
Under review as a conference paper at ICLR 2021

Program Y := Concat(e1, e2, . . .)

Expression e := f | n | n1(n2) | n(f) | ConstStr(c)
Substring f := SubStr(k1, k2) | GetSpan(r1, i1, b1, r2, i2, b2)

Nesting n := GetToken(t, i) | ToCase(s) | Replace(δ1, δ2) | Trim() | GetUpto(r) | GetFrom(r)
| GetFirst(t, i) | GetAll(t)

Regex r := t1 | . . . | tn | δ1 | . . . | δm
Type t := NUMBER | WORD | ALPHANUM | ALL_CAPS | PROP_CASE | LOWER | DIGIT | CHAR
Case s := PROPER | ALL_CAPS | LOWER

Position k := − 100 | − 99 | . . . | 1 | 2 | . . . | 100
Index i := − 5 | − 4 | . . . | 1 | 2 | . . . | 5

Boundary b := START | END
Delimiter δ := &, .?@()[]%{}/ :; $#”′

Character c := A− Z | a− z | 0− 9 | &, .?@ . . .

Figure 7: The DSL for string transformation tasks (Devlin et al., 2017)

A EXTENDED DESCRIPTION OF DSL AND ROBUSTFILL MODEL

The DSL for string transformations we use is the same as used in RobustFill (Devlin et al., 2017),
and is shown in Figure 7. The top-level operator for programs in the DSL is a Concat operator
that concatenates a random number (up to 10) of expressions ei. Each expression e can either be a
substring expression f , a nesting expression n, or a constant string c. A substring expression can
either return the substring between left k1 and right k2 indices, or between the i1-th occurence of
regex r1 and i2-th occurence of regex r2. The nesting expressions also return substrings of the input,
such as extracting the i-th occurrence of a regex, but can also be composed with existing substring
or nesting expressions for more complex string transformations.

RobustFill Model RobustFill (Devlin et al., 2017) is a seq-to-seq neural network that uses a
encoder-decoder architecture where the encoder computes a representation of the input e(X), and
the decoder autoregressively generates the output given the source representation, i.e. conditional
likelihood of Y = [y1, . . . , yT] decomposes as p(Y |X) =

∏T
t=1 p(yt|y<t, X).

In RobustFill, the probability of decoding each token yt is given by p(yt|y<t, X) =
Softmax (W (ht)) with W being the projection onto logits, or unnormalized log probabilities. The
hidden representation ht is an LSTM hidden unit given by,

Et = Attention (ht−1, e(X)) ,

ht = LSTM(ht−1, Et) .

Here e(X) is the sequence of hidden states after processing the specifications with an LSTM en-
coder, and Attention (Q,V) denotes the scaled dot-product attention with query Q and key-value
sequence V (Bahdanau et al., 2016). In the case of X being multiple I/O examples, the RobustFill
model of Devlin et al. (2017) uses double attention

sIt,i = Attention (ht−1, e(Ii))

sOt,i = Attention
(
Concat

(
ht−1, s

I
t,i

)
, e(Oi)

)
ht,i = LSTM

(
ht−1,Concat

(
sIt,i, s

O
t,i

))
∀1 ≤ i ≤ N,

and hidden states are pooled across examples before being fed into the final softmax layer, or ht =
maxpool1≤i≤N tanh(V (ht,i)) , where V is another projection.

12

Under review as a conference paper at ICLR 2021

B EXAMPLES OF GENERATED PROGRAMS AND LATENT CODES

Inputs Outputs LP Outputs

“Mason Smith" “Smith M" “Smith M"
“Henry Myers" “Myers H" “Myers H"
“Barry Underwood" “Underwood B" “Underwood B"
“Sandy Jones" “Jones S" “Jones S"

LP GetToken_PROP_CASE_2 | ConstStr(“ ") | GetToken_CHAR_1(GetToken_PROP_CASE_1)

LP Latent TOK_30 | TOK_13 | TOK_39 | TOK_30

Inputs Outputs LP Outputs

“January 15" “jan 15" “jan 15"
“febuary 28" “feb 28" “feb 28"
“march 1" “mar 1" “mar 1"
“October 31" “oct 31" “oct 31"

LP ToCase_LOWER(SubStr(1, 3)) | ConstStr(“ ") | GetToken_NUMBER_1

LP Latent TOK_11 | TOK_26 | TOK_17

Inputs Outputs LP Outputs

“(321) 704 3331" “321.704.3331" “321.704.3331"
“(499) 123 3574" “499.123.3574" “499.123.3574"
“(555) 580 8390" “555.580.8390" “555.580.8390"
“(288)225 6116" “288.225.6116" “288.225.6116"

LP GetToken_NUMBER_1 | ConstStr(.) | Replace_“ "_.(SubStr(-8, -1))

LP Latent TOK_17 | TOK_27 | TOK_24 | TOK_16

Inputs Outputs LP Outputs

“Milk 4, Yoghurt 12, Juice 2, Egg 5" “M.P." “M.P."
“US:38 China:35 Russia:27 India:1" “U.I." “U.I."
“10 Apple 2 Oranges 13 Bananas 40 Pears" “A.P." “A.P."
“parul 7 rico 12 wolfram 15 rick 19" “P.R." “.."

LP GetToken_CHAR_1(GetToken_PROP_CASE_1) | Const(.) |
GetToken_CHAR_-1(GetAll_ALL_CAPS) | Const(.)

LP Latent TOK_39 | TOK_30 | TOK_6 | TOK_38 | TOK_30

Figure 8: Latent codes and programs found by Latent Programmer in string transformation tasks.
Red denotes I/O where the predicted program mapped input to an incorrect output.

13

Under review as a conference paper at ICLR 2021

Docstring Program

get an environment variable def set_key(key, val, key_prefix=None):
return return environ.get(key, key_prefix)

return a list of the words def split(s, sep=None, maxsplit=-1):
in the string s return s.split(sep, maxsplit)

mean squared error function def mean_squared_error(y_true, y_pred):
return tf.reduce_mean(tf.square((y_true -

y_pred)))

read a python file def read_file(fname):
f = open(fname)
with open(fname, ‘r’) as f:
f.seek(0)
return f.read()

pickle dump def pickle_save(filename, data):
with open(filename, ‘r’) as f:
pickle.dump(data, f)

takes a timedelta and returns the def total_seconds(delta):
total number of seconds return ((delta.microseconds + ((delta.days

* 24) * 3600) * (10**6))/(10**6))

Figure 9: Programs found by Latent Programmer in Python code generation dataset. Red denotes
ares where the predicted program deviates from human code.

14

	Extended Description of DSL and RobustFill Model
	Examples of Generated Programs and Latent Codes

