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ABSTRACT

Despite great achievements in algorithm design for Personalized Federated Learn-
ing (PFL), research on the theoretical analysis of generalization is still in its early
stages. Some theoretical results have investigated the generalization performance of
personalized models under the problem setting and hypothesis in convex conditions,
which can not reflect the real iteration performance during non-convex training. To
further understand the real performance from a generalization perspective, we pro-
pose the first algorithm-dependent generalization analysis with uniform stability for
the typical PFL method, Partial Model Personalization, on smooth and non-convex
objectives. Specifically, we decompose the generalization errors into aggregation
errors and fine-tuning errors, then creatively establish a generalization analysis
framework corresponding to the gradient estimation process of the personalized
training. This framework builds up the bridge among PFL, FL and Pure Local Train-
ing for personalized aims in heterogeneous scenarios, which clearly demonstrates
the effectiveness of PFL from the generalization perspective. Moreover, we demon-
strate the impact of trivial factors like learning steps, stepsizes and communication
topologies and obtain the excess risk analysis with optimization errors for PFL.
Promising experiments on CIFAR datasets also corroborate our theoretical insights.
Our code can be seen in https://github.com/YingqiLiu1999/Understanding-the-
Stability-based-Generalization-of-Personalized-Federated-Learning.

1 INTRODUCTION

With the rapid development of data and model scales in Machine Learning, PFL effectively improves
local performance via flexible client cooperation with heterogeneous data. Although the studies of
algorithm design has made considerable progress in PFL, their theoretical analysis is still scarce. Due
to the data and training limitations in the real world, theoretical analysis of FL/PFL usually includes
two aspects: optimization properties and generalization properties. In this work, we mainly focus on
the generalization properties of PFL, which come from the overfitting gap between the training and
testing datasets.

Currently, the existing generalization analysis for PFL is mainly obtained in three ways: 1) high-
probability generalization bounds with concentration inequalities based on the PAC hypothesis
complexity like VC dimension complexity (Deng et al., 2020; Marfoq et al., 2022; Xie et al., 2024),
Rademacher complexity (Mansour et al., 2020); 2) information-theoretical distances between the
output hypothesis and the prior from PAC-Bayes generalization (Achituve et al., 2021; Zhang et al.,
2022); 3) the privacy-preserving ability of the change in output hypothesis when the algorithm
is exposed to attacks (Dai et al., 2022b). Most upper bounds above only depend on the problem
setting and hypothesis in the convex condition, which can not apply to the commonly used non-
convex functions such as neural networks and can not reflect the real iteration performance during
personalized training. In other words, they are weak at evaluating the effectiveness of algorithm
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Table 1: Main results on the upper generalization bounds of PFL. m is total nodes number, T is training
rounds, η is local learning stepsize, K is local learning step, n is the selected nodes number and λ is about
communication topology, σ is data hetegeneity and NC representation non-convex condition.

Tpye Reference Algorithm Analysis Tools m T η K n/λ σ NC

SGD,
FL

Hardt et al. (2016) SGD Uniform Stability ✓ ✓ ✓ × × × ✓
Chen et al. (2021) FedAvg Uniform Stability ✓ ✓ ✓ ✓ ✓ ✓ ×
Sun et al. (2024b) FedAvg On-average Stability ✓ ✓ × ✓ ✓ ✓ ✓
Sun et al. (2021) D-SGD Uniform Stability ✓ ✓ ✓ × ✓ × ✓
Zhu et al. (2022) D-SGD On-average Stability ✓ ✓ ✓ × ✓ × ✓

PFL

Deng et al. (2020) C-PFL VC Dimension Complexity ✓ × × × × × ×
Mansour et al. (2020) C-PFL Rademacher Complexity ✓ × × × × × ×
Zhang et al. (2022) C-PFL PAC-Bayes Complexity ✓ × × × × × ×

Ours C-PFL Uniform Stability ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ours D-PFL Uniform Stability ✓ ✓ ✓ ✓ ✓ ✓ ✓

design and hyperparameter selection while building the relationship between global collaboration and
local fine-tuning. Despite the optimization design above, the upper generalization bound of PFL has
a great significance with both communication topology and data heterogeneity. This insight offers a
deeper understanding of the fundamental nature of PFL. To this end, we aim to establish a framework
for algorithm-dependent generalization analysis in PFL, which is designed to align closely with the
training process and provide a clear and community-accessible foundation for further research.

Overall, we present the first algorithm-dependent generalization for the typical PFL method Partial
Model Personalization with uniform stability in non-convex conditions and evaluate the excess risk
for both Centralized PFL (C-PFL) and Decentralized PFL (D-PFL). Intuitively, each shared and
personalized update may introduce a specific impact on the generalization errors. Therefore, we
decompose the generalization errors into aggregation errors and fine-tuning errors, then establish a
generalization analysis framework corresponding to the gradient estimation process of the person-
alized training. From our analysis, some results can be concluded that larger learning steps, larger
learning rates, and denser network connections will hurt the generalization performance for both
C-PFL and D-PFL, meaning that better testing performance is the trade-off between communication
cost and computational efficiency. Besides, with different aggregation modes in the shared variables,
we demonstrate that C-PFL generalizes better than D-PFL, which aligns with the conclusion of the
generalized FL (Sun et al., 2023c). Moreover, with the analysis of data heterogeneity, we can clearly
see how PFL outperforms FL and Pure Local Training in the perspective of generalization. Combined
with the convergence analysis, we obtain the excess risk and find that personalized performance is
the trade-off between optimization and generalization.

We list our analysis with the existing bounds of SGD/D-SGD and PFL methods in Table 1. From
comparisons, our results innovatively achieve the biased gradient estimation from multi-local up-
dates and analyze the generalization interaction between personalized and shared variables during
aggregation and local training. In summary, our main contributions are as follows:

• New framework of generalization analysis for PFL under non-convex conditions. We
build up the first algorithm-dependent generalization analysis framework for PFL with the
biased gradient from multi-local updates. It is consistent with the personalized training
progress and bridges PFL, FL and Pure Local Training with the clever heterogeneity analysis,
which reveals the effectiveness of PFL for personalized aims. We also extend it to the
decentralized scenarios with different communication topologies.

• New results for upper generalization bounds and excess risks for PFL. Our algorithm-
dependent results achieve comparable bounds and reflect the iteration nature, effectiveness of
algorithm design as well as the hyperparameters selection of PFL. Then combined with the
optimization errors, we obtain the excess risk analysis and find that the better performance
is the trade-off between optimization and generalization.

• Massive experiments verify theoretical findings. Our experiments on CIFAR datasets
with different models under non-convex conditions strongly support our theoretical insights.
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2 RELATED WORK

Generalization for PFL. PFL is proposed to find the greatest personalized models for each client
(related work in Appendix A). Generalization analysis represents the performance in the unseen data
of a well-train model, which is defined as the difference between the population risk and empirical risk.
Various statistical methods have been introduced into PFL, including methods based on PAC-based
analysis, Differential Privacy analysis, and PAC-Bayes analysis. For PAC-based analysis, Deng et al.
(2020) derives the VC dimension complexity bound of a mixture of local and global models, and
finds the optimal mixing parameter. Mansour et al. (2020) derives the Rademacher complexity bound
of the clusters, data interpolation, and model interpolation. Chen et al. (2021) analyzed the stability
and excess risk of both FL and local SGD under different data heterogeneity, but failed to extend
them to the non-convex condition. For Differential Privacy analysis, Dai et al. (2022a) assumes that
the algorithm satisfies (ε, δ)-differentially private condition and proposes the lower generalization
bound with the noisy perturbation. For PAC-Bayes analysis, Zhang et al. (2022) gives an upper bound
of averaged generalization error on the Bayesian variational inference method and illustrates that the
convergence rate of the generalization error is minimax optimal up to a logarithmic factor.

Stability for generalization. The stability-based methods measure the sensitivity of the data
perturbation of an algorithm via uniform stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016),
Bayes stability (Li et al., 2019), model stability (Lei & Ying, 2020; Liu et al., 2017), on-average
stability (Lei et al., 2023; Sun et al., 2024b; Kuzborskij & Lampert, 2018), and so on. More
information can be seen from the introduction in Lei et al. (2023). For the generalization bounds in FL,
Lei et al. (2023) develop the stability analysis for minibatch SGD and local SGD for convex, strongly
convex and nonconvex problems. Sun et al. (2024b) show that the generalization performances of
FedAvg, FedProx and Scaffold are closely related to the data heterogeneity and the convergence
behaviors when training. Sun et al. (2023c) discuss the better generalization performance between
the Central FL and Decentralized FL. In decentralized training, Zhu et al. (2022) extend the stability-
based generalization to D-SGD and discuss the topology effect of it. Zhu et al. (2024) refine the
stability analysis for the minimax problem in a decentralized manner.

Nowadays, almost all upper generalization bounds of PFL based on the complexity theory ignore
the impact of algorithm design and the iteration nature. Therefore, we try to propose the stability-
based generalization analysis to answer how algorithm design and hyperparameter selection impact
the generalization capacity. Meanwhile, we extend the non-trivial analysis to D-PFL with various
communication network topologies. Extensive experiments also corroborate our theoretical findings.

3 PROBLEM FORMULATION

In this section, we first propose the problem setup for C-PFL and D-PFL. Then we present the uniform
stability for generalization error and combine it with convergence error to obtain the excess risk.

3.1 PROBLEM SETUP

Personalized Federated Learning. Compared to typical FL methods, PFL focuses on the average
minimization with the personalized models rather than the consensus one. Partial Model Personaliza-
tion is one of the most significant strategies in PFL, which decouples the model as the personalized
variables to satisfy the individual requirements and the shared variables to leverage the collective
knowledge. We consider the typical setting with m clients, where each client i owns the local training
data ξi and it satisfies the data distribution Di. For each client, the model parameter wi ∈ Rd are
partitioned into two parts: the shared variables u ∈ Rdu and the personalized variables vi ∈ Rdi

for i = 1, . . . ,m. To simplify the presentation, we denote V = (v1, . . . , vm) ∈ Rd1+...+dm . So the
full model on client i is denoted as wi = (u, vi). fi (such as cross-entropy function) denote the loss
function for each client, ξi is the specific data for client i. The Population Risk Minimization F of
PFL is defined as follows:

min
u,V

F (u, V ) :=
1

m

m∑
i=1

Fi (u, vi) , where Fi (u, vi) = Eξi∼Difi (u, vi; ξi) . (1)

From engineering purposes, we set the feature extraction layers (close to the input) as the shared
variables u and the linear classification layers (close to the output) as the personalized variables vi as
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Arivazhagan et al. (2019); Collins et al. (2021); Pillutla et al. (2022); Liu et al. (2024). Meanwhile,
we alternately update the shared variables and personalized variables to distinguish the generalization
effects between them explicitly. Algorithm 1 illustrates the specific process. We set ∇u as stochastic
gradients of the shared variables u and ∇v as stochastic gradients of the personalized variables vi,
respectively. Personalized variables vi first perform the local updating with the shared variables u
fixed in Line 2, then the shared variables u update with the personalized variables vi fixed in Line 5.

