
A Related Work

A.1 Classical MCMC methods

Our quantum algorithms are inspired by a major class of classical MCMC algorithms based on
Langevin dynamics. There has been extensive work on non-asymptotic error bounds for the mixing
times of Langevin-type algorithms for sampling [8, 15, 28, 37, 47]. One commonly used type of
algorithm is based on the mixing time of Langevin dynamics, including the underdamped Langevin
diffusion process described by the stochastic differential equations

dvt = −γvt dt− u∇f(xt) dt+
√

2γudWt (A.1)
dxt = vt dt (A.2)

with parameters γ, u, where Wt ∼ N (0, t) is a standard Wiener process. The coefficients of (A.1)
are Lipschitz continuous since f is L-smooth; and the overdamped Langevin diffusion process

dxt = −u∇f(xt) dt+
√

2udWt (A.3)

is obtained by taking γ →∞ and t→ t/γ.

It can be shown that taking γ = 2 and u = 1/L, the stationary distribution of the underdamped
Langevin diffusion (A.1) is proportional to e−(f(x)+L‖v‖2/2), and the marginal distribution of x is
proportional to e−f(x). When γ → ∞, the stationary distribution of the overdamped version (A.3)
is proportional to e−f(x). The numerical discretization of (A.3) is used in unadjusted Langevin algo-
rithms, while sampling algorithms based on the discretization of (A.1) can have a better dependence
on d and ε.

We now introduce a few common classical sampling algorithms: the underdamped Langevin diffu-
sion (ULD) method; the randomized midpoint method for underdamped Langevin diffusion (ULD-
RMM), with the best known dependence on d; and the Metropolis adjusted Langevin algorithm
(MALA), with the best known dependence on κ and ε. To simulate the random process in dis-
crete time, ULD can be viewed as the first-order forward Euler discretization of the continuous
process (A.1). In particular, ULD takes Õ

(
κ2
√
d/ε
)

steps to approximate the stationary distri-
bution e−f(x) within ε in the Wasserstein 2-norm [10], where κ is the condition number of f ,
and d is the dimension. ULD-RMM approximates the integral of the random process (A.1) by
randomly choosing the midpoint in the integral, which reduces the bias in the accumulation of
the integration. As a more accurate approximation, ULD-RMM converges in the Wasserstein 2-
distance ε with Õ

(
κ7/6d1/6

ε1/3
+ κd1/3

ε2/3

)
steps [37], a polynomial reduction in κ, d, ε over ULD. As

an alternative approach, MALA also constructs the Euler discretization of (A.1), and then ap-
plies the Metropolis-Hastings acceptance/rejection step to ensure convergence to the correct sta-
tionary distribution. It was first shown that MALA converges in the total variation distance ε with
Õ
(
κdmax{1, κ/d} log(κd/ε)

)
steps for Gaussian initial distributions [8, 15]. Later, this result

was improved to Õ
(
κd log(κd/ε)

)
based on an improved non-asymptotic analysis of the mix-

ing time [28]. For warm-start distributions, the complexity of MALA can be further reduced to
Õ
(
κd1/2 log(κd/ε)

)
[47]. Compared to ULD and ULD-RMM, this exponentially improves the

dependence on ε, and polynomially improves the dependence on κ, while it suffers from a worse
dependence on d. We introduce the algorithms and complexities of ULD and ULD-RMM in Ap-
pendix B.1, and introduce these results of MALA in Appendix C.2.1.

For the task of estimating the normalizing constant (1.3), the state-of-the-art classical results are
given by [16]. That work applies the classical sampling algorithms described above with an an-
nealing strategy. The normalizing constant is estimated by a sequence of telescoping sums, each
of which can be approximated by a Monte Carlo method that samples from a log-concave distri-
bution. We introduce this annealing procedure in Appendix B.2. Reference [16] employed the
mixing time of MALA for Gaussian initial distributions developed by [8, 15] with the annealing
procedure, achieving the overall complexity Õ

(
κd2

ε2 max{1, κ/d}
)

for estimating the normalizing
constant. They also combined ULD and ULD-RMM with the annealing and the multilevel Monte
Carlo (MLMC) method to achieve complexities of Õ

(
κ2d3/2

ε2

)
and Õ

(
κ7/6d7/6

ε2 + κd4/3

ε2

)
, respec-

tively. Here MLMC, introduced in Appendix D.2, is utilized to resolve the worse dependence on ε in
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ULD and ULD-RMM, resulting in the same Õ(1/ε2) scaling of the error compared to the annealing
with MALA. Annealing with MLMC and ULD/ULD-RMM also has a better dependence on d over
annealing with MALA, while they suffer from a worse dependence on κ.

A.2 Quantum computing

Previous literature developed alternative approaches to generating quantum states corresponding
to classical probability distributions on a quantum computer, sometimes referred to as quantum
sampling (or qsampling) from a distribution. References [49], [19], and [26] propose direct state
generation approaches using controlled rotations. However, this approach is limited to the regime in
which the distribution is efficiently integrable. As an alternative, [1] develops an adiabatic approach
to qsampling. They apply adiabatic evolution techniques to qsample the stationary distributions of a
sequence of slowly varying Markov chains, a technique referred to as quantum simulated annealing
(QSA) in subsequent literature [22, 38, 39, 45, 48]. The time complexity of Aharanov and Ta-
Shma’s approach is O(1/δ) as a function of the spectral gap δ, comparable to the running time
of analogous classical sampling methods. Reference [45] adopted Szegedy’s quantum walks [41]
and amplitude amplification [5] to improve the time complexity of this qsampling procedure to
O(1/

√
δ), achieving a quadratic speedup in the spectral gap. As a generalization, [42] proposes a

quantum Metropolis sampling method that extends qsampling to quantum Hamiltonians, with time
complexity O(1/δ). Reference [48] combines quantum Metropolis sampling with QSA to achieve
time complexity O(1/

√
δ). Another alternative approach is quantum rejection sampling [30, 33,

44], which provides a method for transforming an initial superposition of desired and undesired
states into the desired state using amplitude amplification. Reference [44] employs semi-classical
Bayesian updating to achieve time complexity O(1/

√
ε) as a function of the approximation error ε.

The quantum rejection sampling approach is generally less efficient than the QSA approach, as the
latter can achieve O(log 1/ε) by choosing proper slowly varying MCs that mix rapidly.

Previous quantum computing literature on partition function estimation mainly focused on discrete
systems with

Z(β) =
∑
x∈Ω

e−βH(x), (A.4)

where β is an inverse temperature and H is a Hamiltonian function of x over a finite state space Ω.
The space Ω is usually assumed to be a simple discrete set, such as {0, 1}n, and H is assumed to be
a sum of local terms. For instance, [31] considers H taking integer values {0, 1, . . . , n}, and [22]
assumes 0 ≤ H(x) ≤ n for all x.

To estimate Z = Z(∞) in (A.4), [31] considers a classical Chebyshev cooling schedule 0 = β0 <

β1 < . . . βl = ∞ for Z with the length l = O(
√

log |Ω| log log |Ω|) [40]. Reference [31] ap-
plies fast qsampling algorithms to estimate Z with Õ(l2/

√
δε) = Õ(log |Ω|/

√
δε) quantum walk

steps to sample from Gibbs distributions πi(x) = 1
Z(βi)

e−βiH(x), whereas a corresponding classi-

cal algorithm takes Õ(l2/δε2) = Õ(log |Ω|/δε2) random walk steps. Here ε denotes the relative
error for estimating Z, and δ denotes the spectral gap of the Markov chains with stationary dis-
tributions πi(x). Reference [31] also points out that this quantum algorithm relies on classical
Markov chain Monte Carlo for computing the Chebyshev cooling schedule, introducing an over-
head of Õ(log |Ω|/δ) [40]. Hence, the overall cost is Õ(log |Ω|/

√
δ(ε+

√
δ)), a quadratic reduction

with respect to ε over classical algorithms. Reference [22] develops a fully quantized version of
the Chebyshev cooling schedule that only requires additional cost Õ(log |Ω|/

√
δ). This results in

overall cost Õ(log |Ω|/
√
δε), a quadratic speedup in terms of δ over [31] and classical algorithms.

Reference [4] constructs a shorter Chebyshev cooling schedule by using a paired-product estimator
with length l = O(

√
log |Ω|), eliminating the l = O(log log |Ω|) factors in the previous schedule

[40]. Reference [4] develops a fully quantized version of this shorter schedule, almost matching the
same overall cost Õ(log |Ω|/

√
δ(ε+

√
δ)) of [22].

Estimating the partition function of a discrete system corresponds to a discrete counting problem,
with applications such as counting colorings or matchings of a graph and estimating statistics of
Ising models, while estimating partition functions of continuous systems is relevant to the volume
estimation problem.
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B Tools from Classical MCMC Algorithms

B.1 ULD and ULD-RMM

We now describe underdamped Langevin diffusion (ULD) and the randomized midpoint method
for underdamped Langevin diffusion (ULD-RMM), as introduced in [16] with Lipschitz continuous
constants. We consider the underdamped Langevin diffusion with parameters γ, u:

dvt = −γvt dt−∇f(xt) dt+
√

2γudWt, (B.1)
dxt = vt dt, (B.2)

The discrete dynamics of ULD can be described by

dvht = −γvht dt− u∇f(xhbt/hch) dt+
√

2γudWt, (B.3)

dxht = vht dt. (B.4)

According to [16], taking γ = 2 and u = 1/L, the explicit discrete-time update of ULD is integrated
as

vht+h = e−2hvht +
1

2L
(1− e−2h)∇f(xht ) +

2√
L
Wh

1,t, (B.5)

xht+h = xht +
1

2
(1− e−2h)vht +

1

2L
[h− (1− e−2h)]∇f(xht ) +

1√
L
Wh

2,t, (B.6)

where

Wh
1,t =

∫ h

0

e2(s−h)dBt+s, (B.7)

Wh
2,t =

∫ h

0

(1− e2(s−h))dBt+s. (B.8)

Wh
1,t and Wh

2,t can be obtained by sampling the d-dimensional standard Brownian motion Bt.

