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A DETAILED ANALYSIS OF BACK-PROPAGATION

We rigorously analyze the neural network represented in Section 2.3: for sample index i ∈ [B],
al+1,i︸ ︷︷ ︸
RT×d′

= ϕ( sl,i︸︷︷︸
RT×p

), sl,i = al,i︸︷︷︸
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+ 1︸︷︷︸
RT×1

· bl︸︷︷︸
R1×p

, (5)

Then the per-sample weight gradient is given by the chain rule as
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in which the second equality holds when there is no parameter sharing (so that each per-sample loss
only depends on i-th input and output). The last equality holds for the same reason.

Similarly, we have the per-sample bias gradient as
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We additionally demonstrate that bias gradient is independent of the input al, on the convolution
(1d/2d/3d) and the normalization layers. For the convolution, sl is the inversely folded output and
al is the unfolded input, then the forward pass is the same as that of linear layer in Equation (5).
Notice that T is the product of hidden feature dimension (c.f. Bu et al. (2022a)), which depends on
the padding, kernel sizes, strides, etc. For the batch, layer, group, and instance normalization, the
forward pass is

sl,i =
al,i − E(al)√

Var(al) + 0.00001
·Wl + 1 · bl

which can be analyzed similarly to that of Equation (5).

B IMPLEMENTATION OF DP-BITFIT

In this section we describe the implementation of DP-BiTFiT, which only uses Pytorch backward
hook but not the forward hook, and thus is different from existing packages such as FastGradClip
Lee & Kifer (2020), Opacus Yousefpour et al. (2021), Private Transformers Li et al. (2021), Private
CNN Bu et al. (2022a). Notice that in these packages, the forward hook is used to store the activation
tensor al for all layers, which incurs huge memory burden as discussed in Section 2.4.

The Pytorch backward hook is a function, to be registered on a torch Module (or a layer in the neural
network), that will be executed in the backward propagation. The backward hook automatically
extracts the input gradient ∂L

∂al
and the output gradient ∂L

∂sl
of the layer.

In DP-BiTFiT, we call register backward hook to register a backward hook for Line 5 of
Algorithm 1. An example for a linear layer: RB×T×d → RB×T×p looks like

def hook(linear_layer, grad_input, grad_output):
linear_layer.bias.grad_sample = grad_output.sum(dim=1)
linear_layer.bias.norm_sample = linear_layer.bias.grad_sample.norm(2,dim=1)

Here the attribute norm sample stores the per-sample gradient norm
∥∥∥∂Li

∂bl

∥∥∥
F

, and the attribute

grad sample stores the RB×p per-sample gradient of bias.

Then the implementation of DP-BiTFiT for one iteration looks like

output=model(input)
loss=F.cross_entropy()(output,label)
torch.autograd.grad(loss,biases)
all_layer_norm_sample = torch.stack([param.norm_sample for param in biases],dim=0).norm(2, dim=0)
clipping_factor=1/(all_layer_norm_sample+0.01)
for layer in model.modules():

layer.bias.grad=torch.einsum("i,i...->...", clipping_factor,layer.bias.grad_sample)
optimizer.step()
optimizer.zero_grad()

where biases is the collection of all bias terms in all layers.
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C COMPLEXITY ANALYSIS

We provide more details on analyzing the time and space complexity. The analysis for full
fine-tuning has been presented in (Bu et al., 2022a, Appendix C) and is adapted here for the
parameter efficient fine-tuning: for example, Adapter Houlsby et al. (2019) uses two matrices
Wdown ∈ Rp×r,Wup ∈ Rr×p that constitute

x←− x+ GeLU(x ·Wdown)Wup

Hence the complexity, in comparison to full-finetuning, changes by replacing d→ 2r.

LoRA Hu et al. (2021) also uses two matrices Wdown ∈ Rd×r,Wup ∈ Rr×p that constitute

x←− x ·W + x ·WdownWup

Hence the complexity, in comparison to full-finetuning, changes by replacing pd→ r(p+ d).

forward weight training bias training
&output grad non-DP DP full (Opacus) DP LoRA DP Adapter non-DP DP (ours)

Time
complexity 4BTpd 2BTpd +2BTpd +2BT (pr + dr) +4BTpr BTp +3Bp

Space
complexity pd+BTd BT (p+ d) +Bpd +B(pr + dr) +2Bpr p +Bp

# back-prop 1 1 1 1 1 1
forward hook ✗ ✓ ✓ ✓ ✗ ✗

Table 8: Per-layer time and space complexity of training on weights (full and parameter efficient
fine-tuning) and biases. ‘+’ means additional overhead to non-DP training.