Algorithm 1: Local updating for PFL.
Input :Local steps K, local learning rate ηu and ηv ,

initialize ut
i,0 = ut, and vti,0 = vti .

Output :For each client, locally update ut+1
i , vt+1

i .
1 for local update round k = 0, 1, ...,Kv − 1 do
2 vti,k+1 ← vti,k − ηv∇vfi(u

t
i,0, v

t
i,k, ξ

t
i,k).

3 end
4 for local update round k = 0, 1, ...,Ku − 1 do
5 ut

i,k+1 ← ut
i,k − ηu∇ufi(u

t
i,k, v

t
i,Kv

, ξti,k).
6 end
7 ut+1

i ← ut
i,Ku

, vt+1
i ← vti,Kv

.

Algorithm 2: C-PFL and D-PFL.
Input :Total communication rounds T , number of

selected clients n, initial the shared and
personal variables u0, v0 = {v0i }ni=0.

Output :Personal solution uT and vT = {vTi }ni=0.
1 C-PFL:
2 for communication round t = 0 to T − 1 do
3 Sample clients |St| = n uniformly randomly and

distribute the shared variables ut.
4 for client i ∈ St in parallel do
5 ut+1

i , vt+1
i ← Local updating (ut

i, v
t
i )

6 end
7 ut+1 ← 1

n

∑
i∈st u

t+1
i .

8 end
9 D-PFL:

10 for communication round t = 0 to T − 1 do
11 for client i ∈ [m] in parallel do
12 ut+1

i , vt+1
i ← Local updating (ut

i, v
t
i )

13 end
14 Receive shared variables ut+1

i with matrix W :
ut+1
i,0 ←

∑
l∈G(i) wi,lu

t+1
i .

15 end

C-PFL and D-PFL. We consider both C-PFL
and D-PFL in Algorithm 2. For C-PFL, the
only central server first distributes the shared
variables ut to the n selected clients in Line
3, then aggregates the updated shared vari-
ables ut+1

i to ut+1 from the selected clients
in Line 7. Different from the general FL,
partial model personalization only aggregates
the shared variables ui in the central server,
while keeping the personal variables vi on the
client side. We focus on the case of the av-
eraged aggregation, which means αi = 1/n.
For D-PFL, it allows clients to communicate
with their neighbors in a peer-to-peer man-
ner without the central server. The commu-
nication can be modeled as an undirected
connected graph G = (N ,V,W ), where
N = {1, 2, . . . ,m} is the set of all clients,
V ⊆ N × N is the set of communication
channels, and the gossip/mixing matrix W
present as below records whether the com-
munication connects or not between any two
clients. Set Gi as the neighbors set for each
client in the undirected graph.
Definition 1 (The gossip/mixing matrix
(Nedic & Ozdaglar, 2009)). The gossip ma-
trix W = [wi,j ] ∈ [0, 1]m×m is assumed to
have these properties: (i) (Graph) If i ̸= j
and (i, j) /∈ V , wi,j = 0, otherwise, wi,j >
0; (ii) (Symmetry) W = W⊤; (iii) (Null
space property) null{I − W} = span{1};
(iv) (Spectral property) I ⪰ W ≻ −I. Un-
der these properties, the eigenvalues of W
satisfies 1 = λ1(W) > λ2(W) ≥ · · · ≥
λm(W) > −1. λ := max{|λ2(W)|, |λm(W))|} and 1 − λ ∈ (0, 1] is a spectral gap of W
measuring the speed of communication parameters converge to their average value (Sun et al., 2022).

3.2 STABILITY AND EXCESS RISK

Generalization Stability. Recalling the unseen data distribution Di in the population risk function
in Formula (1), we select the sample ξi from the local datasets Si and estimate the expectation to
represent the real distribution. The training process is rewritten as the Empirical Risk Minimization:

min
u,V

f(u, V ) :=
1

m

m∑
i=1

fi (u, vi) , where fi (u, vi) =
1

S
∑
ξi∈Si

[fi (u, vi; ξi)] . (2)

Assuming the joint datasets of local dataset Si as S, we consider a solution A(S) of a specific
algorithm A trained on S, the generalization error between the population risk in (1) and empirical
risk in (2) can be defined as εG = ES,A[F (A(S))− f(A(S))] = E[F (u, V )− f(u, V )]. This joint
impact caused by both the algorithm A and the datasets S may cause a bad performance from a
well-trained model on the testing dataset, which is called overfitting. Motivated by the previous
studies in Hardt et al. (2016), we use the uniform stability bound to explore the generalization
performance of PFL.

4



Published as a conference paper at ICLR 2025

Definition 2. (Uniform Stability) Considering a new joint dataset S̃, which differs from the vanilla
dataset S at most one data sample z. The ε-uniformly stability for algorithm A is defined as below:

sup
zj∼{Di}

E[f(u, V ; zj)− f(ũ, Ṽ ; zj)] ≤ ϵ. (3)

The generalization error can be bound by ϵG ≤ ϵ (Hardt et al., 2016), if the algorithm A satisfies the
ε-uniformly stability.

Excess Risk. Considering (u∗, V ∗) as the optimal model that can be achieved by the algorithm A on
the dataset S, the real test performance E[F (A(S))] can be measured by the excess risk as follows:

EE = E[F (A(S))]− E[f(u∗, V ∗)]

≤ E[F (u, V )− f(u, V )]︸ ︷︷ ︸
EG: generalization error

+E[f(u, V )− f(u∗, V ∗)]︸ ︷︷ ︸
EO: optimization error

. (4)

Actually, if the optimal parameter (u∗, V ∗) could fit the personalized datasets well, the loss function
E[f(u∗, V ∗)] will tend to zero when the training time is large enough. Therefore, the real risk
of the well-trained model (u, V ) on the test datasets can be bounded by the generalization and
optimization error. EG represents the performance risk of (u, V ) between the training datasets and
testing datasets, while EO represents the empirical risk between the theoretical optimum (u∗, V ∗)
and the obtained one (u, V ). Utill now, most existing studies about PFL focus on the optimization
error εO of general C-PFL and D-PFL, but there is still little work to discuss their generalization
nature. To further understand the optimization progress of the algorithm design and the iteration
nature of personalization, we provide a comprehensive analysis of their excess risks.

3.3 BASIC ASSUMPTIONS

Assumption 1 (Smoothness). For each client i = {1, . . . ,m}, the function F is continuously
differentiable. There exist constants Lu, Lv, Luv, Lvu such that for each client i = {1, . . . ,m}:

• ∇ufi(ui, vi) is Lu–Lipschitz with respect to ui and Luv–Lipschitz with respect to vi

• ∇vfi(ui, vi) is Lv–Lipschitz with respect to vi and Lvu–Lipschitz with respect to ui.
Assumption 2 (Bounded Variance). The stochastic gradients in both C-PFL and D-PFL have
bounded variance. That is to say, for all ui and vi, there exist constants σu and σv such that:

E
[∥∥∇ufi(ui, vi; ξi)−∇ufi(ui, vi)

∥∥2] ≤ σ2
u, (5)

E
[∥∥∇vfi(ui, vi; ξi)−∇vfi(ui, vi)

∥∥2] ≤ σ2
v . (6)

Assumption 3 (Partial Gradient Diversity). There exists a constant δ2u that reflects the data
heterogeneous degree:

∥∇ufi(u, vi)−∇ufi(u, V )
∥∥2 ≤ δ2u, ∀u, V.

Assumption 4 (G-Lipschitz). For A (S) ,A(S̃) ∈ Rd which are well trained by an ϵ-uniformly
stable algorithm A on dataset S and S̃, the personalized objective f(u, V ) satisfies G-Lipschitz
continuity between them:

∥f(A(S))− f(A(S̃))∥ ≤ G∥A(S)−A(S̃)∥. (7)

Assumptions 1, 2 and 3 are mild and commonly used in the convergence analysis of FL and PFL (Liu
et al., 2024; Chen et al., 2023; Shi et al., 2023a; Li et al., 2023a; Shi et al., 2023d; Pillutla et al., 2022;
Sun et al., 2022; Reddi et al., 2021; Li et al., 2025). Assumption 4 is a variant of the vanilla Lipschitz
continuity assumption, which is widely used in the uniform stability analysis (Elisseeff et al., 2005;
Hardt et al., 2016; Zhou et al., 2021; Zhu et al., 2022; Sun et al., 2023c; 2024a; Li et al., 2024a;b).

4 THEORETICAL ANALYSIS

In this section, we present the generalization analysis and the excess risk analysis for both C-PFL and
D-PFL. We state the main theoretical results and discussions as follows.
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4.1 STABILITY AND EXCESS RISK FOR CENTRALIZED PERSONALIZATION

Theorem 1 (Stability of C-PFL). Under Assumption 1∼ 4, let the active ratio per communication
round be n/m, and assume the learning rates satisfy ηu = O

(
1

tKu+k

)
= µu

tKu+k and ηv =

O
(

1
tKv+k

)
= µv

tKv+k . They decay per iteration τ = tK + k, where µu and µv are the specific

constants and satisfy µu ≤ 1
Lu

and µv ≤ 1
Lv

. Let U = supu,vi,zf(u, vi; z), then the generalization
bound of C-PFL satisfies:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ nUτ0

mS
+

(
TKu

τ0

)µuLu 2G(σu + δu)

mSLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2Gσv

mSLv
.