The ULD algorithm is presented in Algorithm 4. The convergence of ULD has been established by
Theorem 1 of [10], which was restated by Theorem C.3 of [16] as follows.

Algorithm 4: Underdamped Langevin Dynamics (ULD)
Input: Function f , step size h, time T , and a sample x0 from a starting distribution ρ0

Output: Sequence xhh, x
h
2h, . . . , x

h
bTc+1

1 Compute xh0 ← x0

2 for t = 0, h, . . . , bT c do
3 Draw Wh

1,t =
∫ h

0
e2(s−h)dBt+s, Wh

2,t =
∫ h

0
(1− e2(s−h))dBt+s

4 Compute vht+h = e−2hvht + 1
2L (1− e−2h)∇f(xht ) + 2√

L
Wh

1,t,
xht+h = xht + 1

2 (1− e−2h)vht + 1
2L [h− (1− e−2h)]∇f(xht ) + 1√

L
Wh

2,t

Lemma B.1 (Theorem 1 of [10]). Assume the target distribution ρ is strongly log-concave with L-
smooth and µ-strongly convex negative log-density. Let ρn be the distribution of the underdamped
Langevin diffusion with the initial point x0 satisfying ‖x0−x∗‖ ≤ D, step size h ≤ ε

104κ

√
1

d/µ+D2 ,

and time T ≥ κ
2 log

(
24
√
d/µ+D2

ε

)
. Then ULD achieves

E
(
‖X̂n −XT ‖2

)
≤ Õ

(d2κ2h2

µ

)
, (B.9)

W2(ρn, ρ) ≤ ε, (B.10)

using

T

h
= Θ̃

(κ2
√
d

ε

)
(B.11)

queries to∇f .
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According to [16], the explicit discrete-time update of ULD-RMM is integrated as

vht+h = e−2hvht +
h

L
e−2(1−α)h∇f(yht ) +

2√
L
Wh

1,t, (B.12)

xht+h = xht +
1

2
(1− e−2h)vht +

h

2L
(1− e−2(1−α)h)∇f(yht ) +

1√
L
Wh

2,t, (B.13)

yht+h = xht +
1

2
(1− e−2αh)vht +

1

2L
[αh− (1− e−2αh)]∇f(xht ) +

1√
L
Wh

3,t, (B.14)

where

Wh
1,t =

∫ h

0

e2(s−h)dBt+s, (B.15)

Wh
2,t =

∫ h

0

(1− e2(s−h))dBt+s, (B.16)

Wh
3,t =

∫ αh

0

(1− e2(s−h))dBt+s. (B.17)

Wh
1,t, W

h
2,t, andWh

3,t can be obtained by sampling the d-dimensional standard Brownian motionBt.

The ULD-RMM algorithm is presented in Algorithm 5. The convergence of ULD-RMM has been
established by Theorem 3 of [37], which was restated by Theorem C.5 of [16] as follows.

Algorithm 5: Underdamped Langevin Dynamics with Randomized Midpoint Method (ULD-
RMM)
Input: Function f , step size h, time T , and a sample x0 from a starting distribution ρ0

Output: Sequence xhh, x
h
2h, . . . , x

h
bTc+1

1 Compute xh0 ← x0, yh0 ← x0

2 for t = 0, h, . . . , bT c do
3 Draw Wh

1,t =
∫ h

0
e2(s−h)dBt+s, Wh

2,t =
∫ h

0
(1− e2(s−h))dBt+s,

Wh
3,t =

∫ αh
0

(1− e2(s−h))dBt+s
4 Compute vht+h = e−2hvht + h

Le
−2(1−α)h∇f(yht ) + 2√

L
Wh

1,t,

xht+h = xht + 1
2 (1− e−2h)vht + h

2L (1− e−2(1−α)h)∇f(yht ) + 1√
L
Wh

2,t,
yht+h = xht + 1

2 (1− e−2αh)vht + 1
2L [αh− (1− e−2αh)]∇f(xht ) + 1√

L
Wh

3,t

Lemma B.2 (Theorem 3 of [37]). Assume the target distribution ρ is strongly log-concave with
L-smooth and µ-strongly convex negative log-density. Let ρn be the distribution of the random-
ized midpoint method for underdamped Langevin diffusion with the initial point x0, step size
h ≤ min

{
ε1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ε

) , ε2/3µ1/3

d1/3 log1/3
(√

d/µ

ε

)}, and time T ≥ 2κ log
(

20d/µ
ε2

)
. Then ULD-

RMM achieves

E
(
‖X̂n −XT ‖2

)
≤ Õ

(dκh6

µ
+
dh3

µ

)
, (B.18)

W2(ρn, ρ) ≤ ε, (B.19)
using

2T

h
= Θ̃

(κ7/6d1/6

ε1/3
+
κd1/3

ε2/3

)
(B.20)

queries to∇f .

B.2 Annealing for Estimating the Normalizing Constant

Having described the sampling procedure for a log-concave function, we now move to the problem
of estimating the normalizing constant

Z =

∫
x∈Rd

e−f(x)dx. (B.21)
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We consider a sequence of auxiliary distributions, given by

fi(x) =
1

2

‖x‖2

σ2
i

+ f(x) (B.22)

for i ∈ [M ], where σ1 ≤ σ2 ≤ · · · ≤ σM . We define σM+1 = ∞ and fM+1 = f for convenience.
We consider the sequence of distributions

ρi(dx) = Z−1
i e−fi(x)dx, (B.23)

where Zi is the normalizing constant

Zi =

∫
x∈Rd

e−fi(x)dx. (B.24)

Then Z is estimated by the telescoping product

Z = ZM+1 = Z1

M∏
i=1

Zi+1

Zi
. (B.25)

In (B.25), we first approximate Z1 by the normalizing constant of the Gaussian distribution with
variance σ2

1 , which is bounded by the following lemma.
Lemma B.3 (Lemma 3.1 of [16]). Letting σ2

1 = ε
2dL , we have(

1− ε

2

)∫
x∈Rd

e
− 1

2
‖x‖2

σ21 dx ≤ Z1 ≤
∫
x∈Rd

e
− 1

2
‖x‖2

σ21 dx. (B.26)

We then approximate Zi+1

Zi
by sampling the distribution ρi, with

Zi+1

Zi
= Eρi(gi), (B.27)

where

gi = exp
(1

2

( 1

σ2
i

− 1

σ2
i+1

)
‖x‖2

)
. (B.28)

If X(1)
i , X

(2)
i , . . . , X

(K)
i are i.i.d. samples generated according to the distribution ρi, then

Zi+1

Zi
≈ 1

K

K∑
k=1

gi(X
(k)
i ). (B.29)

For the sequence of σ2
i with the annealing schedule σ2

i+1

σ2
i

= 1 + α, we aim to bound the relative

variance of Zi+1

Zi
. First, for ZM+1

ZM
, we have the following lemma.

Lemma B.4 (Lemma 3.2 of [16]). For σ2
M ≥ 2

µ , we have

EρM (g2
M )

EρM (gM )2
≤ exp

(
4d

µσ4
M

)
. (B.30)

When σ2
M ≥ 2

√
d

µ , and assuming µ < 1, we have EρM (g2M )

EρM (gM )2 ≤ e.

Second, for Zi+1

Zi
with i ∈ [M −1], the relative variance of can be bounded by the following lemma.

Lemma B.5 ([Lemma 3.3 of [16]). Let ρ be a log-concave distribution. For α ≤ 1
2 , we have

Eρi(g2
i )

Eρi(gi)2
=

Eρ
[
exp
(
− 1+α

2
‖x‖2
σ2

)]
· Eρ

[
exp
(
− 1−α

2
‖x‖2
σ2

)]
Eρ
[
exp
(
− 1

2
‖x‖2
σ2

)]2 ≤ exp
(
4α2d

)
. (B.31)
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Therefore, if we choose the annealing schedule

σ2
i+1

σ2
i

= 1 +
1√
d
, (B.32)

then Eρi (g
2
i )

Eρi (gi)2
≤ e4.

The estimate of the normalizing constant (1.3) relies on the above annealing framework and the
sampling algorithms for the log-concave distribution ρi including ULD, ULD-RMM, and MALA.
In the following sections, we discuss the quantum speedup for (1.3) using MALA and annealing,
and using multilevel ULD/ULD-RMM and annealing.

B.3 Annealing Markov chains are slowly varying

The goal of this subsection is to prove the following lemma.

