
Supplementary material for Variational Automatic
Curriculum Learning for Sparse-Reward

Cooperative Multi-Agent Problems

Jiayu Chen 1], Yuanxin Zhang1, Yuanfan Xu1, Huimin Ma3,
Huazhong Yang1, Jiaming Song4, Yu Wang1, Yi Wu12\

1 Tsinghua University, 2 Shanghai Qi Zhi Institute,
3 University of Science and Technology Beijing, 4 Stanford University,

]jia768167535@gmail.com, \jxwuyi@gmail.com

All the source code can be found at our project website https://sites.google.com/view/
vacl-neurips-2021.

A Proofs

In order to prove Theorem 1, we introduce the following lemma, which uses Assumption 1.
Lemma 1. Let T (φ) = φ+ εf(φ) and q[T](ψ) the density of ψ = T (φ). Then

∇εL2(π, q[T])|ε=0 = −Eφ∼q(φ)[V (ψ, π) · trace(∇φ log p(φ)f(φ)> +∇φf(φ))] (7)

with L2(φ, π) as defined in Eq.(3).

Proof. The proof is largely based on [2]. Denote by pT−1(φ) the density of φ = T−1(ψ) when
ψ ∼ p(ψ), then:

L2(π, q[T]) = Eψ∼q[T](ψ)

[
V (ψ, π) log

p(ψ)

q[T](ψ)

]
= Eφ∼q(φ)

[
V (T (φ), π) log

p[T−1](φ)

q(φ)

]
(8)

and since ε only depends on T , we have:

∇εL2(π, q[T]) = Eφ∼q(φ)
[
V (T (φ), π)∇ε log p[T−1](φ) + log

p[T−1](φ)

q(φ)
∇εV (T (φ), π)

]
(9)

From Assumption 1, V (φ′, π) is constant within a small vicinity of φ; thus∇εV (T (φ), π)|ε=0 = 0;
hence

∇εL2(π, q[T])|ε=0 = Eφ∼q(φ)
[
V (T (φ), π) · ∇ε log p[T−1](φ)|ε=0

]
(10)

Define sp(φ) = ∇φ log p(φ); we have

∇ε log p[T−1](φ) = sp(T (φ))>∇εT (φ) + trace((∇φT (φ))−1 · ∇ε∇φT (φ)). (11)

When T (φ) = φ+ εf(φ) and ε = 0, we have

T (φ) = φ, ∇εT (φ) = f(φ), ∇φT (φ) = I, ∇ε∇φT (φ) = ∇φf(φ), (12)

where I is the identity matrix. Therefore:

∇εL2(π, q[T])|ε=0 = Eφ∼q(φ)
[
V (T (φ), π)(∇φ log p(φ)>f(φ) + trace(∇φf(φ)))

]
(13)

= Eφ∼q(φ)
[
V (T (φ), π) · trace(∇φ log p(φ)f(φ)> +∇φf(φ))

]
(14)

where the final equality represents an inner product with a trace.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://sites.google.com/view/vacl-neurips-2021
https://sites.google.com/view/vacl-neurips-2021

Theorem 1. Let T (φ) = φ+ εf(φ) where f is an element of some vector-valued RKHS of a positive
definite kernel k(φ, φ′) : Φ× Φ→ R, and q[T] the density of ψ = T (φ) when φ ∼ q, then

∇fL2(q[T], π)|f=0 = f∗(φ), (15)
where f∗(·) = Eφ′∈Q[V (φ′, π)(k(φ′, ·)∇φ′ log p(φ′) +∇φ′k(φ′, ·))].

Proof. LetHd = H×· · ·×H be a vector-valued RKHS, and F [f] be a functional of f . The gradient
∇fF [f] of F [·] is a function inHd that satisfies

F [f + εg] = F [f] + ε〈∇fF [f], g〉Hd +O(ε2). (16)

Define F [f] = Eφ∼q(φ)
[
V (φ+ f(φ), π)

(
log p[(φ+f(φ))−1](φ)− log q(φ)

)]
, we have

F [f + εg] = Eφ∼q(φ)
[
V (φ+ f(φ) + εg(φ), π) ·

(
log p[(φ+f(φ)+εg(φ))−1](φ)− log q(φ)

)]
(17)

= Eφ∼q(φ)
[
V (φ+ f(φ), π) ·

(
log p(φ+ f(φ) + εg(φ))− log q(φ) (18)

+ log det(I +∇φf(φ) + ε∇φg(φ))
)]

where V (φ+ f(φ), π) = V (φ+ f(φ) + εg(φ), π) for f ≈ 0, ε ≈ 0 from Assumption 1.