(8)

To simplify subsequent analysis, we assume µL = max{µuLu, µvLv} and K = max{Ku,Kv}. By

selecting τ0 =
[
2G((σu+δu)Lv+σvLu)

nULuLv

] 1
1+µL

(TK)
µL

1+µL , we can minimize the bound with τ0:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ 4

mS

[
G((σu + δu)Lv + σvLu)

LuLv

] 1
1+µL

(nUTK)
µL

1+µL . (9)

Remark 1 (Influencal factors of C-PFL). From the stability-based results above, severe data
heterogeneity (larger gradient diversity δu), more selected clients n and more local epochs Ku and
Kv increase the time of training on only different samples, which leads to a larger generalization gap
and worse generalization performance. In contrast, the generalization gap can be alleviated with
more total clients m and the number of samples S involved.
Remark 2 (Special cases of C-PFL). If we remove all personal variables vi, the problem (2)
degenerates to the classical FL problem FedAvg. The stability reduces to O

(
(nKuT )

µuLu
1+µuLu /m

)
by

removing the Kv and σv in the result, which is compatible with the upper bound O
(
(nKT )

µL
1+µL /m

)
of the stability of central FL algorithm FedAvg (Sun et al., 2023c) with multiple local update. That
is to say, the upper bound of the stability is only related to the training paradigm, no matter
whether training for the consensus model or the personalized models. This finding builds the bridge
between the stability of FL and PFL. If we remove all shared variables u, the stability of C-PFL
can be reduced to O

(
(nKvT )

µvLv
1+µvLv /mS

)
, which is the stability bound of the whole FL system

with partial participation ratio n/m and local updates Kv. For further consideration, we set full

participation n/m = 1 and only one local update Kv = 1, our results can degrade to O
(
T

µL
1+µL /S

)
on each client, which is aligned with the vanilla SGD in Hardt et al. (2016).

Table 2: Comparison with FL, PFL, Pure
Local Training.

Algorithm Generalization Bound

FL O
(

nUτ0
mS

+
(

TK
τ0

)µL
2G(σ+δg)

mSL

)
PFL

O
(
nUτ0
mS

+
(

TKu
τ0

)µuLu 2G(σu+δu)
mSLu

+
(

TKv
τ0

)µvLv

(1 + Luv
Lu

) 2Gσv
SLv

)
Local O

(
Uτ0
S

+
(

TK
τ0

)µL
2Gσ
SL

)

Personalization performs better than no per-
sonalization and Pure Local Training. Con-
sidering the impact of data heterogeneity, we
list the comparison of generalization bounds for
FL, C-PFL, and Pure Local Training in Table
2. When the data heterogeneity is more severe,
PFL significantly improves generalization capabil-
ities from no personalized methods by eliminating
the influence of the gradient diversity and outper-
forms Pure Local Training through collaboration
with other clients. Specifically, for the consensus
model w in FL, we assume that the global gradi-
ent diversity mainly from heterogeneity satisfies
1
m

∑m
i=1 ∥∇Fi (wi)−∇F (w)∥2 ≤ δ2g . Correspondingly, for the personalized model (u, vi), the

heterogeneity from the shared variables δu satisfy 1
m

∑m
i=1 ∥∇uFi (u, vi)−∇uF (u, V )∥2 ≤ δ2u

shown in the Assumption 3. When the data distribution is non-iid between each client (δg, δu ̸= 0),
PFL performs better than FL since the gradient diversities satisfy δ2u ≤ δ2g during personalized
training. As for the generalization performance of Pure Local Training, though it is not affected by the
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gradient diversities from data heterogeneity, the upper bound may be larger without the collaboration
among m clients, which is consistent with the empirical experience. This analysis builds up the bridge
among FL, PFL and Pure Local Training, which first demonstrates the effectiveness and necessity of
personalized design from the generalization perspective.

Remark 3 (Comparisons with generalization bounds of C-PFL). The generalization bounds compared
in Table 4 in Appendix B calculate the complexity of the PAC problem in infinite space as the
generalization error. Although considering the nature of the learning problem, they cannot analyze
the impact of algorithm design and personalized iterative nature. Therefore, we highlight our
contributions as follows: 1) conduct the generalization analysis in the non-convex condition, which is
based on the more realistic assumptions adapted to the neural networks; 2) analyze the effectiveness
of algorithm design and hyperparameters selection; 3) illustrate the error propagation between model
aggregation and local training with the iteration nature.

Corollary 1 (Excess risk of C-PFL.). Assuming that the number of dataset samples S is fixed
and combining with the convergence bounds of εO ≤ E

[
f(wT )− f(w⋆)

]
= O

(
1/
√
T
)

proposed

in Pillutla et al. (2022), the excess risk of C-PFL satisfies that EE ≤ E[F (A(S))] − E[f(w∗)] =

O
(
1/

√
T + (nKT )

µL
1+µL /m

)
.

Remark 4 (Influential factors of the excess risks for C-PFL). Assuming that the smoothness
constants L, the gradient variance σu and σv , the gradient diversity δu, and the total client number
m are fixed in a specific analysis, the excess risk of C-PFL is decided by the number of active clients
n, the local intervals Ku and Kv, the total communication rounds T . Therefore, we can adjust the
hyperparameters n, Ku, Kv and T to optimize the testing performance during training. The preferred
choice of the number of active clients n and the local intervals Ku and Kv are the same as that in the
stability analysis, but increasing the communication rounds T leads to better convergence but worse
generalization performance due to the training overfitting. That is to say, the better performance for
C-PFL is the trade-off between optimization and generalization.

4.2 STABILITY AND EXCESS RISK FOR DECENTRALIZED PERSONALIZATION

In this section, we first provide the stability analysis of PFL with the peer-to-peer communication in
the non-convex objectives. Then we combine its convergence performance to obtain the excess risk.

Theorem 2 (Stability for D-PFL). Under Assumption 1∼ 4, let clients communicate with each
other in a peer-to-peer manner, and assume the learning rates satisfy ηu = O

(
1

tKu+k

)
= µu

tKu+k

and ηv = O
(

1
tKv+k

)
= µv

tKv+k . They decay per iteration τ = tK + k, where µu and µv are the

specific constants and they satisfy µu ≤ 1
Lu

and µv ≤ 1
Lv

. Let U = supu,vi,zf(u, vi; z), then the
generalization bound of D-PFL satisfies:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ Uτ0

S
+

2(σu + δu)G

SLu

(
1 + 6

√
mκλ

m

)(
TKu

τ0

)µuLu

+

12
√
mκλσvLuv

mSLvLu

(
TKu

τ0

)µvLv

+
2σvG

SLv

(
TKv

τ0

)µvLv

.

(10)

where κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

and λ are the widely used coefficient to measure

different communication connections.

To simplify subsequent analysis, we assume µL = max{µuLu, µvLv} and K = max{Ku,Kv}. By

selecting τ0 =
[
2G(σu+δu)L

2
v(1+6

√
mκλ)+2GσvLuLuv(m+6

√
mκλ)

UmLuL2
v

] 1
1+µL

(TK)
µL

1+µL , we can minimize
the upper generalization bound:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ 4

S

[
(σu + δu)G

Lum
(1 + 6

√
mκλ) +

σvG

Lv
(1 +

6
√
mκλLuv

mLu
)

] 1
1+µL

(UTK)
µL

1+µL .

(11)
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Fully-connected Exponential Grid Ring

Figure 1: Illustration of various network topologies in DFL.

Remark 5 (Influential factors of the decentralized stability). The stability of D-PFL is impacted
by the number of samples S, total clients m, total iterations TKu and TKv, data heterogeneity δu
as well in the analysis of C-PFL. It is worth noting that it is also decided by the communication
topologies κλ in decentralized FL.Table 3 below and Figure 1 show the different topological diagrams
and their properties.

Table 3: κλ and Spectral Gap 1− λ of communication
topologies(Sun et al., 2023c; Zhu et al., 2024).

Network Topology κλ Spectral Gap 1− λ

Fully-connected 0 1
Disconnected 1 0

Ring O(m2) ≈ 16π2/3m2

Grid O(mlnm ) O(1/mlog2(m))
Exponential O(lnm) 2/(1 + log2(m))

For κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+

2α

λ ln 1
λ

, when λ → 1, the upper bound for

κλ is mainly decided by O
(
1/(λ

(
ln 1

λ

)
)
)
.

And when λ → 0, the upper bound for
κλ is mainly decided by O

(
1/(λ

(
ln 1

λ

)α
)
)
.

From the analysis above, we can clearly see
that denser communication topology with
a smaller κλ leads to better generalization
performance in D-PFL. Therefore, the fully
connected topology achieves the best gener-
alization performance of shared variables and is compatible with the central ones.
Remark 6 (Special cases of D-PFL). If we remove all personalized variables vi, the problem (2)
degenerates to the classical DFL algorithm DFedAvg. By removing all personal constants in the proof,
the stability of D-PFL reduces to O

(
(1 + 6

√
mκλ/m)

1
1+µuLu (KuT )

µuLu
1+µuLu

)
, which is compatible

with the upper bound of the stability of decentralized federated learning DFedAvg in Sun et al. (2023c)
of O

(
(1 + 6

√
mκλ/m)

1
1+µL (KT )

µL
1+µL

)
. The degradation analysis of the shared variables u is

the same as in C-PFL.
Remark 7 (Comparisons with generalization bounds of D-PFL). The mere generalization analysis
of D-PFL can be seen for Dis-PFL in Dai et al. (2022b), which acquires a generalization lower
bound through the lens of differential privacy with the inspiration in He et al. (2021). It describes the
relationship between the remaining model and generalization performance at each iteration point
and suggests that a more sparse network leads to better generalization performance. However, it
lacks of an understanding of the algorithm design, the impacts with different training parameters as
well as the communication topologies in decentralized scenarios.
Corollary 2 (Excess risk of decentralized partial model personalization). Assum-
ing that the number of dataset samples S is fixed and combining with the conver-
gence rates of εO ≤ E

[
f(wT )− f(w⋆)

]
= O

(
1/(1− λ)2

√
T
)

provided in Shi

et al. (2023a), the excess risk of D-PFL satisfies EE ≤ E[F (A(S))] − E[f(w∗)] =

O
(
1/(1− λ)2

√
T + (1 + 6

√
mκλ/m)

1
1+µL (KT )

µL
1+µL

)
.

Remark 8 (Influential factors of the decentralized excess risks). Our analysis shows that the
excess risk of D-PFL is highly influenced by the number of the local interval Ku and Kv, the total
communication rounds T , the total clients m, the smoothness constants L, the gradient variance
σu/v, the data heterogeneity δu, and the communication topologies λ and κλ. Assuming that the
total client number m is fixed under the specific algorithm and data distribution (with the fixed
smoothness constants L, the gradient variance σ and the data heterogeneity δu), we can adjust the
communication networks λ and kλ, local interval Ku and Kv to optimize the testing performance.
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A denser connection (smaller κλ and smaller 1
1−λ ) means better convergence performance and

generalization performance, but it brings more communication cost. The better choice for local
intervals Ku and Kv are the same as that in stability analysis. And the better testing performance of
D-PFL is a trade-off between the convergence errors and the generalization errors.

