
Towards Personalized Federated Learning via
Heterogeneous Model Reassembly

(Supplementary Materials)

Anonymous Author(s)
Affiliation
Address
email

In this supplementary materials file, we provide additional content for the main manuscript due to the1

page limit and requirements.2

1 Pseudo-code of pFedHR3

Algorithm 1 shows the pseudo-code of the proposed pFedHR model, which contains two main4

updates: the server update (lines 3-11) and the client update (lines 12 - 17). The details of reassembly5

candidate generation can be found in the main manuscript (Algorithm 1 on Page 5).6

Algorithm 1: Algorithm Flow of pFedHR.
Input: Local data D1,D2, ..,DN , the number of active clients B, communication rounds T , the

number of local training epochs Ec, the number of fine-tuning epochs at the server Es,
cluster number K.

1 for each communication round t = 1, 2, · · · ,T do
2 Randomly sample B active clients and their model parameters are denoted as

{w1
t ,w

2
t , · · · ,wB

t };
3 Server Update
4 for each n ∈ [1, · · · , B] do
5 Conduct layer-wise ecomposition on wn

t = [(Ln
t,1, O

n
1 ), · · · , (Lb

t,H , On
E)];

6 end
7 Conduct function-driven layer grouping with Eq. (4) to obtain {G1

t ,G2
t , · · · ,GK

t };
8 Conduct reassembly candidate generation to obtain {c1t , · · · , cMt } following

R1,R2,R3, and R4;
9 Conduct layer stitching on the generated candidates;

10 Conduct similarity calculation on pairs of models with Eq. (5);
11 Distribute the personalized models back to the clients accordingly.
12 Client Update
13 for each n ∈ [1, · · · , B] do
14 for each local epoch e from 1 to Ec do
15 Update wn

t with Eq. (6);
16 end
17 end
18 Upload B models {w1

t ,w
2
t , · · · ,wB

t } back to the server;
19 end

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



2 Implementation Details7

The proposed pFedHR is implemented in Pytorch 2.0.1 and runs on NVIDIA A100 with CUDA8

version 12.0 on a Ubuntu 20.04.6 LTS server. The hyperparameter λ in Eq. (6) is 0.2. We use Adam9

as the optimizer. The learning rate of the local client learning and the server fine-tuning learning rate10

are both equal to 0.001.11

2.1 Model Details12

In our experiments, we have 4 CNN models with different complexity. The details are shown as13

follows. In each convolutional NN sequential block, there are 1 convolutional layer, a max pooling14

layer, and a ReLU function.15

M1: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) }16

→ Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →17

FC1:{Linear → ReLU} → Dropout→ FC2:Linear.18

M2: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) }19

→ Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →20

Cov3:{Conv2d (kernel size = 5) → ReLU} → FC1:{Linear → ReLU} → Dropout→ FC2:Linear.21

M3: Cov1:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) }22

→ Cov2:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } →23

Cov3:{Conv2d (kernel size = 5) → ReLU} → Cov4:{Conv2d (kernel size = 5) → ReLU → MaxPool2D24

(kernel size = 2, stride = 2) } → Cov4:{Conv2d (kernel size = 5) → ReLU} → FC1:{Linear → ReLU25

→ Dropout} → FC2:{Linear → ReLU}→ FC3:{Linear → ReLU}→FC4:Linear.26

M4: Cov1:{Conv2d (kernel size = 5) → BatchNorm2d → ReLU} → Cov2:{Conv2d (kernel size =27

3) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } → Cov3:{Conv2d (kernel size = 3) →28

BatchNorm2d → ReLU} → Cov4:{Conv2d (kernel size = 5) → ReLU → MaxPool2D (kernel size29

= 2, stride = 2) → Dropout } → Cov5:{Conv2d (kernel size = 3) → BatchNorm2d → ReLU } →30

Cov6:{Conv2d (kernel size = 3) → ReLU → MaxPool2D (kernel size = 2, stride = 2) } → FC1:{Linear31