Lemma B.6 (Slowly varying MCs). Let f0(x) = ‖x‖2
2σ2

1
and let dπ0 = (2πσ2

1)d/2 · e−f0(x)dx be the

Gaussian distribution. For i ∈ {1, . . . ,M}, let fi(x) = f(x) + ‖x‖2
2σ2
i

and let dπi = Z−1
i e−fi(x)dx

be its stationary distribution. Let fM+1(x) = f(x) and let dπM+1 be the target log-concave
distribution. Define the qsample state

|πi〉 =

∫
Ω

dx
√
πi(x)|x〉 ∀ 0 ≤ i ≤M + 1. (B.33)

Then, for 0 ≤ i ≤M , we have

|〈πi|πi+1〉| ≥ Ω(1). (B.34)

Proof. First, we consider the case when i = 0. Note that |〈π0|π1〉| can be written as

|〈π0|π1〉| =
∫

Ω

dx · (2πσ2
1)−d/4e−

1
2 f0(x) · Z−1/2

1 e−
1
2 f1(x) (B.35)

=

∫
Ω
e
− 1

2 f(x)− ‖x‖
2

2σ21 dx

(2πσ2
1)d/4 ·

√
Z1

. (B.36)

Since 0 ≤ f(x) ≤ 1
2L‖x‖

2, the numerator can be lower bounded by∫
Ω

e
− 1

2 f(x)− ‖x‖
2

2σ21 dx ≥
∫

Ω

e−
1
2 (L/2+σ−2

1 )‖x‖2dx =
(
2π(L/2 + σ−2

1 )−1
)d/2

(B.37)

and the denominator can be upper bounded by

(2πσ2
1)d/4 ·

√∫
Ω

e−f(x)− 1
2‖x‖2/σ

2
1dx ≤ (2πσ2

1)d/4 ·

√∫
Ω

e−
1
2‖x‖2/σ

2
1dx = (2πσ2

1)d/2. (B.38)

Therefore

|〈π0|π1〉| ≥
(
2π(L/2 + σ−2

1 )−1
)d/2

(2πσ2
1)d/2

= (1 + σ2
1L/2)−d/2 ≥ e−σ

2
1dL/4. (B.39)

By our choice of σ2
1 = ε

2dL , we have |〈π0|π1〉| ≥ e−ε/8 = Ω(1).

Now consider the case where 1 ≤ i ≤ M − 1. The inner product between |πi〉 and |πi+1〉 can be
written as

|〈πi|πi+1〉| =
∫

Ω

dx · Z−1/2
i e−

1
2 fi(x) · Z−1/2

i+1 e−
1
2 fi+1(x) (B.40)

=

∫
Ω
e−f(x)− ‖x‖

2

4 (σ−2
i +σ−2

i+1)dx√
ZiZi+1

. (B.41)
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Let σ2 = σ2
i+1 and σ2/(1 + α) = σ2

i . Also, let ρ be the log-concave distribution ρ(dx) =

Z−1e−f(x)dx. Then we have∫
Ω

e−f(x)− ‖x‖
2

4 (σ−2
i +σ−2

i+1)dx = Z · Eρ
[
e−

1+α/2

2σ2
‖x‖2

]
. (B.42)

Similarly,

Zi = Z · Eρ
[
e−

1+α

2σ2
‖x‖2

]
and Zi+1 = Z · Eρ

[
e−

1
2σ2
‖x‖2

]
. (B.43)

Hence,

|〈πi|πi+1〉| =
Eρ
[
e−

1+α/2

2σ2
‖x‖2

]
Eρ
[
e−

1+α

2σ2
‖x‖2

]1/2
· Eρ

[
e−

1
2σ2
‖x‖2

]1/2 . (B.44)

Let α′ := α
α+2 and σ′2 := σ2

1+α/2 . Then

|〈πi|πi+1〉| =
Eρ
[
e−

1
2σ′2
‖x‖2

]
Eρ
[
e−

1+α′
2σ′2

‖x‖2
]1/2
· Eρ

[
e−

1−α′
2σ′2

‖x‖2
]1/2 (B.45)

≥ e−2α′2d, (B.46)

where the last step follows from Lemma B.5. Since we choose α = d−1/2, we have α′ = 1
1+2
√
d

=

O(d−1/2), which implies that e−2α2d = Ω(1).

Finally, we consider the case where i = M . The inner product can be written as

|〈πM |πM+1〉| =
∫

Ω
dx · e− 1

2 f(x)− 1
4‖x‖

2/σ2
M · e− 1

2 f(x)

√
ZM
√
Z

(B.47)

=

∫
Ω

dx · e−f(x)− 1
4‖x‖

2/σ2
M

√
ZM
√
Z

. (B.48)

Let ρ′ be a log-concave distribution with density proportional to e−f(x)− 1
4‖x‖

2/σ2
M . Then∫

Ω
dx · e−f(x)− 1

4‖x‖
2/σ2

M

√
ZM
√
Z

= Eρ′
[
e−

1
4‖x‖

2/σ2
M

]−1/2

· Eρ′
[
e

1
4‖x‖

2/σ2
M

]−1/2

(B.49)

≥ e
− d

2µσ4
M , (B.50)

where the second step follows from the proof of Lemma B.4 in [16]. Since we take σ2
M = Θ(

√
d
µ ),

we find that |〈πM |πM+1〉| ≥ e−Θ(1) = Ω(1).

Combining the three cases, the proof is complete.

C Quantum Algorithm for Log-Concave Sampling: Details

In this section, we provide several quantum algorithms for sampling log-concave distributions. In
Appendix C.1, we show that the classical underdamped Langevin diffusion (ULD) and the ran-
domized midpoint method for underdamped Langevin diffusion (ULD-RMM) can be improved by
replacing the first-order oracle by the zeroth-order quantum oracle, while achieving the same effi-
ciency and accuracy guarantees. In Appendix C.2, we show that the Metropolis adjusted Langevin
algorithm (MALA) can be quantumly sped up in terms of query complexity, for both Gaussian initial
distributions and warm-start distributions.
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C.1 Quantum Inexact ULD and ULD-RMM

In the quantum setting, we can estimate ∇f(x) by using Jordan’s algorithm with queries to the
quantum zeroth-order evaluation oracle (1.4). The following lemma provides an `1-error guarantee.

Lemma C.1 (Lemma 2.3 in [7]). Let f be a convex, L0-Lipschitz continuous function that is speci-
fied by an evaluation oracle with error at most ε. Suppose f is L-smooth in B∞(x, 2

√
ε/L). Let

g̃ = SmoothQuantumGradient(f, ε, L0, L, x). (C.1)

Then for any i ∈ [d], we have |g̃i| ≤ L0 and E|g̃i −∇f(x)i| ≤ 3000
√
dεL; hence

E‖g̃ −∇f(x)‖1 ≤ 3000d1.5
√
εL. (C.2)

If L0, 1/L, and 1/ε are poly(d), the SmoothQuantumGradient algorithm uses O(1) queries to
the quantum evaluation oracle and Õ(d) gates.

We then introduce inexact ULD and ULD-RMM by using a stochastic zeroth-order oracle as follows.

Lemma C.2 (Theorem 2.2 of [36]). Let ρn be the distribution of the underdamped Langevin diffu-
sion with the initial point x0 satisfying ‖x0 − x∗‖ ≤ D, step size h ≤ ε

104κ

√
1

d/µ+D2 , and time

T ≥ κ
2 log

(
24
√
d/µ+D2

ε

)
. Assume there is a stochastic zeroth-order oracle that provides an un-

biased evaluation of ∇f(x) with bounded variance E‖g̃ − ∇f(x)‖2 ≤ σ2. Then inexact ULD
achieves W2(ρn, ρ) ≤ ε using

T

h
= Θ̃

(κ2
√
d

ε

)
(C.3)

iterations and

b =
d1.5 max{1, σ2}

ε
(C.4)

queries to the zeroth-order oracle per iteration. The total number of calls is bT
h .

Lemma C.3 (Theorem 2.3 of [36]). Let ρn be the distribution of the randomized mid-
point method for underdamped Langevin diffusion with the initial point x0, step size h ≤
min

{
ε1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ε

) , ε2/3µ1/3

d1/3 log1/3
(√

d/µ

ε

)}, and time T ≥ 2κ log
(

20d/µ
ε2

)
. Assume there is

a stochastic zeroth-order oracle that provides an unbiased evaluation of ∇f(x) with bounded vari-
ance E‖g̃ −∇f(x)‖2 ≤ σ2. Then inexact ULD-RMM achieves W2(ρn, ρ) ≤ ε using

2T

h
= Θ̃

(κ7/6d1/6

ε1/3
+
κd1/3

ε2/3

)
(C.5)

iterations and

b =
dκ

h3
(C.6)

queries to the zeroth-order oracle per iteration. The total number of calls is bT
h .

As a quantum counterpart, we are able to reduce the number of queries from O(b) to O(1) for
each iteration in Lemma C.2 and Lemma C.3 based on Lemma C.1. Here we are able to choose
ε = O( σ2

d3L ) to preserve the condition

E‖g̃ −∇f(x)‖2 ≤ E‖g̃ −∇f(x)‖21 ≤ σ2 (C.7)

used in Lemma C.2 and Lemma C.3 with O(1) additional quantum queries. The total number of
calls is O(Th ) in Lemma C.2 and Lemma C.3, the same scaling as in Lemma B.1 and Lemma B.2.
The query complexities of ULD and ULD-RMM are as follows.
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Theorem C.1. Assume the target distribution ρ is strongly log-concave with L-smooth and µ-
strongly convex negative log-density. Let ρn be the distribution of the underdamped Langevin dif-
fusion with the initial point x0 satisfying ‖x0 − x∗‖ ≤ D, step size h ≤ ε

104κ

√
1

d/µ+D2 , and time

T ≥ κ
2 log

(
24
√
d/µ+D2

ε

)
. Then quantum inexact ULD (Algorithm 6) achieves

E
(
‖X̂n −XT ‖2

)
≤ Õ

(d2κ2h2

µ

)
, (C.8)

W2(ρn, ρ) ≤ ε, (C.9)

using

T

h
= Θ̃

(κ2
√
d

ε

)
(C.10)

queries to the quantum evaluation oracle.