Then, we have that:
Eq[V (φ+ f(φ), π) ·

(
log p(φ+ f(φ) + εg(φ))− log p(φ+ f(φ))

)
] (19)

= ε · Eq[V (φ+ f(φ), π) · ∇φ log p(φ+ f(φ)) · g(φ)] +O(ε2) (20)

= ε · Eq[V (φ+ f(φ), π) · ∇φ log p(φ+ f(φ)) · 〈k(φ, ·), g〉Hd] +O(ε2) (21)

= ε · 〈Eq[V (φ+ f(φ), π) · ∇φ log p(φ+ f(φ)) · k(φ, ·), g〉Hd] +O(ε2), (22)
where the first equality uses the definition of functional gradient and second equality uses the
representation theorem for RKHS. Similarly, we also have that:

Eq[V (φ+ f(φ), π) ·
(

log det(I +∇φf(φ) + ε∇φg(φ))− log det(I +∇φf(φ))
)
] (23)

= ε〈Eq[V (φ+ f(φ), π) · trace((I +∇φf(φ))−1 · ∇φk(φ, ·))], g〉+O(ε2). (24)
Therefore, by combining Equation (22) and Equation (24), we have that

F [f + εg] = F [f] + ε〈∇fF [f], g〉Hd +O(ε2), (25)
where
∇fF [f] = Eφ∈Q[V (φ, π) · (k(φ, ·)∇φ log p(φ+ f(φ)) + trace((I +∇φf(φ))−1 · ∇φk(φ, ·))],

and taking f = 0 completes the proof.

B Additional Results

Pure Task Expansion Results on MPE: VACL contains entity progression in the result of Fig. 4.
To specifically study the performance of task expansion, we exclude entity progression module from
VACL and compare with baselines in Simple-Spread with n = 4 and Push-Ball with n = 2. For a
fair comparison, we also provide additional experiments to combine GoalGAN and AMIGo with the
initial knowledge of easy tasks. As show in Fig. 8, VACL without entity progression also outperforms
all the baselines in the two environments.

Figure 8: Comparison of baselines and VACL without entity progression on MPE (i.e., task expansion
only).

2

Additional Results on SVGD-Principled Update: We additionally conduct experiments to compare
VACL with the gradient-free version (Unif. noise) in the original Simple-Spread with n = 4 and
Push-Ball with n = 2. As shown in Fig. 9, VACL is comparable with the variant using gradient-free
exploration in Simple-Spread and the gap becomes significant in Push-Ball, which implies a gradient-
based update rule can explore more novel tasks than the simplified gradient-free method in harder
scenarios, which is consistent with what we find in the main paper.

Figure 9: Comparison of VACL and the gradient-free exploration method in Simple-Spread and
Push-Ball

VACL for Heterogeneous Agents: We add another experiment domain with heterogeneous agents
in Speaker-Listener (Fig. 10(a)), which is one of the basic tasks in the MADDPG [4] paper. This
task consists of two cooperative agents, a speaker and a listener, and three landmarks with different
colors. The speaker and listener obtain +1 reward when the listener covers the correct landmark.
However, while the listener can observe the relative position and color of the landmarks, it does not
know which landmark it should navigate to. Conversely, the speaker’s observation consists of the
correct landmark color, producing a communication output that the listener can observe. Thus, the
speaker must learn to output the landmark color based on the motions of the listener. The results in
Fig. 10(b) show that our algorithm can also work on the problems with heterogeneous agents.

(a) The Speaker-Listener task. (b) Comparison of VACL and other baselines in
Speaker-Listener.

Figure 10: We compare VACL with other baselines in Speaker-Listener. The results show that our
algorithm can also handle the problems with heterogeneous agents

3

C Environment Details

C.1 Environment Configurations

In Simple-Spread, agents get +4 reward when all the landmarks are occupied and get a reward of -1
when any agents collide with each other. The agents are only penalized by collision once at every
timestep. In addition, agents and landmarks are randomly generated in a square area with a side
length of 6 in the evaluation process. This is the same task as the Cooperative Navigation game in the
MADDPG paper [4]. We generate entities in a larger map to increase the difficulty. A larger scene
means it is more difficult for agents to get positive reward signals in the sparse-rewards setting. We
construct the Hard-Spread scenario by adding walls to separate the room into three parts. Agents
can observe the position of landmarks, but the walls are invisible. The Hard-Spread mentioned in
Fig. 5(b) is a 10× 2 rectangle.