→ ReLU → Dropout} → FC2:{Linear → ReLU}→ FC3:{Linear → ReLU}→FC4:Linear.32

2.2 Details of Rule R2 (Operation Order)33

We introduce the rule R2 (operation order) in Line 11 of the algorithm in the main manuscript. We34

follow existing work [1–5] to define the following rules:35

1. A CNN typically has convolutional layers, pooling layers, and fully connected layers, which36

requires the generated candidate to have these functional layers.37

2. The typical operation order is convolution layers → ReLU layers → pooling layers → fully38

connected layers.39

2.3 Public Data Sensitivity Analysis40

2.3.1 Layer Stitching Study41

One of our major contributions is to develop a new layer stitching strategy to reduce the adverse42

impacts of introducing public data, even with different distributions from the client data. Our proposed43

strategy includes two aspects: (1) using a simple layer to stitch layers and (2) reducing the number44

of finetuning epochs. To validate the correctness of these assumptions, we conduct the following45

experiments on SVHN with 12 clients, where both client data and labeled public data are extracted46

from SVHN.47

Stitching Layer Numbers. In this experiment, we add the complexity of layers for stitching. In48

our model design, we only use ReLU(W⊤X+ b). Now, we increase the number of linear layers49

from 1 to 2 to 3. The results are depicted in Figure 1. We can observe that under both IID and50

Non-IID settings, the performance will decrease with the increase of the complexity of the stitching51

layers. These results demonstrate our assumption that more complex stitching layers will introduce52

more information about public data but reduce the personalized information of each client model53

maintained. Thus, using a simple layer to stitch layers is a reasonable choice.54

2



1.74%
3.92%

2.57%
5.31%

Figure 1: Stitching layer number study.

2.54% 3.20%2.94% 5.01%

Figure 2: Server finetuning number study.

Stitched Model Finetuning Numbers. We further explore the influence of the number of finetuning55

epochs on the stitched model. The results are shown in Figure 2. We can observe that increasing56

the number of finetuning epochs can also introduce more public data information and reduce model57

performance. Thus, setting a small number of finetuning epochs benefits keeping the model’s58

performance.59

2.3.2 Experiment results with Different Numbers of Clusters60

In our model design, we need to group functional layers into K groups by optimizing Eq. (4). Where61

K is a predefined hyperparameter. In this experiment, we aim to investigate the performance influence62

with regard to K. In particular, we conduct the experiments on the SVHN dataset with 12 local63

clients, and the public data are also the SVHN data.64

Figure 3 shows the results on both IID and Non-IID settings with labeled and unlabeled public data.65

X-axis represents the number of clusters, and Y -axis denotes the accuracy values. We can observe66

that with the increase of K, the performance will also increase. However, in the experiments, we do67

not recommend setting a large K since a trade-off balance exists between K and M , where M is the68

number of candidates automatically generated by Algorithm 1 in the main manuscript. If K is large,69

then M will be small due to Rule R4. In other words, a larger K may make the empty Ct returned by70

Algorithm 1 in the main manuscript.71

(a) Labeled Public Dataset (b) Unlabeled Public Dataset

Figure 3: Results on different number of clusters K’s.

2.3.3 Experiment Results of Public Data Sensitivity on SVHN with 100 Clients72

Figure 4 shows the experimental results with 100 clients. The clients hold the SVHN data, and we73

alternatively change the (labeled and unlabeled) public data and report the results for both IID and74

Non-IID settings. We can observe the same results as those on the 12 clients (Figure 1 in the main75

manuscript). All approaches can achieve the best performance when using SVNH as the public data.76

Although using other public data, the performance of all approaches drops, the performance change77

of the proposed pFedHR is lowest. Besides, even using other public data, pFedHR can achieve78

comparable or better performance to baselines. For example, in Figure 4(b), when pFedHR uses the79

MNIST as the public data, its performance is comparable to FedMD and better than FedGH using80

SVHN as the public data. These results confirm that the proposed pFedHR can handle the public81

data sensitivity issue.82

3



8.58% 6.13%
6.11% 5.89%

5.99% 4.47%

(a) IID with labeled public dataset

4.57% 6.63%
4.98%

4.48%

5.81%

5.64%

(b) Non-IID with labeled public dataset

(c) IID with unlabeled public dataset

5.84% 5.94%
6.46% 6.45%

5.39% 5.33%

(d) Non-IID with unlabeled public dataset

5.82% 8.27%

5.56% 7.09%

4.87% 5.13%

FCCL FCCL

Figure 4: Results with 100 clients.