For per-sample bias gradient clipping, we need ∂Li

∂bl

⊤
= ∂L

∂sl,i

⊤
1 in Equation (4), which consists of

the per-sample gradient instantiation (i.e. summation along the feature dimension, from RTp → Rp,
∂L
∂sl,i

→ ∂Li

∂bl
), and computing the per-sample gradient norm (i.e. taking the square at each index

and summing all indices). Here each operation in italic takes Bp time complexity, meaning the total
time complexity is 3Bp, but the space complexity is Bp if operated in-place.

D EXPERIMENT DETAILS

D.1 LANGUAGE TASKS

Throughout this work, the text datasets are processed and loaded from Huggingface Lhoest et al.
(2021). We follow the same setup as Li et al. (2021); Bu et al. (2022b), such as δ = 0.5×sample
size. The full fine-tuning is implemented by Private Transformers codebase, version 0.2.0 (i.e.
GhostClip algorithm Li et al. (2021)).

For text classification, we experiment on four datasets: MNLI(m), the matched splits from Multi-
Genre Natural Language Inference Corpus; QQP, the Quora Question Pairs2 dataset; QNLI The
Stanford Question Answering dataset; SST2 The Stanford Sentiment Treebank dataset.

To give a fair comparison, we use the same optimizer as in Li et al. (2021), i.e. DP-Adam with
Abadi’s clipping.

Dataset MNLI QQP QNLI SST2
epoch 18 18 6 3

batch size 6000 6000 2000 1000
clipping threshold R 0.1

DP learning rate full 5e-4 / BiTFiT 5e-3
non-DP learning rate full 5e-5 / BiTFiT 1e-3
max sequence length 256

Table 9: Hyperparameters of text classification in Table 4 and Table 13, using RoBERTa (base/large).
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For E2E generation task, we experiment GPT2 models using the same optimizer as in Bu et al.
(2022b), using DP-AdamW with automatic clipping.

Model GPT2-small GPT2-medium GPT2-large
epoch 10

batch size 1024
DP learning rate (full) 2e-3 2e-3 2e-3

non-DP learning rate (full) 2e-4 1e-4 1e-4
DP learning rate (BiTFiT) 1e-2

non-DP learning rate (BiTFiT) 2e-3
learning rate decay No

max sequence length 100

Table 10: Hyperparameters of E2E generation task in Table 5 and Table 14, using GPT2.

D.2 IMAGE TASKS

We give the experiments settings for image classification. For CIFAR10 and CIFAR100, we use the
same setting as Bu et al. (2022a), e.g. 5 epochs for CrossViT/ViT and 3 epochs for BEiT-large. For
CelebA, we use the same setting as Bu et al. (2022b), e.g. 10 epochs.

We use DP-Adam with Abadi’s clipping. We do not apply tricks such as random data augmentation,
weight standardization Qiao et al. (2019), or parameter averaging Polyak & Juditsky (1992). Our
experiments are heavily based on Private CNN (i.e. MixGhostClip algorithm Bu et al. (2022a)) and
TIMM codebases.

Dataset CIFAR10 CIFAR10 CIFAR100 CelebA
Model CrossViT BEiT-large BEiT-large ResNet18
epoch 5 3 3 10

batch size 1000 1000 1000 500
clipping threshold 0.1

DP learning rate (full) 1e-3
DP learning rate (BiTFiT) 5e-3

learning rate decay No
normalizing data Yes Yes Yes No

Table 11: Hyperparameters of image classification task in Section 4.3,Table 15,Table 16,Table 17.
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E ADDITIONAL TABLES AND FIGURES

E.1 PARAMETER EFFICIENCY OF DP-BITFIT

Model Number of params % of params
VGG11 133M 0.009
VGG16 138M 0.009
VGG19 144M 0.010

