID scores over a MIMIC subset for DiNO-Diffusion every 2500 steps. Lower is better.

evaluate the model’s in-distribution and out-of-distribution performance, although more advanced
approaches could be devised:

Reconstruction-based image generation the “reconstruction” strategy consists in synthesizing im-
ages x̂ = D(ϵθ(zT :0, c)) from the global information of an existing real example (x, y), where y is
the image’s label, ŷ = y and fΦ(x) is the conditioning embedding as produced by DiNO. This re-
construction leverages DiNO-Diffusion’s large-scale pretraining to produce semantic variations over
the source image x. Exact replicas of x are prevented by design due to conditioning with the com-
pressed information from DiNO’s global embedding, causing a bottleneck. Figure 1 (b-i) depicts
the reconstruction process.

Interpolation-based image generation: the “interpolation” strategy uses the same image genera-
tion mechanism from above. The difference lies in the sampling method of the conditioning embed-
ding c, which is interpolated from two images (x1, y1), (x2, y2) so that ĉ = lerp(fΦ(x1), fΦ(x2), r),
where r ∈ [0, 1] is the interpolation fraction. This strategy attempts to generate synthetic images
from less sampled regions of the real data manifold, located between existing samples, following
approaches such as MixUp (Zhang et al., 2018). See Figure 1 (b-ii) for a visual depiction of this
strategy.

2.4 EVALUATION

This section details four different evaluation protocols used for benchmarking DiNO-Diffusion:

Image Quality & Checkpoint Selection: the Fréchet Inception Distance (FID; Heusel et al. (2017))
was used to quantify generation quality at multiple checkpoints for both variants of DiNO-Diffusion.
The FID scores computed for the data generated via the “reconstruction” strategy (see Section 2.3)
were used as a proxy for overall model performance. Similarly to Chambon et al. (2022a), FID
scores were computed over a 5k subset of MIMIC-CXR’s p19 dataset (Johnson et al., 2019), and are
reported every 2500 steps in Figure 3. Also following the same work, the FID score was computed
on the feature space of a pretrained domain-specific image encoder from TorchXrayVision (Cohen
et al., 2022) as opposed to the default Inception-V3 model, as the latter might not provide an accurate
measure of image quality when dealing with medical image data. Finally, the optimal checkpoint
for each DiNO-Diffusion model was the checkpoint with the lowest FID score.

Data Augmentation: this experiment explored DiNO-Diffusion’s ability to enhance the sample
size of a dataset by training a classification model on real and synthetic data using five-fold cross-
validation and testing on a held-out test set (MIMIC’s p19). For this purpose, MIMIC’s training
dataset (p10-p18) was subset into different data regimes with decreasing sample size Xn, with
n ∈ {10k, 5k, 1k, 500, 100, 50} samples in the subset. Given that MIMIC has multi-label anno-
tations, label balancing was performed by randomly selecting n/card(L) elements of each label
in the labelset L from X without replacement, ensuring sufficient representativity of all labels
within the training set. Smaller subsets were also enforced to be contained into bigger ones, so
that XNi+1

∈ XNi
. With Xn defined, synthetic data was created to increase sample size by gener-

ating partially-synthetic datasets X̂n with real-to-synthetic ratios of 1:1, 1:5, 1:10 and 1:50 for the
reconstruction- and interpolation-based synthesis (see Section 2.3). For the reconstruction experi-
ments, ratios larger than 1:1 represent several semantic variations of a single source image (x, y),
which aim at introducing realistic variance into the synthetic data while retaining the label-specific
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image features. The interpolation experiment addressed whether intermediate embeddings could
still be decoded into an image that retains label-specific features from both elements in the pair. For
this purpose, the sample pairs were enforced to have at least one label in common (see Section 2.3)
without repetition. When not all the labels are in common between the pair, the labels of the in-
terpolated example are set to the ones of the sample it is closest to, as defined by the interpolation
fraction r. Finally, in the case of not having enough unique pairs for a given split, some pairings
were repeated with different r.