Proof. By Lemma C.2, we know that the number of iterations of ULD with an inexact gradient
oracle is Õ(κ2

√
d/ε), as long as the oracle satisfies E‖g̃ − ∇f(x)‖2 ≤ σ2. By Lemma C.1, this

condition can be achieved by the quantum gradient algorithm such that each gradient computation
takes O(1) queries to the quantum evaluation oracle. Therefore, the total number of queries is
Õ(κ2

√
d/ε) for the quantum inexact ULD.

Theorem C.2. Assume the target distribution ρ is strongly log-concave with L-smooth and
µ-strongly convex negative log-density. Let ρn be the distribution of the randomized mid-
point method for underdamped Langevin diffusion with initial point x0, step size h ≤
min

{
ε1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ε

) , ε2/3µ1/3

d1/3 log1/3
(√

d/µ

ε

)}, and time T ≥ 2κ log
(

20d/µ
ε2

)
. Then quantum in-

exact ULD-RMM (Algorithm 7) achieves

E
(
‖X̂n −XT ‖2

)
≤ Õ

(dκh6

µ
+
dh3

µ

)
, (C.11)

W2(ρn, ρ) ≤ ε, (C.12)

using

2T

h
= Θ̃

(κ7/6d1/6

ε1/3
+
κd1/3

ε2/3

)
(C.13)

queries to the quantum evaluation oracle.

The proof is almost the same as Theorem C.1, so we omit it here.

Algorithm 6: Quantum Inexact Underdamped Langevin Dynamics (Quantum IULD)
Input: Function f , step size h, time T , and a sample x0 from a starting distribution ρ0,

evaluation error ε, Lipschitz constant L, smoothness parameter β
Output: Sequence xhh, x

h
2h, . . . , x

h
bTc+1

1 Compute xh0 ← x0

2 Compute g̃(x0)← SmoothQuantumGradient(f, ε, L, β, x0)
3 for t = 0, h, . . . , bT c do
4 Draw Wh

1,t =
∫ h

0
e2(s−h)dBt+s, Wh

2,t =
∫ h

0
(1− e2(s−h))dBt+s

5 Compute vht+h = e−2hvht + 1
2L (1− e−2h)g̃(xht ) + 2√

L
Wh

1,t

6 xht+h = xht + 1
2 (1− e−2h)vht + 1

2L [h− (1− e−2h)]g̃(xht ) + 1√
L
Wh

2,t

7 Compute g̃(xht+h)← SmoothQuantumGradient(f, ε, L, β, xht+h)
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Algorithm 7: Quantum Inexact Underdamped Langevin Dynamics with Randomized Midpoint
Method (Quantum IULD-RMM)
Input: Function f , step size h, time T , and a sample x0 from a starting distribution ρ0

Output: Sequence xhh, x
h
2h, . . . , x

h
bTc+1

1 Compute xh0 ← x0, yh0 ← x0

2 Compute g̃(xh0 )← SmoothQuantumGradient(f, ε, L, β, xh0 )

3 g̃(yh0 )← SmoothQuantumGradient(f, ε, L, β, yh0 )
4 for t = 0, h, . . . , bT c do
5 Draw Wh

1,t =
∫ h

0
e2(s−h)dBt+s, Wh

2,t =
∫ h

0
(1− e2(s−h))dBt+s,

Wh
3,t =

∫ αh
0

(1− e2(s−h))dBt+s
6 Compute vht+h = e−2hvht + h

Le
−2(1−α)hg̃(yht ) + 2√

L
Wh

1,t

7 xht+h = xht + 1
2 (1− e−2h)vht + h

2L (1− e−2(1−α)h)g̃(yht ) + 1√
L
Wh

2,t

8 yht+h = xht + 1
2 (1− e−2αh)vht + 1

2L [αh− (1− e−2αh)]g̃(xht ) + 1√
L
Wh

3,t

9 Compute g̃(xht+h)← SmoothQuantumGradient(f, ε, L, β, xht+h)

10 g̃(yht+h)← SmoothQuantumGradient(f, ε, L, β, yht+h)

C.2 Quantum MALA

In Appendix C.2.1, we introduce several classical results on the mixing of MALA. Then, in Ap-
pendix C.2.2, we describe how to implement a quantum walk for MALA. In Appendix C.2.3, we
discuss the effective spectral gap of a Markov chain. Then, in Appendix C.2.4 and Appendix C.2.5,
we show quantum MALA with a warm start distribution and a Gaussian initial distribution, respec-
tively.

C.2.1 Mixing time and spectral gap of MALA

The Metropolis adjusted Langevin algorithm (MALA) is a key method for sampling log-concave
distributions. Classically, the state-of-the-art mixing time bound of MALA was proven by [28].
They show that MALA is equivalent to the Metropolized Hamiltonian Monte Carlo method (HMC).
Then, they consider the following Metropolized HMC algorithm (Algorithm 8) and use the blocking
conductance analysis of [25] to upper bound the mixing time.

Algorithm 8: Metropolized HMC: HMC(x0, η)

Input: Initial point x0 ∈ Rd, step size η
Output: Sequence {xk}, k ≥ 0

1 for k ≥ 0 do
2 Draw vk ∼ N (0, Id)
3 (x̃k, ṽk)← LEAPFROG(η, xk, vk)
4 Draw u ∼ U([0, 1])
5 if u ≤ min{1, exp(H(xk, vk)−H(x̃k, ṽk))} then
6 xk+1 ← x̃k

7 else
8 xk+1 ← xk

Define H(x, v) := f(x) + 1
2‖v‖

2
2. Let dπ? denote the target distribution, i.e., dπ?(x)/dx ∝

exp(−f(x)). Then the Markov chain defined by Algorithm 8 has the following property.

Lemma C.4 ([28]). The Markov chain of Algorithm 8 is reversible, and its stationary distribution
is dπ?.

The main result of [28] is the following theorem on the mixing time of Algorithm 8.
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Algorithm 9: LEAPFROG(η, x, v)

Input: Points x, v ∈ Rd, step size η
Output: Points x̃, ṽ ∈ Rd

1 v′ ← v − η
2∇f(x)

2 x̃← x+ ηv′

3 ṽ ← v′ − η
2∇f(x)

Theorem C.3 (Mixing of Hamiltonian Monte Carlo, Theorem 4.7 of [28]). There is an algorithm
initialized from a point drawn from N (x?, L−1Id) that iterates Algorithm 8

O(κd log(κ/ε) log(d log(κ/ε)) log(1/ε)) (C.14)

times and produces a point from a distribution ρ such that ‖ρ− π?‖TV ≤ ε.

The algorithm in the above theorem defines a new Markov chain where in each step, we draw an
integer j uniformly from 0 to O(κd log(κ/ε) log(d log(κ/ε))) and run Algorithm 8 for j iterations.
One step of this Markov chain gives a distribution with TV-distance from π? at most (2e)−1 [28].
Hence, if we run for log(1/ε) steps, we get ε TV-distance.

Furthermore, we can show that MALA converges faster under a certain warm start condition [11,
15, 47]. We say the initial distribution ρ0 is β-warm if there is a constant β independent of κ, d such
that

sup
S∈B(Rd)

ρn(S)

ρ(S)
≤ β. (C.15)

The warmness of the Gaussian ρ0 = N (x∗, 1
LI) satisfies β ≤ κd/2 [15, 47].

Given a β-warm initial distribution, MALA has the following improved convergence.
Lemma C.5 (Theorem 1 of [47]). Assume the target distribution ρ is strongly log-concave with L-
smooth and µ-strongly convex negative log-density. Let ρn be the distribution of the 1

2 -lazy version
of MALA with β-warm initial distribution ρ0 and step size h = c0(Ld log2(max{κ, d, βε , c2}))

−1.
There exist universal constants c0, c1, c2 > 0, such that MALA achieves

dTV (ρn, ρ) ≤ ε (C.16)

after

n ≥ c1κ
√
d log3(max{κ, d, β

ε
, c2}) (C.17)

steps.

C.2.2 Quantum walks for MALA

The goal of this section is to show quantum speedup for the Metropolis adjusted Langevin algorithm
(MALA) using the continuous-space quantum walks defined by [6], which generalize the discrete-
time quantum walk of [41] to continuous space.

Given a transition density function p, the quantum walk is characterized by the states

|φx〉 := |x〉 ⊗
∫

Ω

dy
√
px→y|y〉 ∀x ∈ Rn, (C.18)

where px→y := p(x, y).

Now, denote

U :=

∫
Ω

dx |φx〉(〈x| ⊗ 〈0|), Π :=

∫
Ω

dx |φx〉〈φx|, S :=

∫
Ω

∫
Ω

dxdy |x, y〉〈y, x|. (C.19)

A single step of the quantum walk is defined as the unitary operator

W := S(2Π− I). (C.20)
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Alternatively, we can define the quantum walk operator as

W ′ := U†SUR · U†SUR,
where R is the reflection about the subspace span{|x, 0〉}. It is easy to see that W and W ′ have
the same spectrum. More specifically, if |ui〉 is an eigenvector of W , then |vi〉 = U†|ui〉 is an
eigenvector of W ′ with the same eigenvalue.

The following theorem characterizes the eigenvalues of the quantum walk operator.
Theorem C.4 (Theorem 3.1 of [6]). Let

D :=

∫
Ω

∫
Ω

dxdy
√
px→ypy→x|x〉〈y| (C.21)

denote the discriminant operator of p. Let Λ be the set of eigenvalues of D, so that D =∫
Λ

dλλ|λ〉〈λ|. Then the eigenvalues of the quantum walk operator W in (C.20) are ±1 and
λ± i

√
1− λ2 for all λ ∈ Λ.