ResNet18 11.7M 0.043
ResNet34 21.8M 0.044
ResNet50 25.6M 0.113
ResNet101 44.5M 0.121
ResNet152 60.2M 0.127

wide resnet50 2 68.9M 0.051
wide resnet101 2 126.9M 0.055

convnext base 88.6M 0.148
convnext large 197.8M 0.099

ViT-small-patch16 22.0M 0.238
ViT-base-patch16 86.6M 0.120
ViT-large-patch16 304M 0.090

beit base patch16 224 86.5M 0.088
deit base patch16 224 86.4M 0.120

GPT2-small 124M 0.082
GPT2-medium 355M 0.076

GPT2-large 774M 0.066
RoBERTa-base 125M 0.083
RoBERTa-large 355M 0.077

BERT-base-uncased 109M 0.094
BERT-large-uncased 335M 0.081

BART-large 406M 0.082
longformer-base-4096 149M 0.088
longformer-large-4096 435M 0.080

Table 12: Parameter efficiency of (DP) BiTFiT on various models.

E.2 MORE RESULTS ON DP-BITFIT AND LANGUAGE TASKS

full (Li et al., 2021; Bu et al., 2022b) BiTFiT (ours)
RoBERTa-base

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 94.5 92.1 92.4 91.9 92.3 93.5 92.4 92.4 92.0 92.0
Accuracy QNLI 91.4 87.9 87.9 87.4 86.9 87.3 86.5 86.7 86.4 86.1
Accuracy QQP 87.3 86.1 86.6 85.6 85.8 86.1 83.4 84.0 83.0 83.8

Accuracy MNLI-m 85.9 83.2 83.8 82.5 83.2 83.4 82.6 82.6 81.5 82.0
RoBERTa-large

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 96.2 93.8 94.6 93.0 93.9 95.5 94.5 94.7 94.5 94.6
Accuracy QNLI 93.6 91.1 91.5 90.8 91.0 92.2 91.0 91.1 90.3 90.8
Accuracy QQP 87.9 86.9 87.5 86.6 86.8 87.9 86.5 87.1 86.3 86.5

Accuracy MNLI-m 90.3 87.0 87.1 86.4 86.3 89.3 87.6 87.7 87.2 87.2
Table 13: Accuracy of full fine-tuning and BiTFiT with RoBERTa, under different per-sample clip-
ping functions (indicated as subscript, Abadi Abadi et al. (2016) and AUTO-S Bu et al. (2022b)).
Same setting as Appendix D.
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Model Fine-tuning % of params Privacy↓ Perplexity↓ BLEU↑ ROGUE-L↑ NIST↑ METEOR↑ CIDEr↑

GPT2-small
(124M)

full 100% standard 2.91 69.46 71.36 8.78 0.46 2.42
DP (ϵ = 8) 2.33 63.60 67.07 7.71 0.40 1.94
DP (ϵ = 3) 2.36 61.34 65.87 7.07 0.39 1.80

LoRA — standard — 69.68 71.71 8.82 0.46 2.49
DP (ϵ = 8) — 63.39 67.53 7.45 0.41 1.95
DP (ϵ = 3) — 58.15 65.77 5.46 0.37 1.58

prefix — standard — 68.85 70.81 8.72 0.45 2.35
DP (ϵ = 8) — 49.26 60.73 5.53 0.36 1.57
DP (ϵ = 3) — 47.77 58.96 5.25 0.36 1.51

BiTFiT 0.082% standard 3.19 64.46 63.67 4.25 0.36 1.36
DP (ϵ = 8) 2.89 60.13 64.96 6.14 0.37 1.62
DP (ϵ = 3) 3.00 54.78 63.55 4.78 0.34 1.31

GPT2-medium
(355M)

full 100% standard 2.08 68.50 71.46 8.63 0.45 2.14
DP (ϵ = 8) 2.25 64.22 67.53 8.17 0.42 2.08
DP (ϵ = 3) 2.62 63.85 67.07 7.11 0.39 1.75

BiTFiT 0.076% standard 2.85 64.48 67.81 8.50 0.43 2.11
DP (ϵ = 8) 2.67 61.02 66.13 7.18 0.39 1.80
DP (ϵ = 3) 2.67 57.11 66.16 5.07 0.37 1.47

GPT2-large
(774M)

full 100% standard 1.79 66.84 70.38 8.73 0.46 2.36
DP (ϵ = 8) 2.26 64.64 68.97 8.30 0.42 2.16
DP (ϵ = 3) 2.65 64.18 67.86 7.94 0.40 2.01

BiTFiT 0.066% standard 2.79 65.79 67.61 8.55 0.43 2.21
DP (ϵ = 8) 2.59 65.21 67.88 8.43 0.42 2.15
DP (ϵ = 3) 2.61 65.18 67.90 8.34 0.42 2.12

Table 14: Accuracy of fine-tuning with GPT2 on E2E dataset. LoRA and prefix results are taken
from Li et al. (2021). Same setting as Appendix D.