Full Synthetic Training: this experiment explores whether test-set AUC drops when training a clas-
sifier solely on synthetic data, to address whether DiNO-Diffusion can serve as a privacy-preserving
synthetic replacement for real data. The generation strategies, data regimes, real-to-synthetic ratios
and 5-fold cross-validation settings from Section 2.4 were followed as evaluation strategy.

Zero-Shot Segmentation: this experiment investigates the model’s ability to learn semantic co-
herence by generating segmentation masks from the internal representations generated during the
DiNO-Diffusion’s UNet forward pass. For this purpose, the zero-shot segmentation approach from
DiffSeg (Tian et al., 2023) was followed, consisting of leveraging the self-attention weights from
each transformer block of the UNet and iteratively merging them based on their Kullback-Leibler
divergence. This methodology was applied both to DiNO-Diffusion and a vanilla SD model to gen-
erate lung lobe segmentation masks without further training. Using a combined dataset of 1,048
cases with ground truth annotations (See Section 2.1), candidate masks were evaluated by their Dice
score and selected via non-maximum suppression. The relevant hyperparameters (merging thresh-
old, timestep) as well as the best performing checkpoint were selected per model (see Section B.3).
Refer to Figure 1 (b-iii) for a visual depiction of the segmentation pipeline.

2.5 EXPERIMENTAL SETUP

The models were trained by adapting HuggingFace Diffusers’ script for training DMs (von Platen
et al., 2022). The DMs were trained for 100 epochs (∼ 140000 steps) using 4 H100 GPUs
per model, an aggregated batch size of 512 (bs = 64, gradient accumulation of 2 steps), 8-
bit Adam optimizer with constant lr = 10−4 and 1000-step warmup and xformers’ memory-
efficient attention (Lefaudeux et al., 2022). The specific versions of the DiNOv1 and DiNOv2
image encoder architectures used were “facebook/dino-vitb16” (Caron et al., 2021) and
“timm/vit-base-patch14-reg4-dinov2” (Darcet et al., 2024), respectively. The web-
dataset library (WebDataset Contributors (2021)) was used for storing and streaming data directly
from the bucket during all model trainings. The classification experiments were based on training
HuggingFace’s implementation of a “densenet121” for 150 max epochs using T4 GPUs with
batch size 64, AdamW optimizer with lr = 10−4 and weight decay of 10−5, a LR reduction-on-
plateau scheduler with patience 10 and early stopping after 25 epochs with no validation AUC im-
provement. For the checkpoint evaluation, a pretrained “densenet121-res224-all” (Cohen
et al. (2022)) was employed as feature extractor. All images followed the same minimal prepro-
cessing strategy before training or evaluation, similar to other works in the literature (Cohen et al.,
2022; Chambon et al., 2022a). Dynamic intensity values (uint8, uint16) were rescaled to uint8. Im-
ages were center-cropped with a 1:1 aspect ratio, resized to 512x512 pixels and padded areas were
removed. Minimal data augmentations were applied during all model trainings, including random
sharpening and affine transformations (5% shearing, 5% translation, 90%-140% scaling).

3 RESULTS

Image Quality & Checkpoint Selection: the FID scores were calculated every 2500 steps over a
subset of MIMIC’s p19 dataset following Chambon et al. (2022a). Both the DiNOv1 and DiNOv2
models converged relatively late, reaching scores of 4.7 and 6.4 at 80k and 120k steps, respectively.
The full FID scores for every checkpoint can be observed in Figure 3. DiNOv1-Diffusion leads
to lower FID scores when compared to DiNOv2-Diffusion. This is also evident by a slightly less
saturated synthetic images generated with DiNOv2-Diffusion when compared to the source real
images (see Figure 2). Additional generated examples are provided in Section A.2.