Remark 9 (Comparisions between the C-PFL and D-PFL). From the comparison between
Theorem 1 and Theorem 2, we can clearly see that C-PFL always converges and generalizes better
than D-PFL in theoretical analysis. The centralized one largely reduces the propagation of the
generalization error, which benefits from the regular averaging on a global server for a better
consensus of the shared variables and leads to better generalization. However, to achieve a more
reliable performance, the number of active clients n in C-PFL must satisfy at least a polynomial order
of m. Also, the communication burden on the central server becomes a big challenge in the training
process. It means that the high communication costs are unavoidable when the whole federated
system m gets larger. This conclusion is also consistent with the generalization analysis of the typical
FL and DFL in Sun et al. (2023c). Therefore, the suitable choice between C-PFL and D-PFL or the
choice of different communication topologies in real scenarios is a trade-off among communication
ability, communication cost and personalized performance.

5 EXPERIMENTS

In this section, we conduct extensive experiments to verify the theoretical findings. We first introduce
the typical setting for experiments, then present the empirical results and corresponding analysis.

5.1 EMPIRICAL SETUP

We conduct the experiments on CIFAR-10 datasets (Krizhevsky et al., 2009) in the Dirichlet distribu-
tion (Non-IID α = 0.3) with ResNet-18 (He et al., 2016) and CIFAR-100 datasets in the Pathological
distribution (Non-IID c = 20) with VGG-11 (Simonyan & Zisserman, 2014) for C-PFL and D-PFL.
Experiments on CIFAR-100 are in Appendix C.2. To verify the impacts of the key hyperparameters,
we follow Hardt et al. (2016) and study the parameter distance when disturbing only one data in
Figure 2a, the generalization gap of the difference between training and testing error in Figure 2b.
We explore the impact of the four factors: 1) Local Learning Epochs, 2) Local Learning Rates, 3)
Client Fraction / Communication topology, 4) Total Client Number. We keep the same sets for the
other factors for fairness. More implementations can be seen in Appendix C.

5.2 EMPIRICAL ANALYSIS

Both less local learning epochs and lower learning rates lead to better generalization perfor-
mance, but they affect the convergence speed more seriously. We discuss this phenomenon in the
first two columns for Learning Epoch and Learning Rate in Figure 2a-2b. Increasing local learning
epochs and learning rates means amplifying the model distance when learning on different samples.
It brings about a larger generalization error and more severe fluctuation.

More client participation and denser network connections in each communication round enlarge
the generalization gap, but they speed up the convergence rate to the same extent. We discuss
this phenomenon in the third column for Client Selection and Communication Topology in Figure
2a-2b. Increasing the fraction of client selection and choosing denser connection topologies means
more frequency in learning unique samples, which enlarges the generalization gap between the two
models with the disturbed datasets. This is aligned with our theoretical findings in Theorem 1, 2.
Thus, there is a trade-off between communication costs and personalized performance in real life.

A larger total participation of clients and a smaller number of local training samples increase
the generalization error and reduce the convergence speed simultaneously. We discuss this
phenomenon in the fourth column in Figure 2a-2b. Since the total data number on the dataset remains
the same, bigger participation clients mean fewer training samples per one. The generalization gaps
get worse with the number of clients increasing in Figure 2b.

C-PFL outperforms D-PFL in both generalization and convergence when their upper communi-
cation bandwidths are at the same level. We discuss this difference in the comparisons of each line
in Figure 2a-2b. Maintaining the maximum communication capacity of the busiest node, the central
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(a) Disturbed loss distance of C-PFL and D-PFL on CIFAR-10.
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(b) Testing and training loss distance of C-PFL and D-PFL on CIFAR-10.

Figure 2: Empirical results of C-PFL (first line) and D-PFL (second line) on CIFAR-10.

server in C-PFL mitigates the inconsistencies driven by the updates on different samples, consistent
with our theoretical results.

6 CONCLUSION

In this paper, we develop the first algorithm-dependent generalization analysis and the excess risk
analysis for PFL in both centralized and decentralized scenarios under non-convex conditions. It
builds up the bridge among PFL, FL and Pure Local Training, and demonstrates the effectiveness
of the personalized design from the generalization perspective. Compared with the previous works,
this analysis reveals the impact of algorithm design and hyperparameter selection on the iteration
properties. Combined with the convergence errors, we obtain the excess risk analysis for PFL. Various
experiments verify our theoretical findings.

Limitation. There are numerous avenues for future works: 1) Improve the generalization bounds
for PFL with the more advanced stability methods; 2) Discuss the lower bound and tightness of the
generalization of PFL to obtain the optimal training strategies for personalized training.
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In this part, we provide the supplementary materials to prove the main theorem.

• Appendix A: Related Work about PFL.

• Appendix B: Detailed Comparisons of Generalization.

• Appendix C: Implementation Details and Results for Experiments.

• Appendix D: Generalization Bounds for C-PFL and D-PFL.

A RELATED WORK ABOUT PFL.

Personalized Federated Learning. FL aims to improve model performance through collaboration
among users (Sun et al., 2023b;a; Shi et al., 2023b;d). PFL aims to produce the optimal personal-
ized models for each client via model decoupling (Arivazhagan et al., 2019; Collins et al., 2021),
knowledge distillation (Li & Wang, 2019; Lin et al., 2020), multi-task learning (Huang et al., 2021;
Shoham et al., 2019), model interpolation (Deng et al., 2020; Diao et al., 2020) and clustering
(Ghosh et al., 2020; Sattler et al., 2020). More details can be referred to the PFL survey (Tan et al.,
2022). Among them, the model decoupling method Partial Model Personalization, which divides the
model into shared variables and personal variables, has proved to achieve better performance than
full model personalization with fewer shared parameters. LG-FedAvg (Liang et al., 2020) relieves
the data variance and device variance with jointly learning compact local representations on each
device and a global model across all devices. FedPer (Arivazhagan et al., 2019), FedRep (Collins
et al., 2021) and FedBABU (Oh et al., 2021) set the feature extractor as the shared variable and
the linear classifiers as the personal variables. They are different from the optimization progress
between the shared representation and the private linear parts. Fed-RoD (Chen & Chao, 2021) trains
a global full model and many private classifiers with empirical risk minimization and balanced risk
minimization. Most theoretical analyses for Partial Model Personalization mainly focus on their
convergence performance. FedSim & FedAlt (Pillutla et al., 2022) provide the convergence analyses
in the general non-convex setting, while FedAvg-P & Scaffold-P (Chen et al., 2023) achieve linear
speedup respecting the number of the local steps. DFedSGPSM Li et al. (2023b) investigates the
convergence of DFL combined with SAM under non-convex conditions. DFedPGP (Liu et al., 2024)
presents the decentralized convergence bound in non-convex conditions under the directed graph
and PFedDST (Fan et al., 2025) proposes the selection method for this directed cooperation, while
DFedMDC & DFedSMDC (Shi et al., 2023a) focus on the convergence with the undirected network
following (Sun et al., 2022; Shi et al., 2023c; Li et al., 2023a; 2024a).

B DETAILED COMPARISON OF GENERALIZATION.

Table 4: Main results on the upper generalization bounds of PFL.

Algorithm Generalization Bound T K η n m

APFL,
(Deng et al., 2020)

O
(
2 (1− αi)

2
(L̂D(h̄

∗) +B
∥∥D −Di

∥∥
1
+ C

√
(d+ log(1/δ))/N)

)
+O

(
2α2

i (LDi
(h∗

i ) + 2C
√
(d+ log(1/δ))/Si +GλH(Si))

) ✓

MAPPER,
(Mansour et al., 2020) O

(
2L
(√

dc

m log em
dc

+
√

dlp
m log em

dl

)
+ 2

√
log 1

δ

m

)
✓

pFedBayes,
(Zhang et al., 2022) O

(
C2m

− 2β
2β+d log2δ

′
(m)

)
✓

FedAvg & LocalTraining,
(Chen et al., 2021) O

(
1
N +R2

)
& O(m/N) ✓ ✓ ✓ ✓ ✓

C-PFL (Ours) O
(

4
N

[
G(σuLv+σvLu)

LuLv

] 1
1+µL

(nUTK)
µL

1+µL

)
✓ ✓ ✓ ✓ ✓

Compared to the above generalization bounds for PFL, the proposed analysis has made the following
progress: 1) conduct the generalization analysis in the non-convex condition, which is based on the
more realistic assumptions adapted to the neural networks; 2) analyze the impacts of the algorithm
design and the hyperparameters selection of the number of samples S, the number of selected clients
n, total clients m, total iterations TKu and TKv and the local learning rates ηu and ηv; 3) illustrate
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the error propagation process between model aggregation and local training with the iteration nature,
which provides a reference for the choice of early stopping points when training.

APFL is a typical PFL method based on model interpolation, which aims to find the optimal
combination of the global model and the local model with the adaptive parameter αi to achieve a
better client-specific model. It derives the generalization bound of a mixture of local and global
models with the analysis of VC dimension complexity. Si, i = 1, 2, ..., n is the number of training
data at ith user, N = m1+ ...+mn is the total number of all data, Si to be the local training set drawn
from Di,

∥∥D −Di

∥∥
1
=
∫
Ξ

∣∣∣P(x,y)∼D − P(x,y)∼Di

∣∣∣ dxdy, is the difference between distributions

D = (1/n)
∑n

i=1 Di and Di, and h∗
i = argminh∈H LDi

(h).

MAPPER is also a model interpolation method combining local and global models to pursue the
better personalized results. It derives the generalization bound with the analysis of Rademacher
complexity. Hc is the hypotheses class for the central model, and Hl is the hypotheses class for the
local models. dc is the pseudo-dimension of Hc and dl is the pseudo-dimension of Hl. This bound
only depends on the average number of samples and not the minimum number of samples.

pFedBayes is a novel PFL method via Bayesian variational inference. Each client uses the aggre-
gated global distribution as prior distribution and updates its personal distribution by balancing the
construction error over its personal data and the KL divergence with aggregated global distribution.
It derives the generalization bound with the PAC-Bayes analysis. δ′ > δ > 1, and C1, C2 > 0 are
constants related to Hölder smooth β, the intrinsic dimension of data d, the number of hidden layers
L, the widths of neural network are equalwidth M , the balance parameter ζ between personalization
and global aggregation, and sample size of each client n.