In Push-Ball, there are n agents, n balls and, n landmarks. Agents will get a shared reward 2/n per
timestep when any ball occupies one landmark. If all of the landmarks are occupied, agents will get an
extra +1 reward. The collision penalty is the same as Simple-Spread. Entities are randomly generated
in a 4× 4 square area in the evaluation process. Push-Ball is our first proposed sparse-rewards task
based on the physical kernel of the particle world in the MADDPG [4] paper.

For the tasks in the particle-world environment, we evaluate the performances of our algorithm
and baselines with the average coverage of landmarks in the last five evaluation steps within every
episode.

In Lock-and-Return, if all the boxes are locked, agents get +0.2 reward. Moreover, agents can get
a success bonus of +1 if they return to their birthplaces after all the boxes are locked. We test
our algorithm and baselines on a floor size of 12, with sides twice as the standard hide-and-seek
environment. The environment is fully-observable in our setting for simplicity. In this task, we adopt
the mean return rate of agents for comparison in the last five evaluation steps.

In Ramp-Use, we hope the seeker to learn how to use ramps to enter the enclosed room and catch
the hider (Fig. 6). When the hider is spotted, the seeker gets a reward of +1. Otherwise, he gets -1.
The environment is fully-observable, and the hider is fixed in the room. We evaluate the performance
with the success rate of finding the hider in the last five steps.

C.2 Definition of φ and GetEasy(n)

φ is a vector that contains positions of agents and landmarks in Simple-Spread, and positions of
agents, balls, and landmarks in Push-Ball. In Lock-and-Return, it contains positions of agents and
boxes (without birthplaces). In Ramp-Use, we concatenate positions of the hider, boxes, and the ramp
to get φ. As for easy cases that generated by GetEasy(n), we consider those cases where agents
are near landmarks in Simple-Spread, and agents, balls, and landmarks are close to each other in
Push-Ball as easy tasks. In Lock-and-Return, easy cases have agents near birthplaces, and boxes
randomly placed near them. In Ramp-Use, easy cases have the ramp right next to the wall, and agents
located next to the ramp.

D Training Details

D.1 The Multi-Agent Particle-World Environment

In the two particle-world environments, Simple-Spread and Push-Ball, we use the same network
architecture with a self-attention mechanism (Fig. 11) as EPC [3]. The value network is divided
into two parts, which accepts observations of all the agents as input and output the V-value V. The
first part (right in Fig. 11), named observation encoder, is used to encode the observation of agent j
into fi(oj). For each agent j, observation encoder takes observation oj as input and then applies an
entity encoder for each entity type to obtain embedding vectors of all the entities within this type.
We attend the entity embedding of agent j with all the entities of this type to obtain an attended
embedding vector. Then we concatenate all the entity embedding vectors. The observation of agent j,
oj,j , is directly forwarded to a fully connected layer. Finally, both the concatenated vectors and the
embedded oj,j are forwarded to a fully connected layer to generate the output, fi(oj). The output
size of entity encoder(green and purple in Fig. 11) and attention layer (orange in Fig. 11) is 64. The

4

second part (left in Fig. 11) accepts the encoding vector fi of all the agents. We attend all the agent
embedding fi(oj) to the global attention embedding denoted as gi (the orange box in the left part in
Fig. 11). The ith agent’s own observation is forwarded to a 1-layer fully connected network to get mi.
The final layer is a 2-layer fully connected network that takes the concatenation of mi and the global
attention embedding gi and outputs the final V value. The policy network has a similar structure as
the observation encoder fi(oi), which uses an attention module over the entities of each type in the
observation oi. We do not share parameters between the policy and value network.

Figure 11: Our population-invariant architecture for the value function.

Agents in Simple-Spread and Push-Ball are trained by PPO. It is worth mentioning that mini-batch
size should be changed when the entity size switches from nk−1 to nk due to memory requirements.
In Simple-Spread, we divide each batch into 2 mini-batch for n = 4 and 16 for n = 8. In Push-Ball,
the number is 2 for n = 2 and 8 for n = 4. In addition, easy tasks are different for each training
phase. We use the side length s to represent the tasks generated by GetEasy(nk). Entities in the
initial tasks are randomly generated in a s × s square region. We choose s = 0.6 for n = 4 and
s = 2.0 for n = 8 in Simple-Spread and Hard-Spread. And the side length in Push-Ball is s = 0.8 for
n = 2 and s = 1.6 for n = 4. Moreover, we define a threshold of convergence. When the evaluation
result of the current policy reaches 0.9, we start entity progression. More hyper-parameter settings
are shown in Tab. 4.