Furthermore, Ref. [6] shows that, for a reversible Markov chain with unique stationary distribution
ρ, the state

|ρW 〉 :=

∫
Ω

dx
√
ρx|φx〉 (C.22)

is the unique eigenvalue-1 eigenstate of the quantum walk operator W restricted to the subspace
spanλ∈Λ{T |λ〉, ST |λ〉}. Hence, the stationary distribution corresponds to an eigenstate with eigen-
phase 0, while the other eigenstates have eigenphase at least

√
2δ, where δ is the spectral gap of P .

Thus, by the quantum phase estimation algorithm with O(1/
√
δ) calls to W , we can distinguish the

stationary state from other eigenstates, achieving quadratic speedup over the classical mixing time
O(1/δ).

To implement a quantum version of Algorithm 8, we prepare the initial state |π0〉 and implement the
quantum walk operator W .

Initial state. For the initial state |ρ0〉, by Theorem C.3, it suffices to take ρ0 = N (x?, L−1Id),
where x? is the minimum point of f(x). Suppose we already have x?. Appendix A.3 of [6] shows
that the state ∫

Rd

(
L

2π

)d/4
e−

L
4 ‖z‖

2
2 |z〉dz (C.23)

can be efficiently prepared by applying a Box-Muller transformation to the state corresponding to
the uniform distribution (i.e., an equal superposition of points). Then, for the ith register, we apply
the shift operation Ushift with Ushift|xi〉 = |xi + x?i 〉. The resulting state is

|ρ0〉 =

∫
Rd

(
L

2π

)d/4
e−

L
4 ‖z−x

?‖22 |z〉dz. (C.24)

Quantum walk operator. The quantum walk operator W (P ) can be implemented1 using the
quantum walk update unitary U that maps each point |x〉 to the superposition

∫
Rd dy

√
px→y|y〉.

We show how to efficiently implement U .

We first use d ancilla registers to prepare a standard Gaussian state

|v〉 :=

∫
Rd

(
L

2π

)d/4
e−

L
4 ‖z‖

2
2 |z〉dz. (C.25)

Then, we implement a unitary ULF defined by LEAPFROG(η, x, v) (Algorithm 9) such that for two
points x, v ∈ Rd, ULF|x, v〉|0〉 = |x, v〉|x̃, ṽ〉, by querying the gradient oracle of f twice. Then we
use another ancilla register to prepare the state

|u〉 :=

∫
[0,1]

d|z〉. (C.26)

1As shown in [45], W (P ) = U†SURU†SUR, where S is the swap gate and R is a reflection operator
with respect to the state space span{|x〉|0〉 : x ∈ Rd}.
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Based on the registers x, v, x̃, ṽ, u, we can decide using two queries to the evaluation oracle for
f whether the target register y should be x or x̃. Overall, this process implements the following
mapping (up to a hidden normalization factor):

|x〉|0〉 7→ |x〉
∫
Rd

∫
[0,1]

dvdu exp
(
−‖v‖22/4

)
|v〉|x̃〉|ṽ〉|u〉|y〉. (C.27)

Finally, uncomputing the v, x̃, ṽ registers using U†LF and the inverse of the unitary preparing |v〉, we
obtain a superposition of points with the correct transition density.

Algorithm 10: QUANTUMUPDATEUNITARY

Input: Quantum state |ρ〉 =
∫
Rd dx

√
ρx|x〉.

Output: Quantum state |φ〉 =
∫
Rd dx

√
ρx|x〉

∫
Rd dy

√
px→y|y〉.

1 Prepare |ρ〉|v〉 where |v〉 is a d-dimensional Gaussian state
2 Apply the leap-frog process to |ρ〉|v〉:

∫
Rd dx dv|x, v〉|x̃, ṽ〉; /* Query O∇f twice */

3 Prepare
∫
Rd dxdv|x, v〉|x̃, ṽ〉

∫
[0,1]

du|u〉
4 Compute the target point y:

∫
Rd dxdv

∫
[0,1]

du|x, v〉|x̃, ṽ〉|u〉|y〉; /* Query Of twice */

5 Uncompute the v, x̃, ṽ, u registers:
∫

dx
√
ρx|x〉

∫
Rd dy

√
px→y|y〉

Algorithm 11: QUANTUMMALA
Input: Evaluation oracle Of , gradient oracle O∇f , initial state |ρ0〉
Output: Quantum state |ρ̃〉 close to the stationary distribution state

∫
Rd e

−f(x)d|x〉
1 Construct quantum walk update unitary U from QUANTUMUPDATEUNITARY (Algorithm 10)

with Of and O∇f
2 Implement the quantum walk operator W (P )
3 Perform π

3 -amplitude amplification with W (P ) on the state |ρ0〉|0〉
4 return the resulting state |ρ̃〉

Lemma C.6 (Continuous-space quantum walk implementation). The Markov chain of Algorithm 8
can be implemented as a continuous-space quantum walk where the quantum walk unitary for one
step can be implemented with 2 queries to the gradient oracle, 2 queries to the evaluation oracle,
and O(d) quantum gates.

If we have a sequence of slowly varying log-concave distributions ρ0, . . . , ρr, we can quantumly
sample from ρr via MALA with a quadratic speedup.

Theorem C.5 (Quantum speedup for slowly varying Markov chains [45]). LetM0, . . . ,Mr be clas-
sical reversible Markov chains with stationary distributions ρ0, . . . , ρr such that each chain has
spectral gap at least δ−1. Assume that |〈ρi|ρi+1〉| ≥ p for some p > 0 and all i ∈ {0, . . . , r − 1},
and that we can prepare the state |ρ0〉. Then, for any ε > 0, there is a quantum algorithm which
produces a quantum state |ρ̃r〉 such that ‖|ρ̃r〉 − |ρr〉|0a〉‖ ≤ ε, for some integer a. The algorithm
uses

Õ

(
δ−1/2 · r

p

)
(C.28)

applications of the quantum walk operators W ′i corresponding to the chains Mi for i ∈ [r].

However, we cannot directly apply Theorem C.5 to speed up MALA, since the spectral gap of
MALA is intractable. We only know the mixing time of MALA with some specific initial distribu-
tions, instead of any initial distribution.

C.2.3 Warmness implies effective spectral gap

To overcome the spectral gap issue, we use the idea of the effective spectral gap of a Markov chain.
The intuition is that suppose we know the mixing time t = tmix(ε, π0) for some initial distribution
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π0, then we can show that |π0〉 has very small overlap with the eigenspace of W ′ with the corre-
sponding eigenvalues of P that are very close to 1. More formally, we prove the following lemma,
which improves Proposition 4.2 of [7] that requires the initial distribution to satisfy an L2-norm
condition, by instead relying only on the standard warmness of the initial distribution.
Lemma C.7 (Effective spectral gap for warm start). Let M = (Ω, p) be an ergodic reversible
Markov chain with a transition operator P and unique stationary state with a corresponding density
ρ. Let {(λi, fi)} be the set of eigenvalues and eigenfunctions of P , and let |ui〉 be the eigenvectors
of the corresponding quantum walk operator W . Let ρ0 be a probability density that is a warm start
for ρ and mixes up to TV-distance ε in t steps of M . Furthermore, assume that ρ0 is a β-warm start
of ρ. Let |φρ0〉 be the state obtained by applying the quantum walk update operator U to the state
|ρ0〉:

|φρ0〉 =

∫
Ω

√
ρ0(x)

∫
Ω

√
px→y|x〉|y〉dxdy. (C.29)

Then |〈φρ0 |ui〉| = O(β
√
ε) for all i with 1 > |λi| ≥ 1−O(1/t).

Furthermore, for MALA with ρ0 being N (0, L−1I), |〈φρ0 |ui〉| = O(
√
ε).

Remark C.1. Since |vi〉 = U†|ui〉 is the corresponding eigenvector of W ′, and |φρ0〉 = U |ρ0, 0〉,
Lemma C.7 implies that |〈ρ0, 0|vi〉| ≤ β

√
ε for any i with |λi| ∈ (1 − O(1/t), 1). In other words,

effectively, the spectral gap is Ω(1/t).

Proof. Let S :=
{
x ∈ Rd : ρ(x)

ρ0(x) ≥
1
ε

}
. Since Eρ0

[
ρ(x)
ρ0(x)

]
= 1, by Markov’s inequality, we have∫

S

ρ0(x)dx = Pr
ρ0

[x ∈ S] ≤ ε. (C.30)

Then we define a quantum state |ρ1〉 such that 〈ρ1|x〉 = 〈ρ0|x〉 for x /∈ S, and 〈ρ1|x〉 = 0 for x ∈ S.
Furthermore, let |φρ1〉 := U |ρ1〉.
We have

‖|φρ0〉 − |φρ1〉‖ =

∥∥∥∥∫
S

√
ρ0(x)T |x〉dx

∥∥∥∥ =

∣∣∣∣∫
S

ρ0(x)dx

∣∣∣∣1/2 ≤ √ε, (C.31)

where T is the isometry

T :=

∫
Ω

∫
Ω

√
px→y|x, y〉〈x|dx dy.

Moreover, by Eqs. (4.35) and (4.36) in [6], if 1 > λi ≥ 1−O(1/t), we have

|〈φρ1 |ui〉| ≤ 2|〈ρ1|vi〉| = 2

∣∣∣∣∣
∫
S

√
ρ(x)

ρ0(x)

ρ0(x)fi(x)

ρ(x)
dx

∣∣∣∣∣ ≤ 2〈ρ0, fi〉ρ
ε1/2

= O(β
√
ε), (C.32)

where the third step follows from ρ(x)
ρ0(x) ≤

1
ε for x /∈ S and the Cauchy-Schwarz inequality, and the

last step follows from the claim that 〈ρ0, fi〉ρ = O(βε).