FedAvg and LocalTraining are the most typical methods for FL and PFL. Though the gener-
alization analysis in (Chen et al., 2021) is not designed based on the PFL definition and not in
the non-convex condition, it concludes a surprising theorem that there exists a threshold of data
heterogeneity to decide whether FedAvg or LocalTraining could achieve the minimax optimal for
PFL. It derives the generalization bound for LocalTraining with uniform stability and the gen-
eralization bound for FedAvg with federated stability under strongly convex conditions. m rep-
resenets the client index, and N = n1 + + nm denotes the total number of training samples.
R2 := minw∈W

∑
i∈[m] ni∥w(i)

⋆ − w∥2/N measures the level of heterogeneity among clients
(here ∥∥ denotes the Euclidean distance). Compared with this analysis, we demonstrate how PFL
outperforms FL and Pure Local Training from the perspective of data heterogeneity, show how
hyperparameter selection affects the generalization bounds and discuss the theoretical performance
under the more commonly used non-convex conditions.

C APPENDIX FOR EXPERIMENTS.

C.1 IMPLEMENTATION DETAILS FOR EXPERIMENTS.

According to Definition 2, we construct distributed neighboring dataset S = {S1, ...,Sm} and
S̃ = {S̃1, ..., S̃m}, where each corresponding local dataset pair (Si, S̃i) only differs on one randomly
selected data sample. Then we deploy the same initial model (u, V ) with its local dataset pair (Si, S̃i)
to the local client i. To focus on the effect of the essential factors, the regularization methods such
as weight decay, data augmentations and dropout are ignored to prevent unnecessary impacts (Zhu
et al., 2024; Lei et al., 2021; Wang et al.). We keep the same experiment setting for all methods and
perform 300 communication rounds. The number of client sizes is 20. The client sampling radio is
0.2 in C-PFL, while each client communicates with 4 neighbors in D-PFL accordingly. The batch
size is 128 and the number of local epochs is 5. We set SGD (Robbins & Monro, 1951) as the base
local optimizer with a learning rate η = 0.1. We ran each experiment 3 times with different random
seeds and reported the mean accuracy with standard deviation for each method.

C.2 MORE EXPERIMENTS RESULTS OF STABILITY ON CIFAR-100.

We explore the impact of the four factors on CIFAR-100 in Figure 3 and 4: 1) Local Learning
Epochs, 2) Local Learning Rates, 3) Client Fraction / Communication Topology, and 4) Total Client
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Figure 3: Loss distance of C-PFL and D-PFL on CIFAR-100.
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Figure 4: Training loss distance of C-PFL and D-PFL on CIFAR-100.

Number. The empirical results on CIFAR-100 also verify that 1) Both less local learning epochs and
lower learning rates lead to better generalization performance, but they affect the convergence speed
more seriously; 2) More client participation and denser network connection in each communication
round enlarge the generalization gap, but they speed up the convergence rate to the same extent;
3) A larger total participation clients and a smaller number of local training samples increase the
generalization error and reduce the convergence speed simultaneously; 4) C-PFL outperforms D-PFL
in both generalization performance and convergence performance when their upper communication
bandwidths are at the same level.

C.3 MORE EXPERIMENTS RESULTS OF TEST ACCURACY AND TRAIN LOSS ON CIFAR.

We explore the impact of the four factors in testing accuracy on CIFAR-10 in Figure 5 and CIFAR-100
in Figure 7, and training loss on CIFAR-10 in Figure 6 and CIFAR-100 in Figure 8. The four factors
are the same as above. Testing accuracies correspond to the analysis of excess risk, effected by both
convergence error and generalization error. Training loss corresponds to the analysis of convergence
error, reflecting optimization properties.

D GENERALIZATION BOUNDS FOR C-PFL AND D-PFL.

In this section, we introduce our proof of the generalization bounds in the main context. We first
introduce the general lemmas for both C-PFL and D-PFL. Then we prove the uniform stability to
measure the generalization error for them. At the beginning of our proof, we list the important
variables used in the study as follows.
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Figure 5: Testing Accuracy of C-PFL and D-PFL on CIFAR-10.
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Figure 6: Training loss of C-PFL and D-PFL on CIFAR-10.
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Figure 7: Testing Accuracy of C-PFL and D-PFL on CIFAR-100.
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Figure 8: Training loss of C-PFL and D-PFL on CIFAR-100.
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Table 5: Some abbreviations of the used terms in the proofs.

Notation Description

wt
i,k = (ut

i,k, v
t
i,k) parameters at k-th iteration

wt = (ut, V t) parameters in round t with set S
∆t

u,k =
∑

i∈ [m] E∥u
t − ũt∥ stability difference of variables u

∆t
v,k =

∑
i∈ [m] E∥v

t
i − ṽti∥ stability difference of variables vi

F initial function value gap

D.1 PRELIMINARY LEMMAS

Lemma 1 (Mixing Matrix for Decentralized FL, Lemma 4, Lian et al. (2017)). For any t ∈ Z+,
the mixing matrix W ∈ Rn satisfies ∥Wt −P∥op ≤ λt, where λ := max{|λ2|, |λn(W )|} and for a
matrix A, we denote its spectral norm as ∥A∥op. Furthermore, 1 := [1, 1, . . . , 1]⊤ ∈ Rm and

P :=
11⊤

n
∈ Rn×n.

Lemma 2 (Stability for C-PFL). We follow the definition in (Hardt et al., 2016; Zhou et al., 2021)
to upper bound the uniform stability term for the shared and personalized variables u and vi after
round T in the central FL paradigm. The updated progress of the shared variables u is like the
vanilla FedAvg, where the local updates and server aggregation are conducted alternately. The
updated progress of the personalized variables vi is like the SGD with multiple local updates. Let
function f(wi) satisfies Assumption 4, the models wT

i = A(S) and w̃T
i = A(S̃) are generated after

T training rounds by the centralized method, we can bound their objective difference as:

E∥f(wT
i ; z)− f(w̃T

i ; z)∥

≤ nUτ0
mS

+GE
[
∥wT

i − w̃T
i ∥ | ξ

]
≤ nUτ0

mS
+GE

[
∥uT − ũT ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

] (12)

where U = supwi,z f(wi; z) = supu,vi,z f(u, vi; z) < +∞ is the upper bound of the loss and
τ0 = t0K + k0 is a specific index of the total iterations.

Proof. Let I represent the index of the first time to sample the perturbation sample z̃i∗,j∗ on the
dataset S̃i∗ . When t0K + k0 < I , ∆t0

k0
= 0. Then we define

P (ξc) = P (∆t0
k0

> 0) ≤ P (I ≤ t0K + k0).

Expanding the probability we have:

E∥f(wT
i ; z)− f(w̃T

i ; z)∥
= P ({ξ}) E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξ

]
+ P ({ξc}) E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξc

]
≤ E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξ

]
+ P ({ξc}) sup

wi,z
f(wi; z)

≤ GE
[
∥wT

i − w̃T
i ∥ | ξ

]
+ UP ({ξc})

≤ GE
[
∥uT − ũT ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

]
+ UP ({ξc}).

Before the j⋆-th data on i⋆-th client is sampled, the iterative states are identical on both S and S̃.
When the dataset S̃i∗ is selected, the perturbation sample z̃i∗,j∗ can be selected with probability 1/S.
Define χ as the event sampling dataset Si⋆ and the observation moment τ0 = t0K + k0. Then we
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have:

P ({ξc}) ≤ P (I ≤ t0K + k0)

≤
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k;χ) +

k0∑
k=0

P (I = t0K + k;χ)

=

t0−1∑
t=0

K−1∑
k=0

∑
χ

P (I = tK + k | χ)P (χ) +

k0∑
k=0

∑
χ

P (I = t0K + k | χ)P (χ)

=
n

m

(
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k) +

k0∑
k=0

P (I = t0K + k)

)

=
n(t0K + k0)

mS

=
nτ0
mS

.

The random active clients with the probability of n/m in the second equality.

Lemma 3 (Stability for D-PFL). We follow the definition in (Hardt et al., 2016; Zhou et al., 2021)
to upper bound the uniform stability term for the shared and personalized variables u and vi after
round T in the decentralized FL paradigm. Let function f(wi) satisfies Assumption 4, the models
wT

i = A(S) and w̃T
i = A(S̃) are generated after T training rounds by the decentralized method, we

can bound their objective difference as:

E∥f(wT
i ; z)− f(w̃T

i ; z)∥

≤ Uτ0
S

+GE
[
∥wT

i − w̃T
i ∥ | ξ

]
≤ Uτ0

S
+GE

[
∥uT

i − ũT
i ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

] (13)

Proof. For the D-PFL, the most part is the same as the proof for the central algorithms except the
probability P (χ) = 1 in a Decentralized Federated Learning setup (because all clients will participate
in the training). We bound their objective difference as:

E
[
∥f(wT ; z)− f(w̃T ; z)∥

]
≤ G

∑
i∈[m]

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]
+

Uτ0
S

. (14)

Lemma 4 (Upper Bound of Aggregation Gaps). According to Algorithm 2, the aggregation of
C-PFL is ut+1

i,0 = ut+1 = 1
n

∑
i∈St ut

i,Ku
, and the aggregation of D-PFL is ut+1

i,0 =
∑

j∈Ai
aiju

t
i,Ku

.
On both setups, we can upper bound the aggregation gaps by:

∆t+1
u,0 ≤ ∆t

u,Ku
,

∆t+1
v,0 = ∆t

v,Kv
.

(15)

Proof. For the personal variable vi, they are always kept locally without aggregation, which means
that vti,K = vt+1

i,0 . So it is obvious to see that vti,K − ṽti,K = vt+1
i,0 − ṽt+1

i,0 , which proves that
∆t+1

v,0 = ∆t
v,K . Then we prove the inequation for the shared variables u. We discuss it in central and

decentralized mode respectively.

(1) C-PFL setup (Acar et al., 2021).
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In centralized federated learning, we select a subset St in each communication round t. Thus we
have:

∆t+1
u,0 =

∑
i∈[m]

E∥ut+1
i,0 − ũt+1

i,0 ∥ =
∑
i∈[m]

E∥ut+1 − ũt+1∥

=
∑
i∈[m]

E∥ 1
n

∑
i∈St

(
ut+1
i − ũt+1

i

)
∥ =

∑
i∈[m]

E∥ 1
n

∑
i∈St

(
ut
i,Ku

− ũt
i,Ku

)
∥

≤
∑
i∈[m]

1

n
E

[∑
i∈St

∥ut
i,Ku

− ũt
i,Ku

∥

]
=
∑
i∈[m]

1

n

n

m

∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥

=
∑
i∈[m]

1

m

∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥ =
∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥ = ∆t
u,Ku

.

(2) D-PFL setup (Sun et al., 2023c).