E.3 MORE RESULTS ON TWO-PHASE TRAINING

CIFAR10
Model Privacy DP-BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit large patch16 224 ϵ = 1 11.7 98.2 97.9 97.2
ϵ = 2 10.0 98.3 98.0 97.3
ϵ = 4 13.8 98.2 98.0 97.5
ϵ = 8 10.1 98.5 98.0 97.8

beit base patch16 224 ϵ = 1 10.0 96.6 96.0 95.4
ϵ = 2 10.7 97.1 96.4 96.0
ϵ = 4 14.0 97.2 96.6 96.2
ϵ = 8 10.0 97.2 96.5 96.3

deit base patch16 224 ϵ = 1 78.2 94.4 95.2 95.4
ϵ = 2 75.0 95.4 95.2 95.6
ϵ = 4 72.9 95.8 95.9 96.0
ϵ = 8 71.2 96.1 96.0 96.3

crossvit base 240 ϵ = 1 74.3 92.4 94.3 95.2
ϵ = 2 80.4 93.6 95.0 95.3
ϵ = 4 81.0 94.9 95.8 95.7
ϵ = 8 78.2 94.8 95.8 96.2

vit large patch16 224 ϵ = 1 89.7 98.9 98.7 98.9
ϵ = 2 90.6 98.8 98.9 98.9
ϵ = 4 93.2 98.9 98.8 99.0
ϵ = 8 93.9 99.0 98.9 99.0

vit base patch16 224 ϵ = 1 86.7 95.2 97.0 96.8
ϵ = 2 89.3 97.7 97.1 97.1
ϵ = 4 88.3 97.7 97.2 97.2
ϵ = 8 88.7 97.6 97.2 97.4

Table 15: Accuracy of two-phase fine-tuning on CIFAR10. Same setting as Appendix D.2 except
ViT uses the following learning rate: DP full fine-tuning 5e-4, DP-BiTFiT 5e-3.
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CIFAR100
Model Privacy DP-BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit large patch16 224 ϵ = 1 1.0 86.9 87.8 87.0
ϵ = 2 1.0 88.7 89.3 88.7
ϵ = 4 1.0 89.7 89.7 89.6
ϵ = 8 1.0 90.3 90.7 90.0

beit base patch16 224 ϵ = 1 1.0 81.4 82.2 80.9
ϵ = 2 1.0 83.4 83.4 83.1
ϵ = 4 1.0 84.6 85.1 84.8
ϵ = 8 1.0 84.9 85.6 85.2

deit base patch16 224 ϵ = 1 10.9 49.1 65.9 69.1
ϵ = 2 13.6 58.1 71.5 74.3
ϵ = 4 15.7 64.5 73.9 77.1
ϵ = 8 16.6 69.7 75.7 77.9

crossvit base 240 ϵ = 1 12.2 49.2 61.7 67.6
ϵ = 2 12.3 56.8 65.3 71.6
ϵ = 4 17.2 61.6 70.4 73.1
ϵ = 8 20.9 63.4 72.8 74.2

vit large patch16 224 ϵ = 1 14.0 73.5 86.0 87.7
ϵ = 2 19.4 82.4 89.0 90.1
ϵ = 4 24.3 87.5 89.9 91.0
ϵ = 8 23.9 89.0 90.7 91.3

vit base patch16 224 ϵ = 1 16.0 64.3 79.5 83.9
ϵ = 2 22.9 77.0 83.8 85.5
ϵ = 4 21.2 83.0 85.2 87.2
ϵ = 8 26.2 83.8 86.5 87.1

Table 16: Accuracy of two-phase fine-tuning on CIFAR100. Same setting as Appendix D.2 except
ViT uses the following learning rate: DP full fine-tuning 5e-4, DP-BiTFiT 5e-3.
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Attributes DP-BiTFiT 1+BiTFiT 2+BiTFiT DP full DP-BiTFiT 1+BiTFiT 2+BiTFiT DP full
ϵ = 3 ϵ = 8