Combining these observations, we find

|〈φρ0 |ui〉| ≤ |〈φρ0 − φρ1 |ui〉|+ |〈φρ1 |ui〉| ≤
√
ε+O(β

√
ε) = O(β

√
ε) (C.33)

when 1 > λi ≥ 1−O(1/t), which gives the desired result.

Now, it remains to prove the claim that 〈ρ0, fi〉ρ = O(βε) for 1 > λi > 1 − O(1/t). Suppose
ρ0 can be decomposed in the eigenbasis of P as ρ0 = ρ +

∑∞
i=2〈ρ0, fi〉ρfi. Then P tρ0 = ρ +∑∞

i=2 λ
t
i〈ρ0, fi〉ρfi, where λi is the eigenvalue of fi. Since ‖P tρ0 − ρ‖1 ≤ ε, by Fact C.1, we have

‖P tρ0 − ρ‖ρ ≤ βε. Hence, by the orthogonality of fi, we have λti〈a, fi〉ρ ≤ βε. Therefore, when
1 > λi > 1−O(1/t), we have λti = Ω(1), which implies that 〈ρ0, fi〉ρ = O(βε).

For MALA, by Fact C.1, ‖PO(t)ρ0− ρ‖ρ ≤ O(ε), which implies that 〈ρ0, fi〉ρ = O(ε) by the same
argument. Therefore, we get that for MALA with Gaussian initial distribution, |〈φρ0 |ui〉| ≤ O(

√
ε)

for i with 1 > |λi| > 1−O(1/t).
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Fact C.1. Let ρ0 be a β-warm start of a Markov chain with transition operator P and stationary
distribution ρ. If ‖P tρ0 − ρ‖1 ≤ ε for some t > 0, then ‖P tρ0 − ρ‖ρ ≤ β · ε. For MALA with
ρ0 = N (0, L−1I), ‖PO(t)ρ0 − ρ‖ρ ≤ ε.

Proof. We expand ‖P tρ0 − ρ‖ρ in terms of its definition, giving

‖P tρ0 − ρ‖ρ =

∫
Rd

(P tρ0 − ρ)2(x)

ρ(x)
dx =

∫
Rd

(P tρ0)2(x)

ρ(x)
dx− 1 = χ2(P tρ0, ρ), (C.34)

where the second step follows since P tρ0 and ρ are distributions, and the last step follows from the
definition of χ2-distance. Let ρ1 := P tρ0. By Lemma 27 in [11], we know that ρ1 is also β-warm.
Furthermore, by Lemma 28 in [11], the χ-square distance can be upper bounded by

χ2(P tρ0, ρ) ≤ β · ‖P tρ0 − ρ‖1 ≤ βε (C.35)

as claimed. For MALA, as shown in [9], MALA with a Gaussian start also mixes in about O(t)

steps in
√
χ2 metric. Therefore, we have χ2(PO(t)ρ0, ρ) ≤ ε.

C.2.4 Quantum MALA with a warm start

We first show that quantum MALA can achieve quadratic speedup in query complexity when the
initial distribution is a warm start (Theorem C.6).

Theorem C.6 (Quantum MALA with warm start). Let |ρ0〉 be a β-warm start with respect to the
log-concave distribution ρ ∝ e−f . Let t(ε) = Õ(κ

√
d log3(β/ε)) be the mixing time of classical

MALA with initial distribution ρ0 as shown in Lemma C.5, i.e., ‖P t(ε)ρ0 − ρ‖TV ≤ ε. Then there is
a quantum algorithm that prepares a state |ρ̃〉 that is ε-close to |ρ〉 using

Õ(κ1/2d1/4β1/2) (C.36)

queries to the evaluation oracle Of and gradient oracle O∇f .

Proof. Let |ρ0〉 be the initial state corresponding to a distribution ρ0 that is β-warm. Then we know
that t = t(ε/β) steps of the classical MALA random walk suffice to achieve ‖P tρ0 − ρ‖1 ≤ ε/β.

By Lemma C.7, we have |ρ0〉 = |ρ′0〉 + |e〉, where |ρ′0〉 lies in the space of eigenvectors |vi〉 of W
such that λi = 1 or λi ≤ 1− Ω̃(t−1), and ‖|e〉‖ ≤ ε1.

Hence, by Corollary 4.1 in [7], the approximate reflection in the quantum walk R̃ can be im-
plemented using Õ(t1/2) calls to the controlled-W operator. Furthermore, β-warmness also im-
plise that |〈ρ0|ρ〉| ≥ β−1/2. Thus, the approximated stationary state |ρ̃〉 can be prepared via
O(β1/2 log(1/ε2)) recursive levels of π3 -amplitude amplification such that ‖|ρ〉 − |ρ̃〉‖ ≤ ε2.

By choosing ε1 = ε/(2 log(2/ε)) and ε2 = ε/2, we achieve a final approximation error of
O(ε1 log(ε2) + ε2) ≤ ε. By Lemma C.6, each controlled-W operator takes a constant number
of queries to Of and O∇f . Therefore, by plugging-in the classical mixing time of MALA, we
obtain the desired query complexity.

Algorithm 12: QUANTUMMALAWITHWARMSTART

Input: Evaluation oracle Of , gradient oracle O∇f , smoothness parameter L, convexity
parameter µ, warm-start state |ρ0〉

Output: Quantum state |ρ̃〉 close to the stationary distribution state
∫
Rd e

−f(x)d|x〉
1 |ρ̃〉 ← QUANTUMMALA(Ofi ,O∇fi , |ρ0〉) (Algorithm 11)
2 return |ρ̃〉
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C.2.5 Quantum MALA with Gaussian-start

We cannot directly apply Theorem C.6 for a Gaussian initial distribution because the overlap be-
tween |ρ0〉 and |ρ〉 is exponentially small. Instead, we use the idea of simulated annealing and con-
struct a sequence of slowly-varying Markov-chains (as in [45]). We have the following result, which
looks like Theorem C.5. But our result uses the effective spectral gap of MALA (by Lemma C.7).

Corollary C.1 (Quantum speedup for slowly varying MALAs). Let ρ0, . . . , ρr be a sequence of
log-concave distributions such that |〈ρi|ρi+1〉| ≥ p for some p > 0 and for all i ∈ {0, . . . , r − 1}.
Suppose we can prepare the initial state |ρ0〉. Then, for any ε > 0, there is a quantum procedure to
produce a state |ρ̃r〉 such that ‖|ρ̃r〉 − |ρr〉‖ ≤ ε using

Õ(κ1/2d1/2 · (r/p)) (C.37)

applications of the quantum walk operators Wi corresponding to the MALA procedure for ρi for
i ∈ [r].

Proof. For two consecutive distributions, quantum MALA can evolve |ρi〉 to |ρi+1〉 using Õ(
√
κd ·

p−1) quereis, which follows from Theorem C.6 and Theorem C.3 (which holds for all initial distri-
butions with warmness β ≤ κd/2). Then, the corollary immediately follows.

Algorithm 13: QUANTUMMALAFORLOG-CONCAVESAMPLING

Input: Evaluation oracle Of , gradient oracle O∇f , smoothness parameter L, convexity
parameter µ

Output: Quantum state |ρ̃〉 close to the stationary distribution state
∫
Rd e

−f(x)d|x〉
1 Compute the cooling schedule parameters σ1, . . . , σM

2 Prepare the state |ρ0〉 ∝
∫
Rd e

− 1
4‖x‖

2/σ2
1d|x〉

3 for i← 1, . . . ,M do
4 Construct Ofi and O∇fi where fi(x) = f(x) + 1

2‖x‖
2/σ2

i

5 |ρi〉 ← QUANTUMMALA(Ofi ,O∇fi , |ρi−1〉) (Algorithm 11)
6 return |ρM 〉

Theorem C.7 (Quantum MALA for log-concave sampling). Assume the target distribution ρ ∝ e−f
is strongly log-concave with f : Rd → R+ being L-smooth and µ- strongly convex. Let |ρ〉 be the
quantum state corresponding to the distribution ρ. Then, for any ε > 0, there is a quantum algorithm
(Algorithm 13) that prepares a state |ρ̃〉 such that ‖|ρ̃〉 − |ρ〉‖ ≤ ε using Õ(κ1/2d) queries to the
evaluation oracle Of and gradient oracle O∇f .

Proof. By Lemma B.6, we know that the cooling schedule σ1, . . . , σM gives a sequence of slowly-
varying Markov chains with overlap p = Ω(1). We also know that the length of the schedule is
M = Õ(d1/2).

Hence, by Corollary C.1 with r = Õ(d1/2) and p = Ω(1), |ρ̃〉 can be prepared by Õ(κ1/2d) quantum
walk steps. By Lemma C.6, each step queries Of and O∇f twice. The result follows.

D Quantum Algorithm for Estimating Normalizing Constants: Details

We now come back to the problem of estimating the normalizing constant.

D.1 Quantum MALA and annealing

In this section, we first describe a quantum speedup for the annealing process via a quantum-
accelerated Monte Carlo method, which quadratically improves the ε-dependence of the sampling
complexity of the classical algorithm. Then we further reduce the κ- and d-dependence of the query
complexity using the quantum MALA procedure developed in Appendix C.2.
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D.1.1 Quantum speedup for the standard annealing process

Reference [31] developed a quantum-accelerated Monte Carlo method for mean estimation with
B-bounded relative variance.2 We state the result as follows.
Lemma D.1 (Theorem 6 of [31]). Assume there is an algorithm A such that v(A) ≥ 0 and
Var(v(A))
E[v(A)]2 ≤ B for some B ≥ 1, and an accuracy ε < 27B/4. Then there is a quantum algo-

rithm which outputs an estimate µ̃ such that

Pr
[
|µ̃− E[v(A)]| ≥ εE[v(A)]

]
≤ 1

4
, (D.1)

with

O
(B
ε

log3/2
(B
ε

)
log log

(B
ε

))
(D.2)

queries to A.
Lemma D.2 (Lemma 1 of [31]). LetA be a (classical or quantum) algorithm which aims to estimate
some quantity µ, and whose output µ̃ satisfies |µ− µ̃| ≤ ε except with probability γ, for some fixed
γ < 1/2. Then, for any δ > 0, it suffices to repeatAO(log 1/δ) times and take the median to obtain
an estimate which is accurate to within ε with probability at least 1− δ.