Data Augmentation: in this experiment, real and synthetic data were used in different proportions
to train DenseNet-121 classification models. Table 1-a and Figure 4-a provide the results of the
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Figure 4: Performance improvements for the Data Augmentation (a) and the Full Synthetic Training
(b) experiments. The horizontal line represents a 0% improvement over the mean (red dot) classifica-
tion performance when using real-data only (green bars) for each data regime and real-to-synthetic
ratio (rs) independently. Values above the dotted line represent performance improvement. The
vertical lines separate the different data regimes for easier comparison, where the performance of
DiNOv1-Diffusion (yellow palette) and DiNOv2-Diffusion (blue palette) are jointly displayed. In
(i), the results for the reconstruction experiment are explored, whereas (ii) depicts the results for the
interpolation experiment. Asterisks (*) represent statistical significance to real baseline (p < 0.05).

cross-validation trainings. The ’reconstruction’ workstream (see Section 2.3) depicts consistent im-
provements when used for data augmentation in all data regimes, with AUC increases up to approx-
imately 20% in small-data regimes. In some larger-data regimes (N ∈ [1000, 5000]), the addition
of large amounts of synthetic data slightly degraded performance, although never by a significant
margin (p > 0.05). The ’interpolation’ workstream (see Section 2.3) also depicts improvements
in smaller data regimes as compared to not using synthetic data, although it leads to a significant
performance degradation in large-data regimes (p < 0.05). Also, DiNO-Diffusion using DiNOv1
yields larger performance improvements compared to when using DiNOv2. This is always true for
both image synthesis strategies, except for the interpolation results on data regime Nreal = 100,
where the best test AUC is achieved with DiNOv2 for 1:50 rs ratio.

Full Synthetic Training: the test set results of the full synthetic trainings are shown in Table 1-
b and Figure 4-b. The data synthesised via the “reconstruction” strategy (see Section 2.3) using
DiNOv1-Diffusion provided good performance in almost all settings, where statistically significant
performance decreases only existed for the lowest rs ratio in the largest three data regimes. For
both “reconstruction” DiNO-Diffusion variants, training with sufficiently large rs ratios in small-
data regimes (Nreal ∈ [50, 100, 500]) led to significant performance improvements of up to 20%,
mirroring the data augmentation results (see Section 2.4). However, for the “interpolation” based
synthesis (see Section 2.3), this was only the case in the 1:50 ratio. Generally, the data synthesised
via the “interpolation” strategy did not reliably train the classifier in splits larger than Nreal = 1k
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Table 2: Segmentation performance, measured by mean Dice scores (%). The displayed values are
based on the hyperparameter configurations that led to best overall results.

Dataset Stable Diffusion 1.5 DiNOv1-Diffusion DiNOv2-Diffusion Fully Supervised
Threshold 0.5 0.05 0.05 -
Timestep 300 300 300 -
Grid size 32x32 16x16 16x16 -
Shenzhen 80.7± 15.9 84.2± 10.5 82.3± 15.7 98.3 (Xu et al., 2023)

JSRT 80.9± 12.1 88.4± 6.8 84.7± 11.3 97.9(Liu et al., 2022)
Montgomery 77.3± 8.8 78.3± 8.6 87.1± 3.4 97.7(Liu et al., 2022)

Combined 80.3± 14.2 84.4± 9.9 83.6± 13.6 -

for DiNOv1-Diffusion and Nreal = 500 for DiNOv2-Diffusion. Finally, DiNOv1-Diffusion yielded
larger performance improvements and statistical significance when compared to DiNOv2-Diffusion.

Zero-Shot Segmentation: the performance of the zero-shot experiments are shown in Table 2. Both
DiNOv1- and DiNOv2-Diffusion showed improvements of up to 10% Dice score when compared to
a vanilla SD v1.5 model while also presenting lower variance. When addressing individual results,
DiNOv1-Diffusion generated the best average Dice scores. Performance varied between datasets,
with Montgomery (Jaeger et al., 2014) producing the lowest Dice scores for both vanilla Stable
Diffusion and DiNOv1-Diffusion, but to the highest scores for the DiNOv2-based approach when
comparing the overall best model. It should be noted that the best model checkpoint for segmenta-
tion was significantly earlier than the one found in Section 3. Moreover, the optimal parameters for
DiffSeg were very similar for both self-supervised DMs, while the optimal merging threshold was
10x larger for the base SD model. Finally, non-optimal combinations of parameters produced sig-
nificant artifacts in the generated masks as shown in Figure 5 (b). Additional zero-shot segmentation
examples are provided in Section B.1 and an supplementary segmentation performance evaluation
across different model checkpoints can be found in Section B.2.