In decentralized federated learning, we aggregate the models in each neighborhood. Thus we have:

∆t+1
u,0 =

∑
i∈[m]

E∥ut+1
i,0 − ũt+1

i,0 ∥ =
∑
i∈[m]

E∥
∑
j∈Wi

wij

(
ut
j,Ku

− ũt
j,Ku

)
∥

≤
∑
i∈[m]

∑
j∈Wi

wijE∥ut
j,Ku

− ũt
j,Ku

∥ =
∑
j∈[m]

∑
i∈Wi

wjiE∥ut
j,Ku

− ũt
j,Ku

∥

≤
∑
j∈[m]

E∥ut
j,Ku

− ũt
j,Ku

∥ = ∆t
u,Ku

.

The last equality adopts the symmetry of the adjacent matrix W = W⊤.

Lemma 5 (Decentralized Topologies Bounds of λ). For 0 < λ < 1 and 0 < α < 1, we have the
following inequality:

t−1∑
s=0

λt−s−1

(s+ 1)
α ≤ κλ

tα
, (16)

where κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

.

Proof. According to the accumulation, we have:
t−1∑
s=0

λt−s−1

(s+ 1)
α = λt−1 +

t−1∑
s=1

λt−s−1

(s+ 1)
α ≤ λt−1 +

∫ s=t

s=1

λt−s−1

sα
ds

= λt−1 +

∫ s= t
2

s=1

λt−s−1

sα
ds+

∫ s=t

s= t
2

λt−s−1

sα
ds

≤ λt−1 + λ
t
2−1

∫ s= t
2

s=1

1

sα
ds+

(
2

t

)α ∫ s=t

s= t
2

λt−s−1ds

≤ λt−1 + λ
t
2−1 1

1− α

(
t

2

)1−α

+

(
2

t

)α
λ−1

ln 1
λ

.

Thus we have LHS ≤ 1
tα

(
λt−1tα + λ

t
2−1 t

(1−α)21−α + 2α

λ ln 1
λ

)
. The first term can be bounded

as λt−1tα ≤
(
α
e

)α 1

λ(ln 1
λ )

α and the second term can be bounded as λ
t
2−1t ≤ 2

eλ ln 1
λ

, which

indicates the selection of the constant κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

. Furthermore,

if 0 < α ≤ 1
2 < 1, we have κλ ≤ 1

λ(ln 1
λ )

α + 2
√
2

eλ ln 1
λ

+
√
2

λ ln 1
λ

≤ max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ (2+e)

√
2

eλ ln 1
λ

=

O
(
max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ 1

λ ln 1
λ

)
with respect to the constant λ.
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D.2 GENERALIZATION BOUNDS FOR C-PFL

Lemma 6 (Selecting the Same Sample). Under the Assumption 1 and Assumption 4, the gradi-
ent for the shared and personalized variables satisfy gtu,i,k = ∇uFi(u

t
i,k, v

t
i,Kv

; z) and gtv,i,k =

∇vFi(u
t
i, v

t
i,k; z), the local updates satisfy ut

i,k+1 = ut
i,k − γgtu,i,k and vti,k+1 = vti,k − γgtv,i,k . We

use E[∇uFi(u
t
i,k, v

t
i,Kv

; z)] = ∇ufi(u
t
i,k, v

t
i,Kv

; z) and E[∇vFi(u
t
i, v

t
i,k; z)] = ∇vfi(u

t
i, v

t
i,k; z). If

we sample the same data z (not the zi⋆,j⋆ ) in dataset S and S̃ at k iteration on round t, we have:

E∥ut
i,k+1 − ũt

i,k+1∥ ≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,Kv
− ṽti,Kv

∥,
E∥vti,k+1 − ṽti,k+1∥ ≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥.

(17)

Proof. We first conduct the local update for the personalized variables. The update progress in each
round t is as follows:

E∥vti,k+1 − ṽti,k+1∥ = E∥vti,k − ṽti,k − ηv(g
t
v,i,k − g̃tv,i,k)∥

≤ E∥vti,k − ṽti,k∥+ ηvE∥∇vfi(u
t
i, v

t
i,k; z)−∇vfi(ũ

t
i, ṽ

t
i,k; z)∥

≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥.

The alternative update progress for the shared variables is based on the updated vt+1
i = vt+1

i,Kv
:

E∥ut
i,k+1 − ũt

i,k+1∥
= E∥ut

i,k − ũt
i,k − ηu(g

t
u,i,k − g̃tu,i,k)∥

≤ E∥ut
i,k − ũt

i,k∥+ ηuE∥∇ufi(u
t
i,k, v

t
i,Kv

; z)−∇ufi(ũ
t
i,k, ṽ

t
i,K ; z)∥

≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,Kv
− ṽti,Kv

∥.

Lemma 7 (Selecting the Different Sample). Assume gtu,i,k = ∇uFi(u
t
i,k, v

t
i,Kv

; z) and g̃tv,i,k =

∇vFi(ũ
t
i, ṽ

t
i,k; z̃), the local updates satisfy ut

i,k+1 = ut
i,k − γgtu,i,k and vti,k+1 = vti,k − γgtv,i,k.If we

sample the different data samples zi⋆,j⋆ and z̃i⋆,j⋆ (simplified to z and z̃), we have:

E∥ut
i,k+1 − ũt

i,k+1∥ ≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,Kv
− ṽti,Kv

∥+ 2ηu(σu + δu),

E∥vti,k+1 − ṽti,k+1∥ ≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥+ 2ηvσv.

(18)

Proof. We first conduct the local update for the personalized variables. The update progress in each
round t is as follows:

E∥vti⋆,k+1 − ṽti⋆,k+1∥
= E∥vti⋆,k − ṽti⋆,k − ηv(g

t
v,i⋆,k − g̃tv,i⋆,k)∥

≤ E∥vti⋆,k − ṽti⋆,k∥+ ηvE∥∇vfi⋆(u
t
i⋆ , v

t
i⋆,k, z)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,kz̃)∥

≤ E∥vti⋆,k − ṽti⋆,k∥+ ηvE∥∇vfi⋆(u
t
i⋆ , v

t
i⋆,k, z)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z)∥

+ ηvE∥∇vfi⋆(ũ
t
i⋆ , ṽ

t
i⋆,k, z)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z̃)∥

≤ (1 + ηvLv)E∥vti⋆,k − ṽti⋆,k∥+ ηvLvuE∥ut
i − ũt

i∥
+ ηvE∥∇vFi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z̃) +∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k)∥

≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥+ 2ηvσv.

The last inequality adopts E [x] =

√
(E [x])

2
=

√
E [x2]− E [x− E [x]]

2 ≤
√
E [x2].
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The alternative update progress for the shared variables is based on the updated vt+1
i = vt+1

i,Kv
:

E∥ut
i⋆,k+1 − ũt

i⋆,k+1∥
= E∥ut

i⋆,k − ũt
i⋆,k − ηu(g

t
u,i⋆,k − g̃tu,i⋆,k)∥

≤ E∥ut
i⋆,k − ũt

i⋆,k∥+ ηuE∥∇ufi⋆(u
t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥
≤ E∥ut

i⋆,k − ũt
i⋆,k∥+ ηuE∥∇ufi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)∥
+ ηuE∥∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥
≤ (1 + ηuLu)E∥ut

i⋆,k − ũt
i⋆,k∥+ ηuLuvE∥vti,k − ṽti,Kv

∥
+ ηuE∥∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

)−∇ufi⋆(ũ
t
i⋆,Kv

, ṽti⋆,Kv
, z̃) +∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

)∥
≤ (1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥+ 2ηu(σu + δu).

Lemma 8 (Recursion in local update). Since ∆t
k = ∆t

u,k +∆t
v,k, according to the Lemma 6 and 7,

we can bound the recursion in the local training:

∆t
v,k+1 ≤ (1 + ηvLv) (∆

t
v,k +

2σv

SLv
+

Lvu∆
t
u,0

Lv
).

∆t
u,k+1 ≤ (1 + ηuLu) (∆

t
u,k +

2(σu + δu)

SLu
+

Luv∆
t
v,Kv

Lu
).

Proof. In each iteration, the specific j⋆-th data sample in the Si⋆ and S̃i⋆ is uniformly selected with
the probability of 1/S. In other datasets Si, all the data samples are the same. Thus we have the
recursion for the personalized variables:

∆t
v,k+1 =

∑
i ̸=i⋆

E
[
∥vti,k+1 − ṽti,k+1∥

]
+ E

[
∥vti⋆,k+1 − ṽti⋆,k+1∥

]
≤ (1 + ηvLv)

∑
i̸=i⋆

E∥vti,k − ṽti,k∥+ ηvLvu

∑
i ̸=i⋆

E∥ut
i − ũt

i∥

+

(
1− 1

S

)[
(1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥
]

+
1

S

[
(1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥+ 2ηvσv

]
= (1 + ηvLv)∆

t
v,k + ηvLvu∆

t
u,0 +

2ηvσv

S
.

Similarly, for the shared variables, we have the progress in each round t:

∆t
u,k+1 =

∑
i ̸=i⋆

E
[
∥ut

i,k+1 − ũt
i,k+1∥

]
+ E

[
∥ut

i⋆,k+1 − ũt
i⋆,k+1∥

]
≤ (1 + ηuLu)

∑
i ̸=i⋆

E∥ut
i,k − ũt

i,k∥+ ηuLuv

∑
i ̸=i⋆

E∥vti,Kv
− ṽti,Kv

∥

+

(
1− 1

S

)
[(1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥]

+
1

S
[(1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥+ 2ηu(σu + δu)]

= (1 + ηuLu)∆
t
u,k + ηuLuv∆

t
v,Kv

+
2ηu(σu + δu)

S
.
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Then we can bound the recursion formulation as:

∆t
v,k+1 +

2σv

SLv
+

Lvu∆
t
u

Lv
≤ (1 + ηvLv) (∆

t
v,k +

2σv

SLv
+

Lvu∆
t
u,0

Lv
),

∆t
u,k+1 +

2(σu + δu)

SLu
+

Luv∆
t
v,Kv

Lu
≤ (1 + ηuLu) (∆

t
u,k +

2(σu + δu)

SLu
+

Luv∆
t
v,Kv

Lu
).

Zoom out the variables on the left-hand side, then we finish the proof.