This result provides a way of estimating the telescoping product (B.25). The following theorem and
its proof closely follows Theorem 8 of [31], while the definitions of the partition function and the
cooling schedule are different.
Theorem D.1 (Quantum speedup of annealing). Let Z be the normalizing constant in (1.3). Con-

sider a sequence of values gi as in (B.28), with Eρi (g
2
i )

Eρi (gi)2
= O(1). Further assume that we have the

ability to sample ρi for i ∈ [M ]. Then there is a quantum algorithm which outputs an estimate Z̃,
such that

Pr[(1− ε)Z ≤ Z̃ ≤ (1 + ε)Z] ≥ 3

4
, (D.3)

using

O
(M2

ε
log3/2

(M
ε

)
log log

(M
ε

))
= Õ

(M2

ε

)
(D.4)

samples in total.

Proof. For i ∈ [M ], we estimate Eρi(gi) with output g̃i up to additive error (ε/2M)Eρi(gi) with
failure probability 1/4M . We output as a final estimate

Z̃ = Z̃1

M∏
i=1

g̃i, (D.5)

where Z̃1 is the normalizing constant of the Gaussian distribution with variance σ2
1 as in Lemma B.3.

Assuming that all the estimates are indeed accurate, we have

1− ε ≤ (1− ε

2
)
(

1− ε

2M

)M
≤ Z̃

Z
≤
(

1 +
ε

2M

)M
≤ eε/2 ≤ 1 + ε. (D.6)

Thus |Z̃ − Z| ≤ εZ with probability at least(
1− 1

4M

)M
≥ 1− 1

4
=

3

4
. (D.7)

Based on Lemma B.4 and Lemma B.5, Eρi (g
2
i )

Eρi (gi)2
= O(1), so Varρi (gi)

Eρi (gi)2
= O(1). By Lemma D.1, each

requires

O
(M
ε

log3/2
(M
ε

)
log log

(M
ε

))
(D.8)

2Reference [4] improves the scaling from Õ(B/ε) to Õ(
√
B/ε). Such a result also follows from the quan-

tum Chebyshev inequality of [21]. Since B = O(1) in our case, we apply the original algorithm of [31].
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samples from ρi, and the total number of samples is

O
(M2

ε
log3/2

(M
ε

)
log log

(M
ε

))
. (D.9)

This completes the proof.

D.1.2 Quantum MALA for estimating the normalizing constant

We now describe how to combine quantum annealing with quantum MALA to reduce the query
complexity of estimating the normalizing constants.

We begin with the following lemma on non-destructive mean estimation.

Lemma D.3 (Non-destructive mean estimation with quantum MALA). For ε < 1, given Õ(ε−1)
copies of a state |ρ̃i−1〉 such that ‖|ρ̃i−1〉 − |ρi−1〉‖ ≤ ε, there exists a quantum procedure that
outputs g̃i such that

|g̃i − Eρi [gi]| ≤ ε · Eρi [gi] (D.10)

with success probability 1− o(1) using

Õ(κ1/2d1/2ε−1) (D.11)

steps of the quantum walk operator corresponding to the MALA with stationary distribution ρi,
where δ is the spectral gap of the Markov chain. The quantum procedure also returns Õ(ε−1)
copies of the state |ρ̃i〉 such that ‖|ρ̃i〉 − |ρi〉‖ ≤ ε.

Proof sketch. This lemma is a variant of Lemma 4.4 in [7]. Notice that Corollary C.1 implies that
we can prepare |ρ̃i〉 from |ρ̃i−1〉 using Õ(κ1/2d1/2p−1) quantum walk steps, where p ≤ |〈ρi|ρi−1〉|.
By Lemma B.6, we have p = Ω(1). The lemma follows by properly choosing the parameters in
Lemma 4.4 in [7].

Theorem D.2 (Quantum speedup using MALA, annealing, and quantum walk). Let Z be the nor-
malizing constant in (1.3). Assume we are given the access to query the quantum gradient oracle
(1.5). Then there is a quantum algorithm which outputs an estimate Z̃, such that

Pr[(1− ε)Z ≤ Z̃ ≤ (1 + ε)Z] ≥ 3

4
, (D.12)

using

Õ
(
d3/2κ1/2ε−1

)
(D.13)

queries to the quantum gradient oracle in total.

Proof. The number of annealing stages is M = Õ(
√
d). At the ith stage, we estimate Eρi [gi] with

relative error ε/M . Hence, we can apply Lemma D.3 M times, where each application takes

Õ(κ1/2d1/2(ε/M)−1) = Õ(κ1/2dε−1) (D.14)

MALA quantum walk steps. This process takes

M · Õ(κ1/2dε−1) = Õ(κ1/2d3/2ε−1) (D.15)

steps in total.

By Lemma C.6, each step of the quantum walk operator can be implemented by querying the gradi-
ent oracle and the evaluation oracle O(1) times. Therefore, we can estimate Z with relative error ε
using Õ(κ1/2d3/2ε−1) queries to the gradient and evaluation oracles.
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D.2 Quantum multilevel Langevin algorithms

We now consider an alternative approach for estimating the normalizing constant, by replacing
MALA by a multilevel Langevin approach. More concretely, for each sample we perform the under-
damped Langevin diffusion (ULD) or the randomized midpoint method for underdamped Langevin
diffusion (ULD-RMM) that has an improved dependence on the dimension, and apply the multilevel
Monte Carlo (MLMC) to preserve the dependence on the accuracy.

Multilevel Monte Carlo methods have attracted extensive attention in stochastic simulations and
financial models [17, 18]. This approach was originally developed by [23] for parametric integration,
and used to simulate SDEs in [17]. Considering a general random variable P , MLMC gives a
sequence of estimators P0, Pl, . . . , PL for approximating P with increasing accuracy and cost, and
uses the telescoping sum of E[Pl−Pl−1] to estimate E[P ]. For Pl−Pl−1 with smaller variance but
larger cost, MLMC performs fewer samples to reach a given error tolerance, reducing the overall
complexity. MLMC has been widely discussed and improved under many settings, and has been
used in various applications [18].

To estimate normalizing constants, a variant of MLMC has been proposed by [16, Lemmas C.1 and
C.2]. Unlike standard MLMC for bounding the mean-squared error, this approach upper bounds the
bias and the variance separately, making the analysis more technically involved. The first quantum
algorithm based on MLMC was developed by [2, Theorem 2]. They upper bound the additive error
with high probability (as is common for quantum algorithms). They also observe that the mean-
squared error can control both the bias and the variance [2, Section 2.2] and that the mean-squared
error is almost equivalent to the additive error with high probability [2, Appendix A]. Considering
this, we still use the additive error scenario for estimating normalizing constants, both for conve-
nience and for compatibility with the quantum annealing speedup of Theorem D.1.

We first introduce the general quantum speedup of MLMC as described in [2], and then apply these
results to our problem.

D.2.1 Quantum-accelerated multilevel Monte Carlo method

We begin by describing the following general result on quantum-accelerated multilevel Monte Carlo
(QA-MLMC).
Lemma D.4 (Theorem 2 of [2]). Let P denote a random variable, and let Pl (for l ∈ {0, 1, . . . , L})
denote a sequence of random variables such that Pl approximates P at level l. Also define P−1 = 0.
Let Cl be the cost of sampling from Pl, and let Vl be the variance of Pl−Pl−1. If there exist positive
constants α, β = 2β̂, γ such that α ≥ min(β̂, γ) and

• |E[Pl − P ]| = O(2−αl),
• Vl = O(2−βl) = O(2−2β̂l), and
• Cl = O(2γl),

then for any ε < 1/e there is a quantum algorithm that estimates E[P ] up to additive error ε with
probability at least 0.99, and with cost

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, β̂ > γ,

O
(
ε−1(log 1/ε)7/2(log log 1/ε)2

)
, β̂ = γ,

O
(
ε−1−(γ−β̂)/α(log 1/ε)3/2(log log 1/ε)2

)
, β̂ < γ.

(D.16)

We apply this result to the payoff model of general stochastic differential equations (SDEs) as dis-
cussed in [2]. Consider an SDE

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt (D.17)

for t ∈ [0, T ], where we assume µ and σ are Lipschitz continuous. Given an initial condition X0

and an evolution time T > 0, we aim to compute

E[P(XT )], (D.18)

where P(X) is the so-called payoff function as a functional ofX . In Lemma D.4, we denote P(XT )
as P , and the goal is to estimate E[P ].
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We also consider a numerical scheme that produces X̂k with time step size h = T/n. We say the
scheme is of strong order r if for any m ∈ {1, 2}, there exists a constant Cm such that

E
(
‖X̂n −XT ‖m

)
≤ Cmhrm. (D.19)

Note that it suffices to verify this condition for m = 2 since (E‖X̂n − XT ‖)2 ≤ E‖X̂n − XT ‖2.
We further assume the coefficients of the scheme are Lipschitz continuous. For the discretization
nl = 2l with step size h = T/2l, we let Pl denote P(X̂nl), an estimator of P .