4 DISCUSSION

DMs are a cornerstone in modern foundation models, revolutionizing many tasks in Computer Vi-
sion. Their ability to generate high-quality images has caused a large scientific, economic and soci-
etal disruption, whose long-term repercussions are difficult to foresee (Liu et al., 2024). However,
despite their scientific and industrial utility, applying this technology in medical imaging is severely
limited by key challenges such as a lack of large-scale labeled datasets including high-quality textual
or non-textual descriptions (Kazerouni et al., 2023). Although this limitation might be temporary
due to current trends in AI data acquisition and improved dataset interoperability (Akhtar et al.,
2024), it is not clear whether the prevalent text-to-image generative recipe (Rombach et al., 2022) is
optimal for medical applications.

Some approaches employing DMs in medical data exist. Chambon et al. (Chambon et al., 2022a)
trained an SD architecture on the MIMIC-CXR dataset (Johnson et al., 2019) with good synthesis
fidelity, reporting low FID scores and high accuracy scores on several downstream tasks including
classification, report generation and image retrieval. However, their approach is severely limited on
the size of the development dataset (300k images) and the low quality of accompanying captions.
In histopathology, multiple authors have proposed applying DMs for image generation (Ye et al.,
2023; Osorio et al., 2024). For instance, Aversa et al. relied on a custom-annotated dataset of
large histopathology slides with segmentation masks representing different tissue subtypes within
the slide and employed timestep unravelling to generate images larger than the typical 512px2.
However, their approach heavily relied on a closed-source, custom-annotated dataset, and timestep
unraveling might be impractical in other medical imaging modalities. In contrast, Xu et al. (Xu
et al., 2024) take a similar approach as the one proposed here, and train a DM conditioned only on
an image encoder’s cCLS for histopathology image synthesis. However, their method was partially
supervised, as it relied on training additional label-specific DMs for cCLS generation. Besides being
compute intensive, their method fails to leverage the emerging data augmentation and segmentation
capabilities that a self-supervision DM training conveys. Finally, Pinaya et al. (Pinaya et al., 2022)
trained an LDM on a large dataset of 31740 3D Brain MRI images from UK BioBank. However,
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(3) Bubble artifacts(2) Oversegmentation(1) Undersegmentation
(b) Common failure cases(a) Example segmentation mask

Mask predictionGround truthInput image

Figure 5: (a) Example segmentation masks generated by the best DiNOv1-Diffusion model and
(b) common failure cases. Failures are caused by sub-optimal hyperparameters: (1) incomplete
segmentation, often observed in early checkpoints or high thresholds; (2) oversegmentation, usually
due to low merge thresholds; (3) bubble-like artifacts, mostly observed in later checkpoints.

despite the scale of this dataset, the fragmentation of clinical labels forced the authors to condition
the DM with simplified clinical variables such as age, sex, ventricular volume, and brain volume.

DiNO-Diffusion addresses the data limitations in medical imaging by conditioning the image gen-
eration process on the images themselves. This allows training DMs on unlabelled data, which
is more abundant in the medical field. The resulting DiNO-Diffusion models demonstrated good
manifold coverage, as indicated by low FID scores, and exhibited notable properties in several
downstream tasks. Firstly, adding synthetic data using the “reconstruction” strategy improved per-
formance across most configurations. However, performance gains diminished as more real data
became available, which is to be expected. Secondly, the “interpolation” strategy degraded perfor-
mance in higher data regimes. We hypothesize that, although the generated images qualitatively
resemble plausible images (see Figure 2-b), naı̈vely interpolating embeddings did not ensure that
the interpolated labels corresponded to the decoded image’s features, thereby hurting classification
performance. We leave to future work the exploration of more sophisticated interpolation strate-
gies. Thirdly, full synthetic training demonstrated that synthetic data can replace real data while
preserving privacy, and even improve performance in small-data regimes, when used in abundance.
Finally, DiNO-Diffusion’s zero-shot segmentation outperformed a vanilla SD architecture. This is
remarkable given that the dataset used to train the vanilla SD model was several orders of magni-
tude larger. Despite DiNO-Diffusion’s performance, conditioning the synthesis process on image
embeddings has theoretical advantages and disadvantages. This type of conditioning relaxes the
need for annotations, enabling the collection of larger datasets for model training, and has proven
effective across various tasks. However, usage of an image-conditioned model is fundamentally
different from text-based approaches, as image generation requires conditioning on an image. Still,
this circular dependency between input and output could be advantageous in some use cases, such
as data augmentation or privacy-preserving data sharing.