Main Proof for Theorem 1 According to the Lemma 4 and 8, it is easy to bound the local stability
term. We still obverse it when the event ξ happens, and we have ∆t0

k0
= 0. Therefore, we unwind

the recurrence formulation from T,K to t0, k0. Let ηu = µu

τ = µu

tK+k and ηv = µv

τ = µv

tK+k are
decayed as the communication round t and iteration k where µu ≤ 1

Lu
and µv ≤ 1

Lv
are specific

constants, we have:

∆T
v,Kv

≤

 TKv∏
τ=(T−1)Kv+1

(
1 +

µvLv

τ

)(∆T
v,0 +

2σv

SLv
+

Lvu∆
T
u,0

Lv

)

≤

 TKv∏
τ=(T−1)Kv+1

(
1 +

µvLv

τ

)(∆T−1
v,Kv

+
2σv

SLv
+

Lvu∆
T−1
u,Kv

Lv

)

≤

[
TKv∏

τ=t0K+k0+1

(
1 +

µvLv

τ

)](
∆t0

v,k0
+

2σv

SLv
+

Lvu∆
t0
u,k0

Lv

)

≤

[
TKv∏

τ=t0K+k0+1

e(
µvLv

τ )

](
2σv

SLv

)
= e

µvLv

(∑TKv
τ=t0K+k0+1

1
τ

)
2σv

SLv

≤ e
µvLv ln

(
TKv

t0K+k0

)
2σv

SLv

≤
(
TKv

τ0

)µvLv 2σv

SLv
.

(19)

Similarly, for the shared variables, we have the progress in round T :

∆T
u,Ku

≤

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

)(∆T
u,0 +

2(σu + δu)

SLu
+

Luv∆
T
v,Kv

Lu

)

≤

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

)(∆T−1
u,Ku

+
2(σu + δu)

SLu

)
+

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

) Luv∆
T
v,Kv

Lu

≤

[
TKu∏

τ=t0K+k0+1

(
1 +

µuLu

τ

)](
∆t0

k0
+

2(σu + δu)

SLu

)
+

[
TKu∏

τ=t0K+k0+1

(
1 +

µuLu

τ

)]
Luv∆

T
v,Kv

Lu

≤

[
TKu∏

τ=t0K+k0+1

e(
µu
τ )

](
2(σu + δu)

SLu
+

Luv∆
T
v,Kv

Lu

)
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Expand the first item, then we have:

∆T
u,Ku

≤ e
µuLu

(∑TKu
τ=t0K+k0+1

1
τ

)(
2(σu + δu)

SLu
+

Luv∆
T
v,Kv

Lu

)

≤ e
µuLu ln

(
TKu

t0K+k0

)(
2(σu + δu)

SLu
+

Luv∆
T
v,Kv

Lu

)

≤
(
TKu

τ0

)µuLu
(
2(σu + δu)

SLu
+

Luv

Lu

(
TKv

τ0

)µvLv 2σv

SLv

)

≤
(
TKu

τ0

)µuLu 2(σu + δu)

SLu
+

(
TKu

τ0

)µuLu
(
TKv

τ0

)µvLv 2Luvσv

SLvLu
.

We can see that the bound of the local stability term for the shared variables in C-PFL has an extra

term
(

TKu

τ0

)µu
(

TKv

τ0

)µv
2Luvσv

SLvLu
. This is the alignment error caused by the alternative update for

the personalized and shared variables, which is related to the smoothness of Lu, Lv, Luv, the local
epochs Ku,Kv and the variance bound σv .

Therefore, we get the combination of ∆T
u,K and ∆T

v,K as ∆T
K :

∆T
K = ∆T

u,Kv
+∆T

v,Ku
≤
(
TKu

τ0

)µuLu 2(σu + δu)

SLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2σv

SLv
.

According to the Lemma 2, the first term in the stability (condition is omitted for abbreviation) can
be bound as:

E∥wT+1
i − w̃T+1

i ∥

= E∥ 1
n

∑
i∈St

(
wT

i,K − w̃T
i,K

)
∥ =

1

n
E∥
∑
i∈St

(
wT

i,K − w̃T
i,K

)
∥

≤ 1

n
E
∑
i∈St

∥
(
wT

i,K − w̃T
i,K

)
∥ =

1

n

n

m
E
∑
i∈[m]

∥
(
wT

i,K − w̃T
i,K

)
∥

=
1

m

∑
i∈[m]

E∥
(
wT

i,K − w̃T
i,K

)
∥ =

1

m
∆T

K

≤
(
TKu

τ0

)µuLu 2(σu + δu)

mSLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2σv

mSLv
.

Therefore, we can upper bound the stability in C-PFL as:

E∥f(wT+1
i ; z)− f(w̃T+1

i ; z)∥

≤ GE∥wT+1
i − w̃T+1

i ∥+ nUτ0
mS

≤
(
TKu

τ0

)µuLu 2G(σu + δu)

mSLu
+

nUτ0
mS

+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2Gσv

mSLv
.

Obviously, we can select a proper event ξ with a proper τ0 to minimize the upper bound. For

τ ∈ [1, TK], by selecting τ0 =
[
2G((σu+δu)Lv+σvLu)

nULuLv

] 1
1+µL

(TK)
µL

1+µL , we can minimize the bound
as:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ 4

mS

[
G((σu + δu)Lv + σvLu)

LuLv

] 1
1+µL

(nUTK)
µL

1+µL .
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D.3 GENERALIZATION BOUNDS FOR D-PFL

Lemma 9 (Bounded the local gradients). When (t, k) < (t0, k0), the sampled data is always the
same between the different datasets, which shows Γt

k = 0. When t = t0, only those updates at k ≥ k0
are different. When t > t0, all the local gradients difference during local K iterations are non-zero.
Thus we can first explore the upper bound of the stages with full K iterations when t > t0. Let the
data sample z be the same random data sample and z/z̃ be a different sample pair for abbreviation,
when t ≥ t0, we have: If we sample the same data z (not the zi⋆,j⋆ ) in dataset C and C̃ at k iteration
on round t, we have:

E∥ηuΓt
u,k∥ ≤

(
τ

τ0

)µuLu 2µu(σu + δu)

τS
. (20)

Proof. According to the Lemma 4 and 8, we can also bound the local stability term for the personal
variables. Let the learning rate ηv = µv

τ = µv

tKv+k is decayed as the communication round t and
iteration k where µv is a specific constant, we have:

∆t
v,k +

2σv

SLv
≤
(

τ

τ0

)µvLv 2σv

SLv
. (21)

For shared variables, let Γt
u,k =

[
gtu,0,k − g̃tu,0,k, g

t
u,1,k − g̃tu,1,k, · · · , gtu,m,k − g̃tu,m,k

]⊤
, we have:

E∥ηuΓt
u,k∥ = E∥ηu

[
gtu,0,k − g̃tu,0,k, g

t
u,1,k − g̃tu,1,k, · · · , gtu,m,k − g̃tu,m,k

]⊤ ∥

≤ ηu
∑
i∈[m]

E∥gtu,i,k − g̃tu,i,k∥

≤ ηu
∑
i ̸=i⋆

E∥∇ufi(u
t
i,k, v

t
i,Kv

, z)−∇ufi(ũ
t
i,k, ṽ

t
i,Kv

, z)∥

+
(S − 1)ηu

S
E∥∇ufi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)∥

+
ηu
S
E∥∇ufi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z) +∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥

≤ ηu
∑
i ̸=i⋆

(
LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥
)

+
(S − 1)ηu

S
(LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥)

+
ηu
S

(
LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥
)

+
ηu
S
E∥(∇fi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

))−
(
∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

)
)
∥

≤ ηu
∑
i∈[m]

(LuE∥ut
i,k − ũt

i,k∥+ LuvE∥vti,K − ṽti,K∥) + 2ηuσu

S

= ηuLu(∆
t
u,k +

Luv∆
t
v,K

Lu
+

2σu

SLu
).

According to the Lemma 4, 8 and Eq.(21), we bound the gradient difference as:

E∥ηuΓt
u,k∥ ≤ ηuLu

(
∆t

u,k +
Luv∆

t
v,K

Lu
+

2σu

SLu

)

≤
(

τ

τ0

)µuLu 2µu(σu + δu)

τS
+

(
Luv

Lu

)(
τ

τ0

)µvLv 2µuσv

τS
.

where τ = tK + k.
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Lemma 10 (Bounded the local gradients). When (t, k) < (t0, k0), the sampled data is always the
same between the different datasets, which shows Γt

k = 0. When t = t0, only those updates at k ≥ k0
are different. When t > t0, all the local gradients difference during local Ku iterations are non-zero.
Thus we can first explore the upper bound of the stages with full Ku iterations when t > t0. Let the
data sample z be the same random data sample and z/z̃ be a different sample pair for abbreviation

and Φt
u,k =

[
ut
0,k − ũt

0,k, u
t
1,k − ũt

1,k, · · · , ut
m,k − ũt

m,k

]⊤
. When t ≥ t0, we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ 4µu(σu + δu)κλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lu
)
4µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
,

(22)

E∥ (W −P) Φt
u,Ku

∥ ≤ 2µu(σu + δu)λκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lu
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.

(23)

Proof. In the decentralized method, the aggregation performs after K local updates which demon-
strates that the initial state of each round is Ut

0 = WUt−1
Ku

. It also works on their difference
Φt

u,0 = WΦt−1
u,Ku

. Therefore, we have:

Φt
u,Ku

= Φt
u,0 −

Ku−1∑
k=0

ηuΓ
t
u,k = WΦt−1

u,Ku
−

Ku−1∑
k=0

ηuΓ
t
u,k.

Then we prove the recurrence between adjacent rounds. Let P = 1
m11⊤ ∈ Rm×m and I ∈ Rm×m

is the identity matrix, due to the double stochastic property of the adjacent matrix W, we have:

WP = PW = P.

Thus,

(I−P) Φt
u,Ku

= (I−P)WΦt−1
u,Ku

− (I−P)

Ku−1∑
k=0

ηuΓ
t
u,k

=

(
WΦt−1

u,Ku
−

K−1∑
k=0

ηuΓ
t
u,k

)
−PWΦt−1

u,Ku
+PWΦt−1

u,Ku
−P

(
WΦt−1

u,Ku
−

Ku−1∑
k=0

ηuΓ
t
u,k

)
.

By taking the expectation of the norm on both sides, we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ E∥WΦt−1
u,Ku

−
Ku−1∑
k=0

ηuΓ
t
u,k −PWΦt−1

u,Ku
∥+ E∥

Ku−1∑
k=0

ηuΓ
t
u,k∥

≤ E∥WΦt−1
u,Ku

−PWΦt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥

= E∥ (W −P) (I−P) Φt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥

≤ λE∥ (I−P) Φt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥.

The equality adopts (W −P) (I−P) = W −P−WP+PP = W −PW. We know the fact
that Φt

u,k = 0 where (t, k) ∈ (t0, k0). Thus unwinding the above inequality we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ λt−t0+1E∥ (I−P) Φt0−1
u,Ku

∥+ 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

= 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥.
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To maintain the term of W, we have:

(W −P) Φt
u,Ku

= (W −P)WΦt−1
u,Ku

− (W −P)

Ku−1∑
k=0

ηuΓ
t
u,k

= (W −P) (W −P) Φt−1
u,Ku

− (W −P)

Ku−1∑
k=0

ηuΓ
t
u,k.