Finally, we assumeP(X) isLP -Lipschitz continuous. Thus, we have satisfied the three assumptions
of Proposition 2 of [2], which estimates the rates of |E[Pl − P ]|, Vl, Cl in Lemma D.4. We state a
simpler version as follows.
Lemma D.5 (Proposition 2 of [2]). Given an SDE and a scheme of strong order r with Lipschitz
continuous constants, and given a Lipschitz continuous payoff function P , we have α = r, β = 2r,
and γ = 1.

Note that while we relax the definition of a scheme of strong order r, our definition (D.19) is suf-
ficient to prove Lemma D.5. More concretely, in the proof of Proposition 2 of [2], we have the
following simplified inequalities:

|E[Pl − P ]| ≤ E|P(X̂n)− P(XT )| ≤ LPE‖X̂n −XT ‖ ≤ LPC1h
r = O(2−rl), (D.20)

Vl ≤ E|P(X̂n)− P(XT )|2 ≤ LPE‖X̂n −XT ‖2 ≤ LPC2h
2r = O(2−2rl), (D.21)

Cl = O(nl) = O(2l), (D.22)

and therefore α = r, β = 2r, and γ = 1.

Finally, we can characterize the performance of QA-MLMC as follows.
Lemma D.6 (Theorem 3 of [2]). Given an SDE and a scheme of strong order r with Lipschitz
continuous constants, and given a Lipschitz continuous payoff function P , QA-MLMC estimates
E[P] up to additive error ε with probability at least 0.99 with cost

O
(
ε−1(log 1/ε)3/2(log log 1/ε)2

)
, r > 1, (D.23)

O
(
ε−1(log 1/ε)7/2(log log 1/ε)2

)
, r = 1, (D.24)

O
(
ε−1/r(log 1/ε)3/2(log log 1/ε)2

)
, r < 1. (D.25)

Note that we can amplify the success probability to 1 − δ for arbitrarily small δ > 0 using the
powering lemma (Lemma D.2).

D.2.2 Quantum-accelerated multilevel Langevin method

We have described ULD and ULD-RMM in Algorithm 4 and Algorithm 5, respectively. We now
apply these schemes to simulate the underdamped Langevin dynamics as the SDE. According to
(D.19), ULD and ULD-RMM are schemes of order 1 and 1.5, respectively.

Let the payoff function P be gi as defined in (B.28). Our goal is to estimate the mean of P(X̂nl) =

gi(X̂nl) using several samples X̂nl produced by ULD or ULD-RMM. If g is assumed to be Lg-
Lipschitz as in Lemma C.2 of [16], we have a Lipschitz continuous payoff functionP withLP = Lg .
Although gi = exp

( ‖x‖2
σ2
i (1+α−1)

)
is not Lipschitz, according to Section 4.3 of [16], we can truncate

at large x and replace gi by hi := min
{
gi, exp

( (r+i )2

σ2
i (1+α−1)

)}
with

α = Õ

(
1√

d log(1/ε)

)
, (D.26)

r+
i = Eρi+1

‖x‖+ Θ(σi
√

(1 + α) log(1/ε)), (D.27)
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to ensure hi
Eρigi

is O(σ−1
i ) Lipschitz and

∣∣Eρi(hi − gi)∣∣ < ε by Lemmas C.7 and C.8 of [16]. For
simplicity, as in Section 4.2 of [16], we regard gi as a Lipschitz continuous payoff function in our
main results.

Thus, using Lemma D.6 to estimate Zi+1

Zi
= Eρi(gi), QA-MLMC using either ULD or ULD-RMM

can reduce the ε-dependence of the number of steps to Õ(ε−1). Then each step of ULD or ULD-
RMM uses the value of∇f(x) about O(1) times as shown in Algorithm 4 and Algorithm 5.

Having described the implementations of quantum inexact ULD and ULD-RMM, we now state
the quantum speedup for estimating normalizing constants using multilevel ULD and annealing, or
multilevel ULD-RMM and annealing, as follows.

Theorem D.3 (Quantum speedup using multilevel ULD and annealing). Let Z be the normalizing
constant in (1.3). Assume we are given access to the quantum gradient oracle (1.5). Then there is a
quantum algorithm which outputs an estimate Z̃ such that

Pr[(1− ε)Z ≤ Z̃ ≤ (1 + ε)Z] ≥ 3

4
(D.28)

using

Õ
(d3/2κ2

ε

)
(D.29)

queries to the quantum gradient oracle.

Proof. As in Theorem D.1 and Theorem D.2, for i ∈ [M ] with M stages, we estimate Eρi(gi)
with output g̃i up to additive error (ε/2M)Eρi(gi) with failure probability 1/4M , which ensures
|Z̃ − Z| ≤ εZ with probability at least 3

4 .

According to Lemma D.6, each sample of ρi using multilevel ULD uses Õ(Mκ2
√
d

ε ) queries to the
quantum evaluation oracle (1.4) used in Algorithm 6 or Algorithm 7. For M = Õ(

√
d) stages, the

query complexity of estimating the normalizing constant is Õ(M
2κ2
√
d

ε ) = Õ(d
3/2κ2

ε ).

Theorem D.4 (Quantum speedup using multilevel ULD-RMM and annealing). Let Z be the nor-
malizing constant in (1.3). Assume we are given the access to the quantum gradient oracle (1.5).
Then there is a quantum algorithm which outputs an estimate Z̃ such that

Pr[(1− ε)Z ≤ Z̃ ≤ (1 + ε)Z] ≥ 3

4
(D.30)

using

Õ
(d7/6κ7/6 + d4/3κ

ε

)
(D.31)

queries to the quantum gradient oracle.

Proof. As above, for i ∈ [M ] withM stages, we estimate Eρi(gi) with output g̃i up to additive error
(ε/2M)Eρi(gi) with failure probability 1/4M .

According to Lemma D.6 and Lemma B.2, each sample of ρi using multilevel ULD uses
Õ(M(κ7/6d1/6+κd1/3)

ε ) queries to the quantum gradient oracle (1.5) or the quantum evaluation or-
acle (1.4) (with additional Õ(1) cost). For M = Õ(

√
d) stages, the query complexity of estimating

the normalizing constant is Õ(M
2(κ7/6d1/6+κd1/3)

ε ) = Õ(d
7/6κ7/6+d4/3κ

ε ).

E Proof of the Quantum Lower Bound

To prove Theorem 5.1, we use the following quantum query lower bound on the Hamming weight
problem.
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Proposition E.1 (Theorem 1.3 of [32]). For x = (x1, . . . , xn) ∈ {0, 1}n, let ‖x‖1 =
∑n
i=1 xi be

the Hamming weight of x. Furthermore, let `, `′ be integers such that 0 ≤ ` < `′ ≤ n. Define the
partial boolean function f`,`′ on {0, 1}n as

f`,`′(x) =

{
0 if ‖x‖1 = `

1 if ‖x‖1 = `′.
(E.1)

Let m ∈ {`, `′} be such that |n2 −m| is maximized, and let ∆ = `′ − `. Then given the quantum
query oracle

Ox|i〉|b〉 = |i, b⊕ xi〉 ∀i ∈ [n], b ∈ {0, 1}, (E.2)

the quantum query complexity of computing the function f`,`′ is Θ(
√
n/∆ +

√
m(n−m)/∆).

Now we prove Theorem 5.1 using a construction motivated by Section 5 of [16].

Proof. We start from a basic function f0(x) = ‖x‖2
2 . The partition function of f0 is∫

Rk
e−f0(x)dx = (2π)k/2. (E.3)

We then construct n cells in Rd. Without loss of generality we assume that n1/k is an integer,
and let l := 1/(

√
kn1/k). We partition [−1/

√
k, 1/
√
k] into n1/k intervals, each having length 2l.

Let Ii denote the ith interval, where i ∈ [n1/k]. Each cell will thus be represented as a k-tuple
(i1, . . . , ik) ∈ {1, 2, . . . , n1/k}k corresponding to Ii1 × · · · × Iik ⊂ Rk.

Next, each cell τ = (i1, . . . , ik) with center denoted vτ is assigned one of two types (as detailed
below), and we let

f(x) =

{
f0(x) if cell τ is of type 1
f0(x) + cτq(

1
l (x− vτ )) if cell τ is of type 2.

(E.4)

The function q and the normalizing constant cτ are carefully chosen, following Lemma D.1 in [16],
such that

• f(x) is 1.5-smooth and 0.5-strongly convex; and

• the partition function Zf =
∫
Rk e

−f(x)dx = (2π)k/2 − C · n2

n , where n2 is the number of
type-2 cells, and C is at least Ω(l2).

With these properties, we consider two functions as follows. We choose δ such that ε = Θ(δ1+4/k).
One of the functions has a 1/2 + δ fraction of its cells of type 1 (and a 1/2 − δ fraction of type
2). The other function has a 1/2 − δ fraction of its cells of type 1 (and a 1/2 + δ fraction of
type 2). Note that one query to the quantum evaluation oracle (1.4) can be implemented using one
quantum query to the binary information indicating the type of the corresponding cell. In addition,
by Proposition E.1 with ` = (1 − δ)n/2 and `′ = (1 + δ)n/2, it takes Ω(1/δ) quantum queries
to distinguish whether there are (1 + δ)n/2 or (1 − δ)n/2 cells of type 1. Since C = Ω(l2), the
partition functions of the two functions differ by a multiplicative factor of at least 1 + Ω(l2δ), where
l = Θ(n−1/k) = Θ(δ2/k), and hence l2δ = Θ(δ1+4/k) = Θ(ε). The quantum query complexity is
therefore Ω(1/δ) = Ω(ε−

1
1+4/k ) as claimed.
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