These advantages and disadvantages evidence room for improvement. Firstly, DiNOv1-Diffusion
outperformed DiNOv2-Diffusion both quantitatively and qualitatively, despite the larger data pool
used to train the DiNOv2 image encoder (Oquab et al., 2023). This suggests that using domain-
specific encoders (Cohen et al., 2022; Pérez-Garcı́a et al., 2024; Moutakanni et al., 2024), or even a
combination of different image encoders (Esser et al., 2024; Liu et al., 2024) could further improve
these results. Secondly, DiNO-Diffusion would benefit from more recent diffusion architectures
found in the literature (Esser et al., 2024; Liu et al., 2024; Betker et al., 2023). Thirdly, generation
based on other descriptors, such as text, could be enabled by using external networks to map the im-
age embedding space to the text embedding (Zhang et al., 2023b; Li et al., 2023). Finally, the failure
cases found in the zero-shot segmentation workstream require adapting the DiffSeg methodology to
datasets with different characteristics, including image-level hyperparameter optimization, further
attention-merging strategies, or using DiNO’s attention maps to better locate anatomic structures.

In conclusion, while diffusion models have significantly impacted the Computer Vision community
with broad scientific, economic, and societal implications, their application to medical imaging is
constrained by data and annotation scarcity. Our DiNO-Diffusion approach addresses this problem
by conditioning the image generation on the images themselves, eliminating the need for extensive
annotations. The approach shows promising results in manifold coverage, data augmentation, pri-
vacy preservation and zero-shot segmentation. Finally, this work underscores the need for innovative
solutions in medical imaging to fully leverage the potential of DMs in this space.
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LeCun, Matthew Muckley, Maxime Oquab, Marie-Pierre Revel, and Maria Vakalopoulou. Ad-
vancing human-centric ai for robust x-ray analysis through holistic self-supervised learning. arXiv
preprint arXiv:2405.01469, 2024.

Ha Q. Nguyen, Khanh Lam, Linh T. Le, Hieu H. Pham, Dat Q. Tran, Dung B. Nguyen, Dung D. Le,
Chi M. Pham, Hang T. T. Tong, Diep H. Dinh, Cuong D. Do, Luu T. Doan, Cuong N. Nguyen,
Binh T. Nguyen, Que V. Nguyen, Au D. Hoang, Hien N. Phan, Anh T. Nguyen, Phuong H. Ho,
Dat T. Ngo, Nghia T. Nguyen, Nhan T. Nguyen, Minh Dao, and Van Vu. Vindr-cxr: An open
dataset of chest x-rays with radiologist’s annotations. Scientific Data, 9(1):429, Jul 2022. ISSN
2052-4463. doi: 10.1038/s41597-022-01498-w.
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APPENDIX

A IMAGE GENERATION

A.1 RECONSTRUCTIONS FROM ENTIRE DINO EMBEDDINGS

Initial explorations showed that the DiNO encodings (c) need to be compressed before feeding them
as conditioning during DiNO-Diffusion training. As depicted in Figure 6, when using the entire
DiNO image embedding (c) for conditioning, the model can learn to utilize the information richness
of the DiNO encoding to reconstruct the initial CXR image with exceptional detail. This richness
can likely be attributed to the various patch tokens (cLCL) that the whole DiNO encoding includes,
since they retain local information about the corresponding image patch, but also how it relates to the
remaining patches in the image. In addition, Figure 6 further shows how the information gathered in
the DiNO encoding seems to be sufficient to allow our model to reconstruct images from modalities
that have never been seen during the DiNO-Diffusion training (only CXR).