2.3.4 Experiment Results of Public Data Sensitivity on CIFAR-10 with 12 Clients83

We also validate the public data sensitivity on CIFAR-10, where clients hold data from CIFAR-10,84

and we alternatively change the public data. The results are shown in Figures 5 and 6. We have the85

same observations as we discussed before. Using public data with different distributions makes the86

performance drop, but the proposed pFedHR has the smallest drop ratio.87

A
cc

ur
ac

y

0.71%

1.01%

0.21%

1.11%

0.12%
0.57%

(a) IID with labeled public dataset (b) Non-IID with labeled public dataset

0.73%
1.32%

0.60%
1.81%

0.15% 0.61%

(b) Non-IID with labeled public dataset(a) IID with labeled public dataset

9.72% 6.82%

7.24% 10.04%

5.18% 5.11%

11.13% 7.70%

10.18% 12.10%

6.18% 6.26%

Labeled - mnist

A
cc

ur
ac

y

Figure 5: Results with CIFAR-10 private dataset and labeled public datasets.

(a) IID with unlabeled public dataset

Unlabeled - cifar

A
cc

ur
ac

y

3.74%5.66% 6.09%

1.15%

3.64%

2.88%

(b) Non-IID with unlabeled public dataset

5.44%
8.18% 6.22% 6.21% 6.48%

1.47%

Figure 6: Results with CIFAR-10 private dataset and unlabeled public datasets.

4



3 Limitation88

All the experimental results demonstrate the effectiveness of the proposed pFedHR. However,89

pFedHR still have the following limitations:90

1. In our experiments, we use four different CNN-based models and randomly send them91

to clients. The reason for using these simple models is that they can save computational92

resources. In our model design, we will calculate the CKA score between any pair of layers.93

In other words, if the local model is very deep (with multiple layers), the computational94

complexity will be very high.95

2. In real-world applications, the client models may be more complicated. To deploy the96

proposed pFedHR in a real environment, we need to slightly modify the layer-wise decom-97

position and use block-wise decomposition as [6] and redefine the rules used for generating98

candidates accordingly.99

3. In our experiments, we only test the designed model on the image datasets. In real-world100

applications, multiple types of data may be stored in each client. How to handle other types101

of data with heterogeneous model reassembly is one of our major future works.102

4 Broader Impacts103

The proposed pFedHR addresses the practical challenge of model heterogeneity in federated learning.104

By introducing heterogeneous model reassembly and personalized federated learning, this research105

contributes to the advancement of federated learning techniques, potentially improving the efficiency106

and effectiveness of collaborative machine learning in distributed systems.107

The pFedHR framework automatically generates informative and diverse personalized candidates108

with minimal human intervention. This has the potential to reduce the burden on human experts109

and practitioners, making the process of model personalization more efficient and scalable. It opens110

up possibilities for deploying federated learning systems in real-world scenarios where manual111

customization is impractical or time-consuming.112

The proposed heterogeneous model reassembly technique in pFedHR try to mitigate the adverse113

impact caused by using public data with different distributions from the client data. This can be114

beneficial in scenarios where privacy concerns limit the availability of extensive client data, such as115

healthcare, enabling the utilization of publicly available data while maintaining a certain level of116

model performance. It promotes the ethical and responsible use of data and encourages collaboration117

between organizations and researchers in a privacy-preserving manner.118

References119

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep120

convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.121

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale122

image recognition. arXiv preprint arXiv:1409.1556, 2014.123

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image124

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,125

pages 770–778, 2016.126

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,127

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.128

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,129

2015.130

[5] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected131

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern132

recognition, pages 4700–4708, 2017.133

[6] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model134

reassembly. Advances in neural information processing systems, 35:25739–25753, 2022.135

5


	Pseudo-code of pFedHR
	Implementation Details
	Model Details
	Details of Rule R2 (Operation Order)
	Public Data Sensitivity Analysis
	Layer Stitching Study
	Experiment results with Different Numbers of Clusters
	Experiment Results of Public Data Sensitivity on SVHN with 100 Clients
	Experiment Results of Public Data Sensitivity on CIFAR-10 with 12 Clients


	Limitation
	Broader Impacts

