
A Appendix550

A.1 Stochastic Game551

We assume that interactions of players in an environment can be modeled by a stochastic game [38].552

For a 2-agent stochastic game, we define a tuple (S,A1
,A

2
, r

1
, r

2
, p, �,N ), where N = {1, 2}, S553

is the state space, p is the distribution of the initial state s0, � 2 [0, 1] is the discount factor for future554

rewards, Ai and r
i = r

i(s, ai, a�i)iii are the action space and the reward function respectively for555

agent i 2 {1, 2}. Agent i chooses its action a
i
2 A

i according to the policy ⇡
i(ai|s) conditioning on556

the state s 2 S .557

Where the environment is partially observable, an agent’s observation at time t is defined as oit which558

is generated from the state st by an unknown observation function F (s, i) : S ⇥N ! O
i where O

i559

is agent i’s observation space. To resolve issues resulting from partial observability, we use the history560

of a game h
i
t = {o

i
1:t, a

i
1:t�1, a

�i
1:t�1} so far from time step t as the input to the policy ⇡

i(ai|hi). In561

this work, we specifically denote a trajectory as a set of the opponent’s end-game histories collected562

from d episodes ⌧ = {h
2
1,T , h

2
2,T , . . . , h

2
d,T }, where T is the terminal time step in an episode. This563

implies that the opponent’s policy does not change over d episodes. However, this is not true in our564

setting or in general. Therefore, we take d as a hyper-parameter and tune it to obtain satisfactory565

empirical results.566

A.2 RNR Solver567

An RNR solution for a normal-form game considers a modified game where the opponent plays568

a fixed strategy ⇡fix with probability p and any strategy from its original strategy space ⇧2 with569

probability 1� p. We implement a linear programming solver for RNR and present our formulation570

as follows:571

We use ⇡
1 and ⇡

2 to denote an agent’sand its opponent’s strategies respectively. Further, let U⇧572

denote the utility table for the agent. Since we consider the zero-sum game, the utility table for the573

opponent is simply trans(�U
⇧) where trans denotes the matrix transpose operation.574

As the opponent is restricted to play a fixed strategy ⇡fix with with probability at least p, the overall575

opponent policy satisfies:576

p⇡fix(a)  ⇡
2(a)  p⇡fix(a) + 1� p 8 a 2 ⇧2

.

We define a vector ya of size |⇧|
2
⇥ 1 whose element indices correspond to opponent actions, and577

we have:578

ya(j) =

⇢
0, j 6= a

p⇡fix(a) + 1� p, j = a.

Therefore, for ⇡1
RNR, we solve the following linear programming problem:579

maxu

s.t. u  ⇡
1T

U
⇧
ya 8 a 2 ⇧2

,

⇡
1(b) � 0 8 b 2 ⇧1

,
X

⇧1

⇡
1(b) = 1.

Similarly, for ⇡2
RNR, we solve the following linear programming problem:580

min v

s.t. v � xb
T
U

⇧
⇡
2

8 b 2 ⇧1
,

⇡
2(a)  p⇡fix(a) + 1� p 8 a 2 ⇧2

,

⇡
2(a) � p ⇡fix(a) 8 a 2 ⇧2

,
X

⇧2

⇡
2(a) = 1,

iiiWe use subscript �i to denote the complementary part x�i of the variable xi indexed by i.

14



where we define a vector xb of size |⇧1
|⇥ 1 whose each element index corresponds to an agent’s581

action, and we have:582

xb(j) =

⇢
0 j 6= b

1 j = b.