Further supporting this, 7 shows the reconstructions yielded by the model trained with patch tokens,
when the condition has half the tokens from an image and half the tokens from another image. In this
scenario, the regions corresponding to the patch tokens from Image A are reconstructed according
to image A, while the equivalent occurs for the regions corresponding to patch tokens of Image B.
The abrupt transition in the final image, clearly depicts how the model trained with patch tokens
learns a one-to-one correspondence between each patch token and its corresponding image patch, as
opposed to any global understanding of the underlying image domain.

Considering these two experiments would not be applicable for image data augmentation purposes.
In this work, we show that the latter is only achievable if the conditional information is limited to
the tokens that gather global information from the image (cGLB).

A.2 RECONSTRUCTION AND INTERPOLATION FROM NON-STANDARD IMAGES

DiNO-Diffusion yields high-quality reconstructions and interpolations, which we have shown to be
applicable for data augmentation and possibly privacy preservation purposes. Nevertheless, when
the base real images include non-standard elements, like ECG-electrodes, cables or support devices

Real Image Real Image DiNO ReconstructionsDiNO Reconstructions

Figure 6: Examples of DiNOv1-Diffusion reconstructions when the training (and inference) is conditioned on
the entire DiNO embedding (c) rather than just the global information (cGLB). Specific checkpoint showed
here is after 110k training steps. Note that the whole DiNO encoding seems to encode enough information
to enable the reconstruction of images from modalities that have never been seen during the DiNO-Diffusion
training (only CXR), like brain MRI, mammography and even natural imaging.
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Image A Image B Synthetic Image
Mask of 

DiNO Patch Tokens

Figure 7: Examples of DiNOv1-Diffusion reconstructions when the training (and inference) is conditioned on
the entire DiNO embedding (c) rather than just the global information (cGLB). Specific checkpoint showed
here is after 40k training steps. Here the inference uses a conditioning DiNO embedding with local patches
deriving from two different image. As depicted by the mask, the first half of the patch tokens refer to Image
A, while the second half to Image B. The final reconstruction is an image with an abrupt transition between
accurate reconstructions of each half of Image A and B. This experiment evidences how this training setting
leads to the model learning a simple one-to-one reconstruction of each patch token, as opposed to any global
understanding of the underlying image space.

like pacemakers, the synthetic variants can become less realistic. Figure 8 highlights a few of these
examples and their variants when using both DiNOv1 and DiNOv2. Particularly in Figure 8a, note
how not only anatomical variance but also device location and morphological variance is introduced
into the reconstructions. While some of these variants might retain high-quality, the extent to which
this variance is still realistic can only be accurately determined by subject experts. We leave this
supplementary study as future work.

Figure 9 presents a more extensive collection of both successfully and poorly segmented examples
from multiple datasets and DiNO-Diffusion variants. There are apparent difference between the dif-
ferent datasets, with Montgomery in particular tending to be oversegmented, while Shenzhen and
JSRT are undersegmented. This coincides with observations made about hyperparameters as shown
in B.3, where the Montgomery dataset appears to require different hyperparameters for optimal per-
formance. As shown in particular on the well-performing Montgomery-cases, both models produce
good results even for deformed images. While the lung lobes can be segmented well, it appears that
the heart is rarely clearly detected. Whether this is a result of higher difficulty of segmentation for
the heart, as compared to the often clearly contrasted lung lobes, or an artifact of the training data,
where the heart might often not be completely present, remains subject to further research.

B SEGMENTATION

B.1 MORE SEGMENTATION EXAMPLES

B.2 MODEL CHECKPOINTS

Segmentation performance for both models, as shown in Figure 10, consistently peaks relatively
early during training. This indicates that reconstructive performance indicated by FID-score is not
strongly correlated to segmentation capabilities. The DiNOv1-based model reaches peak perfor-
mance after less than 20k steps, while DiNOv2 reaches highest average Dice-score slightly later,
between 20k and 30k steps. This difference in best observed performance, albeit much earlier dur-
ing training, is consistent with the observed progression of FID scores as seen in Figure 3. The
performative decrease slows down around 60k steps. There are notable differences in results be-
tween the three datasets. For both models, evaluation on the Montgomery leads to highest scores
earlier in training than for the other two models. This is possibly explained by domain specific
variance between the datasets, where longer training fits the JSRT and Shenzhen dataset distribution
better than that of Montgomery. While peak performance on Montgomery equals or even exceed
that of the other datasets, it’s lower bound also appears much lower than the other models’ bounds,
further suggesting a dataset-specific difference.