5 o Clock Shadow 90.01 90.01 90.14 91.32 90.01 90.01 90.51 91.64
Arched Eyebrows 71.56 73.12 76.01 77.33 71.56 73.74 75.49 78.82

Attractive 68.71 73.98 75.99 79.22 69.70 73.61 76.20 78.08
Bags Under Eyes 79.74 79.76 81.27 81.73 79.74 79.74 80.69 82.62

Bald 97.88 97.88 97.88 97.93 97.88 97.88 97.88 97.91
Bangs 84.43 84.43 84.80 94.06 84.43 84.44 86.51 94.22

Big Lips 67.30 67.30 67.30 67.78 67.30 67.30 67.29 68.34
Big Nose 78.80 78.95 80.08 81.19 78.80 78.92 79.23 81.86

Black Hair 72.84 74.86 82.37 85.84 73.02 78.71 83.33 86.47
Blond Hair 89.54 93.00 93.28 94.17 89.13 92.62 93.88 94.34

Blurry 94.94 94.94 94.94 95.05 94.94 94.94 94.96 95.10
Brown Hair 82.03 82.02 82.87 85.44 82.03 82.37 83.49 85.04

Bushy Eyebrows 87.05 87.05 87.21 88.26 87.05 87.05 87.15 89.02
Chubby 94.70 94.70 94.70 94.84 94.70 94.70 94.70 94.78

Double Chin 95.43 95.43 95.43 95.49 95.43 95.43 95.43 95.39
Eyeglasses 93.54 93.54 93.54 94.30 93.54 93.54 93.54 95.85

Goatee 95.42 95.42 95.42 95.96 95.42 95.42 95.42 95.89
Gray Hair 96.81 96.81 96.85 97.44 96.81 96.81 97.12 97.45

Heavy Makeup 76.51 82.76 85.71 88.48 77.22 83.03 85.86 89.05
High Cheekbones 62.13 68.20 81.63 83.77 61.43 67.27 81.33 84.20

Male 80.37 88.47 91.52 94.73 82.04 88.52 92.14 95.19
Mouth Slightly Open 54.03 59.32 77.61 86.75 55.26 60.70 79.42 90.24

Mustache 96.13 96.13 96.13 96.10 96.13 96.13 96.13 96.12
Narrow Eyes 85.13 85.13 85.13 85.14 85.13 85.13 85.13 85.16

No Beard 85.37 85.87 87.56 92.94 85.37 85.88 88.59 93.59
Oval Face 70.44 70.94 71.50 73.11 70.44 71.48 71.92 71.77
Pale Skin 95.79 95.79 95.79 95.79 95.79 95.79 95.79 95.79

Pointy Nose 71.43 71.51 71.63 71.89 71.43 71.47 71.77 72.87
Receding Hairline 91.51 91.51 91.51 91.59 91.51 91.51 91.51 91.61

Rosy Cheeks 92.83 92.83 92.86 93.07 92.87 92.83 92.86 93.33
Sideburns 95.36 95.36 95.36 96.44 95.36 95.36 95.36 96.63
Smiling 60.07 66.32 85.85 89.34 58.92 65.97 85.55 89.11

Straight Hair 79.01 79.01 79.02 79.65 79.01 79.01 79.13 78.60
Wavy Hair 71.24 73.09 76.22 77.35 70.86 73.62 77.11 72.73

Wearing Earrings 79.34 79.34 80.37 83.24 79.34 79.34 80.71 84.36
Wearing Hat 95.80 95.80 95.80 96.01 95.80 95.80 95.80 97.02

Wearing Lipstick 80.61 87.90 89.81 91.59 80.35 87.20 89.56 91.94
Wearing Necklace 86.21 86.21 86.21 86.21 86.21 86.21 86.21 86.21
Wearing Necktie 92.99 92.99 93.03 93.58 92.99 92.99 93.11 93.57

Young 75.71 79.33 81.23 83.69 75.71 78.52 80.66 83.11
Average 82.97 84.42 86.54 88.20 83.01 84.52 86.71 88.38

Total time 10:30 12:02 13:34 25:50 10:30 12:02 13:34 25:50

Table 17: Accuracy on CelebA dataset with settings in Appendix D.2 from one run. DP full fine-
tuning is implemented with the most efficient MixGhostClip algorithm Bu et al. (2022a).
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