A.3 Experiment Details583

Variants of Poker offer a rich arena for developing artificial intelligence. The games feature stochas-584

ticity, partial observability and competitive dynamics with unknown adversaries. In this work, we585

conduct experiments and evaluation in a simplified Poker game, Kuhn Poker. This variant of poker586

is amenable to game theoretic analysis whilst retaining all of the elements of the more challenging587

larger scale poker games. In Poker, the players take it in turns to bet with the knowledge that should588

betting conclude with both players still in the game, the player with the highest scoring hand wins. In589

this section, we explain the rules of Kuhn Poker.590

Kuhn Poker [20]] is a simple, zero-sum two-player imperfect information game. The deck of cards591

is limited to simply a Jack, a Queen and a King with no notion of suits. Ordering is as usual: Jack592

< Queen < King. If the game reaches a showdown, the player with the highest card wins. If either593

player folds at any time they lose the round and their opponent takes the entire pot. The game opens594

with a round of antes of 1. Then each player is dealt a single card and the remaining card is placed595

face down. Once the deal is complete it is time for the first round of bidding: Player 1 may check (no596

bet) or bet 1. If Player 1 bet Player 2 may call the bet or fold. If Player 2 calls there is a showdown597

for the pot of 4, if they fold Player 1 wins the pot. If Player 1 checked, Player 2 may check or bet 1.598

If both players check then there is a showdown for the pot of 2. If Player 2 bets, following a check by599

Player 1, then Player 1 can either fold or call. If player 1 calls there is then a showdown for the pot of600

4. The starting player may alternate or be chosen at random for each deal.601

Kuhn Poker has the second-mover advantage, i.e., the second player to bet (Player 2 above) will win602

in expectation when both players play the best response to each other. To remove this advantage, we603

alternate the playing turn between our agent and the opponent after every episode of a game. In this604

simple game, we do not discriminate between the Pass and Fold actions, and thus, each player need605

only choose from Pass or Bet. Our hyperparameter values are presented in Table 2.606

Table 2: Hyper-parameter settings.
SETTINGS VALUE DESCRIPTION

EPSOM
ORACLE METHOD ANALYTICAL BEST RESPONSE SUBROUTINE OF GETTING ORACLES
d EVERY 64 EPISODES OF A GAME UPDATE FREQUENCY FOR EPSOM
META-SOLVER LINEAR PROGRAMMING SOLVER META-SOLVER METHOD

DIRICHLET PROCESS MIXTURE OPPONENT MODEL
pinit 0.1 INITIAL p VALUE FOR A NEW POLICY
pstep 0.05 p VALUE INCREMENT WHEN A NEW TRAJECTORY IS ASSIGNED TO THE POLICY
↵ 1.0 CONCENTRATION PARAMETER OF THE DIRICHLET PROCESS
 1.0 ‘STICKINESS’ FACTOR FOR MODIFIED CRP PRIOR
✓ 5.0 STD OF THE POLICY BASE DISTRIBUTION: p(�k) = N (0, ✓2I)
⌘ 0.1 THRESHOLD FOR MERGING TWO POLICIES INTO ONE

PPO OPPONENT
LEARNING RATE 0.0003 LEARNING RATE FOR PPO
OPTIMIZER ADAM GRADIENT ASCENT OPTIMIZER
NN ARCHITECTURE 12⇥ 64⇥ 64⇥ 2 NEURAL NETWORK ARCHITECTURE
MINI BATCH SIZE 128 MINI BATCH SIZE FOR SGD
UPDATE FREQUENCY EVERY 128 STEPS OPPONENT UPDATE AFTER EVERY 128 STEPS
UPDATE EPOCH 20 TRAINING EPOCHS IN AN UPDATE
CLIP RATIO 0.2 PPO CLIP RATIO
� 0.99 DISCOUNT FACTOR
� 0.97 LAMBDA-RETURN FACTOR

KUHN POKER
OBSERVATION DIMENSION 12 12 COMBINATIONS FOR SELF HAND AND GAME HISTORY
ACTION SPACE 2 PASS OR BET

A.4 Streaming MAP for Opponent Modeling607

Our streaming MAP algorithm for opponent modeling fits into the general expectation-maximization608

(EM) framework. In the E-step, we seek a Delta distribution q(z1:m) = �(z⇤1:m) to approximate the609

posterior p(z1:m|⌧1:m). Therefore, z⇤1:m are the MAP trajectory assignments. Following Eq. (3),610

15



p(z1:m|⌧1:m) can be obtained by integrating out �1:Km :611

p(z1:m|⌧1:m) =

Z

�1:Km

p(z1:m,�1:Km |⌧1:m) d�1:Km

/

Z

�1:Km

p(z1:m�1,�1:Km�1 |⌧1:m�1)p(�Km)p(zm|z1:m�1)p(⌧m|�zm) d�1:Km .