Table 4: VACL hyper-parameters used in the particle-world environment.

Hyper-parameters Value

Learning rate 5e-4
Discount rate (γ) 0.99
GAE parameter (λ) 0.95
Adam stepsize 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
PPO clipping 0.2
Parallel threads 500
PPO epochs 15
Reward scale parameter 0.1
Horizon 70 (Simple-Spread), 120 (Push-Ball)
Gradient step (ε) 0.6(Simple-Spread), 0.4 (Push-Ball)
Uniform noise (δ) 0.6(Simple-Spread), 0.4 (Push-Ball)
RBF kernel (h) 1
Bexp 150

D.2 The Hide-and-Seek Environment

In the hide-and-seek environment, we use the same attention mechanism as the architecture in [5] for
the policy and critic network. In addition, we train a recurrent policy and split data into chunks in HnS

5

which is similar to Bowen Baker et al. [1]. The size of hidden states is 64. In Lock-and-Return, the
initialization tasks in the active set are defined in the quadrant room where agents are near the boxes.
In Ramp-Use, the ramp is placed against the wall, and the seeker is near the ramp for initialization. It
is worth mentioning that we divide the floor into grids and define gradient step ε and uniform noise δ
with the number of grids in Hns. The grids are 60× 60 in Lock-and-Return and 30× 30 in Ramp-Use.
We set ε and δ to 1 in the two environments. More hyper-parameter settings are shown in Tab. 5.

Table 5: VACL hyper-parameters used in the hide-and-seek environment.

Hyper-parameters Value

Learning rate 5e-4
Discount rate (γ) 0.99
GAE parameter (λ) 0.95
Adam stepsize (ε) 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
PPO clipping 0.2
Parallel threads 300
PPO epochs 15
Chunk length 40 (Lock-and-Return),10 (Ramp-Use)
Mini-batch size 1(Lock-and-Return),2 (Ramp-Use)
Horizon 60
RBF kernel (h) 1
Bexp 200

D.3 Additional Implementation Details

Diversified Queue: We use two fixed-size queues to maintain Qact and Qsol for computation and
memory efficiency. Note that SVGD naturally suggests a diversified data queue, which is our
implementation by default. Concretely, We define a distance measure for a task φ and a task set Q by
the average top-k minimum distance between φ and each element in Q, i.e.,

D(φ,Q) = mean (min (k; {‖φ− φ′‖ : φ′ ∈ Q})) ,

where k = 5 in this paper. Then when the size of Q exceeds the bound L, we remove samples w.r.t.
their intra-set distance measures:

Q ← Q \min (|Q| − L; {D(φj ,Q) : φj ∈ Q}) ,

We set the queue capacity L to 2000 for both Qact and Qsol. Note that this greedy strategy only
works when the overflow size |Q| − L is small, e.g., in our setting. When a large number of samples
overflows, the distances need to be synced during the deletion process. Finally, we also use standard
FIFO queue and don’t notice any significant performance drop even using a FIFO queue, which can
potentially be another practical alternative for even better computational efficiency.

The Ratio of Active and Solved Tasks: We follow the convention of curriculum learning to sample
more training tasks from Qact for effective training. The ratio of active and solved tasks that we use
in the training batch is 95% to 5%. We also compare VACL with a baseline version with uniform
sampling from Qact and Qsol (Uniform sampling) in Simple-Spread with n = 4 and Push-Ball with
n = 2. The results are shown in Fig. 12, where VACL performs slight better which is also consistent
with the principle of curriculum learning.

6

Figure 12: Comparison of VACL and the uniform sampling method in Simple-Spread and Push-Ball

References
[1] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and

Igor Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference
on Learning Representations, 2020.

[2] Qiang Liu and Dilin Wang. Stein variational gradient descent: a general purpose bayesian
inference algorithm. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 2378–2386, 2016.

[3] Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolutionary pop-
ulation curriculum for scaling multi-agent reinforcement learning. In International Conference
on Learning Representations, 2020.

[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

7

	Proofs
	Additional Results
	Environment Details
	Environment Configurations
	Definition of and GetEasy(n)

	Training Details
	The Multi-Agent Particle-World Environment
	The Hide-and-Seek Environment
	Additional Implementation Details