Figure 10 also reveals another noteable difference between datasets: both JSRT and Shenzhen show
a significant difference between median and mean performance, with the latter being lower across
most timesteps. This suggests a higher variance in image-level scores with a larger amount of good
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Variants generated with DiNOv1-Diffusion Variants generated with DiNOv2-DiffusionReal Image

Images genereated by increasing interpolation fraction with DiNOv1-Diffusion

Images genereated by increasing interpolation fraction with DiNOv2-Diffusion

Real Image 1 Real Image 2
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Figure 8: Failure cases of generated images with DiNO-Diffusion. In the reconstruction experiment (a), each
row represents randomly generated examples from two base images within MIMIC and for both DiNOv1-
Diffusion and DiNOv2-Diffusion, showing semantic anatomical variability but faulty reconstructions of the
pacemaker and ECG electrodes. In the interpolation experiment (b), each row depicts two real images and
the result from generating synthetic images by interpolating the embeddings incrementally for the DiNOv1-
Diffusion (b-top) and DiNOv2-Diffusion (b-bottom) settings. The sampling between the the two examples is
smooth but reconstructions closer to the image with the pacemaker look less realistic.

and bad outliers. Conversely, mean and dice scores for both models on Montgomery are very similar
across all checkpoints. A possible explanation is a potential larger homogeneity of images within
Montgomery, leading to a more narrow distribution of Dice scores. Because failed segmentation
on Montgomery at the overall optimal HP-configuration tends to be caused by oversegmentation, as
shown in Figure 9, it is also conceivable that the Dice metric punishes these cases less harshly, lead-
ing to more consistent scores. A further investigation into optimal metrics is warranted to confirm
this thesis.

B.3 SEGMENTATION HYPERPARAMETER EVALUATION

We show the segmentation performance for the two most relevant hyperparameters, merge threshold
and timestep for both models to select the optimal configuration as done in (Tian et al., 2023).
Other hyperparameters (anchor grid size, clustering based refinement) did not show meaningful
performance differences across a reasonable range of values and were kept at the default values.

As shown in Figure 11, the optimal merging threshold for both models can be found around 0.05
for the average dataset. Analysis of the individual datasets reveals large differences. Particularly
the Montgomery dataset produces better results at higher thresholds for both DinoV1 and DinoV2.
Conversely, JSRT requires a slightly lower threshold for optimal performance. Shenzhen matches
the average performance, which could be partially explained by it’s size, as it makes up the largest
portion of the three datasets. Understanding which specific image / dataset characteristic could better
inform the optimal threshold remains an interesting question.

Finally, different timesteps were evaluated in Figure 12. Results in very early steps (closer to 1000)
lead to bad results for all datasets. Optimal performance was achieved on a relatively large plateau
between timestep 100 to 500 and degrades sharply after timestep 600. This is in line with the results
presented in (Tian et al., 2023). As with the merge threshold, there are dataset-specific differences.
The Montgomery dataset leads to better results at higher timesteps, while JSRT peaks rather early.

The results of hyperparameter-tuning highlight the importance of careful parameters selection. Dif-
ferent datasets or data-distributions within the segmented data can require different hyperparame-
ters. A thorough investigation of dataset or even image-specific parameters detection poses a topic
for further research.
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DiNOv1 DiNOv2

Figure 10: Segmentation performance across model checkpoints.

DiNOv1 DiNOv2

Figure 11: Tuning of merging threshold across datasets. All results were produced at the same checkpoint and
timestep.

DiNOv1 DiNOv2

Figure 12: Tuning of timestep across datasets. All results were produced at the same checkpoint and threshold
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