(8)

To solve the E-step in an online fashion, we apply assumed density filtering [40] and approximate612

p(z1:m�1,�1:Km�1 |⌧1:m�1) in Eq.(8) with q(z1:m�1)q(�1:Km�1) = �(z⇤1:m�1)�(�
m�1
1:Km�1

). There-613

fore, q(z1:m) is computed recursively by reusing q(z1:m�1) and the policies �1:Km�1 are fixed to614

their latest value �m�1
1:Km�1

. Since a new policy may be created, we also need to integrate over615

�Km�1+1 to incorporate the possibility that Km = Km�1 + 1.616

Algorithm 2: Streaming MAP for Opponent Modeling
Initial Step:
Solve z

⇤
1 ,�

1
z1 = argmaxz⇤

1 ,�z1
p(�z1)p(z1)p(⌧1|�z1).

for m = {2, 3, . . . } do

Update z
⇤
1:m (E-Step):

Maximum-a-posterior (MAP) trajectory assignments z⇤1:m:

z
⇤
1:m = argmax

z1:m
p(z1:m|⌧1:m)

⇡ argmax
z1:m

Z

�1:Km�1+1

q(z1:m�1)q(�1:Km�1)p(�Km�1+1)p(zm|z1:m�1)p(⌧m|�zm)d�1:Km�1+1

z
⇤
1:m�1 remains unchanged and

z
⇤
m = argmax

zm

Z

�1:Km�1+1

q(�1:Km�1)p(�Km�1+1)p(zm|z
⇤
1:m�1)p(⌧m|�zm)d�1:Km�1+1

which corresponds to Eq. (4). Then q(z1:m) = �(z⇤1:m) and Km is set according to z
⇤
m.

Update �m
1:Km

(M-Step):

�m
1:Km

= argmax
�1:Km

Ep(z1:m|⌧1:m) [log p(⌧1:m, z1:m|�1:Km)] + log p(�1:Km)

⇡ argmax
�1:Km

Z

z1:m

q(z1:m) log
mY

i=1

p(⌧i|�zi)dz1:m + log
KmY

k=1

p(�k)

= argmax
�1:Km

log
KmY

k=1

p(�k)
mY

i=1

p(⌧i|�z⇤
i
)

For k 6= z
⇤
m, �m

k = �m�1
k and �m

z⇤
m
= argmax�z⇤m

log p(�z⇤
m
)
Q

z⇤
i =z⇤

m
p(⌧i|�z⇤

m
) which

corresponds to Eq. (5).
end

617

In the M-step, we optimize the policies �1:Km to maximize Eq(z1:m) [log p(⌧1:m, z1:m|�1:Km)] with618

an extra regularization term, log p(�1:Km), introduced by the policy prior. The whole procedure619

is summarized in Algorithm 2. For the initial step, the trivial solution is given by: z⇤1 = 1,�1
1 =620

argmax�1
p(�1)p(⌧1|�1).621

A.5 RL oracle622

We test EPSOM with an RL oracle which is implemented by a PPO algorithm. In these experiments,623

we also use PPO as an RL oracle for our PSRO and BC baselines. The PPO oracle uses the same set624

16



Figure 4: Exploitability and exploitation of different algorithms against a non-stationary opponent implemented
by PPO in Kuhn Poker.

of hyper-parameters as the PPO implemented for the opponent and we present our results in Figure 4.625

We obtain similar results as we are obtained in the case of using analytical best responses.626

17


	Introduction
	Related Works
	Preliminaries
	Meta Normal-Form Game
	Exploitability and Exploitation
	Restricted Nash Response (RNR)

	Dirichlet Process Mixture Opponent Modeling
	Exploit Policy-Space Opponent Model
	Experiments
	Conclusion
	Appendix
	Stochastic Game
	RNR Solver
	Experiment Details
	Streaming MAP for Opponent Modeling
	RL oracle