The second equality adopts (W −P) (W −P) = (W −P)W − WP + PP = (W −P)W.
Therefore we have the following recursive formula:

E∥ (W −P) Φt
u,Ku

∥ ≤ E∥ (W −P) (W −P) Φt−1
u,Ku

∥+ E∥ (W −P)

K−1∑
k=0

ηuΓ
t
u,k∥

≤ λE∥ (W −P) Φt−1
u,Ku

∥+ λE∥
K−1∑
k=0

ηuΓ
t
u,k∥.

The same as above, we can unwind this recurrence formulation from t to t0 as:

E∥ (W −P) Φt
u,Ku

∥ ≤ λt−t0+1E∥ (W −P) Φt0−1
u,Ku

∥+
t∑

s=t0

λt−s+1E∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

=

t∑
s=t0

λt−s+1E∥
Ku−1∑
k=0

ηuΓ
s
u,k∥.

Unwinding the summation on k and adopting Lemma 5, we have:

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

≤
t∑

s=t0

λt−s
Ku−1∑
k=0

E∥ηuΓs
u,k∥

≤ 2µu(σu + δu)

SτµuLu

0

t∑
s=t0

λt−s
Ku−1∑
k=0

τµuLu

τ
+ (

Luv

Lu
)
2µuσv

SτµvLv

0

t∑
s=t0

λt−s
Ku−1∑
k=0

τµvLv

τ

≤ 2µu(σu + δu)

SτµuLu

0

t∑
s=t0

λt−s
Ku−1∑
k=0

(sKu)
µuLu

sKu
+ (

Luv

Lu
)
2µuσv

SτµvLv

0

t∑
s=t0

λt−s
Ku−1∑
k=0

(sKu)
µvLv

sKu

=
2µu(σu + δu)

S

(
Ku

τ0

)µuLu t∑
s=t0

λt−s

s1−µuLu
+ (

Luv

Lu
)
2µuσv

S

(
Ku

τ0

)µvLv t∑
s=t0

λt−s

s1−µvLv

≤ 2µu(σu + δu)

S

(
Ku

τ0

)µuLu t−1∑
s=t0−1

λt−s−1

(s+ 1)
1−µuLu

+ (
Luv

Lu
)
2µuσv

S

(
Ku

τ0

)µvLv t−1∑
s=t0−1

λt−s−1

(s+ 1)
1−µvLv

≤ 2µu(σu + δu)κλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lu
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.
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Therefore, we get an upper bound on the aggregation gap which is related to the spectrum gap:

E∥ (I−P) Φt
u,Ku

∥ ≤ 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

≤ 4µu(σu + δu)κλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lu
)
4µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
,

E∥ (W −P) Φt
u,Ku

∥ ≤
t∑

s=t0

λt−s+1E∥
K−1∑
k=0

ηuΓ
s
u,k∥

≤ 2µu(σu + δu)λκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lu
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.

The first inequality provides the upper bound between the difference between the averaged state and
the vanilla state, and the second inequality provides the upper bound between the aggregated state
and the averaged state.

Main Proof for Theorem 2 According to the Lemma 4 and 8, it is easy to bound the local stability.
We obverse it when the event ξ happens, and we have ∆t0

k0
= 0. Therefore, we unwind the recurrence

formulation from T,K to t0, k0. Let ηu = µu

τ = µu

tK+k and ηv = µv

τ = µv

tK+k are decayed as the
communication round t and iteration k where µu ≤ 1

Lu
and µv ≤ 1

Lv
are specific constants, we have:

∑
i∈[m]

E∥ut+1
i,Ku

− ũt+1
i,Ku

∥

=
∑
i∈[m]

E∥
(
ut+1
i,0 − ũt+1

i,0

)
−

K−1∑
k=0

ηtk
(
gtu,i,k − g̃tu,i,k

)
∥

=
∑
i∈[m]

E∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
+
(
ut
i,K − ũt

i,Ku

)
−

Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

≤
∑
i∈[m]

[
E∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥+ E∥

(
ut
i,Ku

− ũt
i,Ku

)
∥+ E∥

Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥
]

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+mE

 1

m

∑
i∈[m]

∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥


≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+mE

√√√√ 1

m

∑
i∈[m]

∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥2

=
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

√
mE∥Φt+1

u,0 − Φt
u,Ku

∥+
∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥
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Let Φt+1
u,0 = WΦt

u,Ku
, we have:∑

i∈[m]

E∥ut+1
i,Ku

− ũt+1
i,Ku

∥

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

√
mE∥WΦt

u,Ku
− Φt

u,Ku
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+
√
mE∥ (W −P) Φt

u,Ku
∥+

√
mE∥ (P− I) Φt

u,Ku
∥.

Since vt+1
i,0 = vti,Kv

for the private variables, then we have the recursion:

∑
i∈[m]

E∥vt+1
i,Kv

− ṽt+1
i,Kv

∥ =
∑
i∈[m]

E∥
(
vt+1
i,0 − ṽt+1

i,0

)
−

Kv−1∑
k=0

ηtk
(
gtv,i,k − g̃tv,i,k

)
∥

≤
∑
i∈[m]

[
E∥
(
vti,Kv

− ṽti,Kv

)
∥+ E∥

Kv−1∑
k=0

ηv
(
gtv,i,k − g̃tv,i,k

)
∥

]

≤
∑
i∈[m]

E∥
(
vti,Kv

− ṽti,Kv

)
∥+

∑
i∈[m]

E∥
Kv−1∑
k=0

ηu
(
gtv,i,k − g̃tv,i,k

)
∥.

Therefore, we can bound this by two terms in one complete communication round. One is the process
of local multi-times SGD iterations, and the other is the aggregation step. For the local training
process, we can continue to use Lemma 7, 8, and 9. Let τ = tK + k as above, we have:

∆t
u,Ku

+
2(σu + δu)

SLu

≤

[
Ku−1∏
k=0

(1 + ηuLu)

](
∆t

u,0 +
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SLu

)
=

[
Ku−1∏
k=0

(
1 +

µuLu

τ

)](
∆t

u,0 +
2(σu + δu)

SLu

)

≤

[
K−1∏
k=0

e
µuLu

τ

](
∆t

u,0 +
2(σu + δu)

SLu

)
= eµL

∑Ku−1
k=0

1
τ

(
∆t

u,0 +
2(σu + δu)

SLu

)

≤ eµuLu ln( t+1
t )
(
∆t

u,0 +
2(σu + δu)

SLu

)
=

(
t+ 1

t

)µuLu
(
∆t

u,0 +
2(σu + δu)

SLu

)
≤
(
t+ 1

t

)µuLu
[
∆t−1

u,Ku
+
√
m(E∥ (W −P) Φt

u,Ku
∥+ E∥ (P− I) Φt

u,Ku
∥) + 2(σu + δu)

SLu

]
≤
(
t+ 1

t

)µuLu
(
∆t−1

u,Ku
+

2(σu + δu)

SLu

)
+
√
m

(
t+ 1

t

)µuLu (
E∥ (W −P) Φt

u,Ku
∥+ E∥ (P− I) Φt

u,Ku
∥
)

≤
(
t+ 1

t

)µuLu
(
∆t−1

u,Ku
+

2(σu + δu)

SLu

)
︸ ︷︷ ︸

local updates

+
6
√
mµu(σu + δu)κλ

S

(
Ku

τ0

)µuLu
(
t+ 1

t

)µuLu 1

t1−µuLu︸ ︷︷ ︸
aggregation gaps

+ (
Luv

Lu
)
6
√
mµuσvκλ

S

(
Ku

τ0

)µvLv
(
t+ 1

t

)µvLv 1

t1−µvLv︸ ︷︷ ︸
aggregation gaps

.
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The last adopts the Eq.(22) and (23), and the fact λ ≤ 1. Obviously, in the decentralized federated
learning setup, the first term still comes from the updates of the local training. The second term
comes from the aggregation gaps, which is related to the spectrum gap λ.

For the private variables, since we do not exchange them with neighbors, we have:

∆t
v,Kv

+
2σv

SLv
≤

[
Kv−1∏
k=0

(1 + ηvLv)

](
∆t

v,0 +
2σv

SLv
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1 +
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τ
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SLv
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≤
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k=0

e
µvLv

τ

](
∆t
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2σv

SLv

)
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1
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)
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t )
(
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2σv

SLv

)
=

(
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t

)µvLv
(
∆t

v,0 +
2σv

SLv

)
.

Unwinding this from t0 to T , we have:

∆T
u,Ku

+
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SLu
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τ0

)µuLu 2(σu + δu)

SLu
+

6
√
mµu(σu + δu)κλ

S

(
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(
t+ 1

t

)µuLu 1

t1−µuLu

+
6
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t+ 1
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SLu
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(
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)µvLv 12
√
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The second inequality adopts the fact that 1 < t+1
t ≤ 2 when t > 1 and the fact of 0 < µ < 1

L .

For the personalized variables, unwinding this from t0 to T , we have:

∆T
v,Kv

+
2σv

SLv
≤
(
TKv

τ0

)µvLv 2σv

SLv
.
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Then the first term in the stability (conditions is omitted for abbreviation) can be bounded as:

E∥uT+1 − ũT+1∥ ≤ 1

m

∑
i∈[m]

E∥
(
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(
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)
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(
TKv
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)µvLv 2σv

SLv
.

Therefore, we can upper bound the stability in decentralized federated learning as:

E
[
∥f(wT+1

i ; z)− f(w̃T+1
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]
≤ GE

[
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+
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SLu
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SLv

(
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τ0
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SLu
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1 + 6

√
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SLv
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TKv

τ0

)µvLv
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12
√
mκλσvLuv

mSLvLu

(
TKu

τ0

)µvLv

+
Uτ0
S

.

The same as the centralized setup, we can select a proper event ξ with a proper τ0 to
minimize the error of the stability. To simplify subsequent analysis, we assume µL =
max{µuLu, µvLv} and K = max{Ku,Kv}. For τ ∈ [1, TK], by selecting τ0 =

(TK)
µL

1+µL

[
2G(σu+δu)L

2
v(1+6

√
mκλ)+2GσvLuLuv(m+6

√
mκλ)

UmLuL2
v

] 1
1+µL

, we get the minimal generaliza-
tion bound for D-PFL:

E
[
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]
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S
(UTK)
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[
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√
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.
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