
The Crucial Role of Normalization in
Sharpness-Aware Minimization

Yan Dai ∗

IIIS, Tsinghua University
yan-dai20@mails.tsinghua.edu.cn

Kwangjun Ahn ∗

EECS, MIT
kjahn@mit.edu

Suvrit Sra
TU Munich / MIT
suvrit@mit.edu

Abstract

Sharpness-Aware Minimization (SAM) is a recently proposed gradient-based opti-
mizer (Foret et al., ICLR 2021) that greatly improves the prediction performance of
deep neural networks. Consequently, there has been a surge of interest in explaining
its empirical success. We focus, in particular, on understanding the role played by
normalization, a key component of the SAM updates. We theoretically and empiri-
cally study the effect of normalization in SAM for both convex and non-convex
functions, revealing two key roles played by normalization: i) it helps in stabilizing
the algorithm; and ii) it enables the algorithm to drift along a continuum (manifold)
of minima – a property identified by recent theoretical works that is the key to better
performance. We further argue that these two properties of normalization make
SAM robust against the choice of hyper-parameters, supporting the practicality of
SAM. Our conclusions are backed by various experiments.

1 Introduction

We study the recently proposed gradient-based optimization algorithm Sharpness-Aware Minimization
(SAM) (Foret et al., 2021) that has shown impressive performance in training deep neural networks to
generalize well (Foret et al., 2021; Bahri et al., 2022; Mi et al., 2022; Zhong et al., 2022). SAM updates
involve an ostensibly small but key modification to Gradient Descent (GD). Specifically, for a loss
function L and each iteration t ≥ 0, instead of updating the parameter wt as wt+1 = wt − η∇L(wt)
(where η is called the learning rate), SAM performs the following update:1

wt+1 = wt − η∇L
(
wt + ρ

∇L(wt)

∥∇L(wt)∥

)
, (1)

where ρ is an additional hyper-parameter that we call the perturbation radius. Foret et al. (2021)
motivate SAM as an algorithm minimizing the robust loss max∥ϵ∥≤ρ L(w + ϵ), which is roughly the
loss at w (i.e., L(w)) plus the “sharpness” of the loss landscape around w, hence its name.

The empirical success of SAM has driven a recent surge of interest in characterizing its dynamics and
theoretical properties (Bartlett et al., 2022; Wen et al., 2023; Ahn et al., 2023d). However, a major
component of SAM remains unexplained in prior work: the role and impact of the normalization
factor 1

∥∇L(wt)∥ used by SAM. In fact, quite a few recent works drop the normalization factor for
simplicity when analyzing SAM (Andriushchenko and Flammarion, 2022; Behdin and Mazumder,
2023; Agarwala and Dauphin, 2023; Kim et al., 2023; Compagnoni et al., 2023). Instead of the SAM
update (1), these works consider the following update that we call Un-normalized SAM (USAM):

wt+1 = wt − η∇L(wt + ρ∇L(wt)) . (2)
∗The first two authors contribute equally. Work done while Yan Dai was visiting MIT.
1In principle, the normalization in Equation 1 may make SAM ill-defined. However, Wen et al. (2023,

Appendix B) showed that except for countably many learning rates, SAM (with any ρ) is always well-defined for
almost all initialization. Hence, throughout the paper, we assume that the SAM iterates are always well-defined.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Apart from experimental justifications in (Andriushchenko and Flammarion, 2022), the effect of this
simplification has not yet been carefully investigated, although it is already widely adopted in the
community. Thus, is it really the case that such normalization can be omitted “for simplification”
when theoretically analyzing SAM? These observations raise our main question:

What is the role of the normalization factor 1
∥∇L(wt)∥ in the SAM update (1)?

1.1 Motivating Experiments and Our Contributions

We present our main findings through two motivating experiments. For the setting, we choose the
well-known over-parameterized matrix sensing problem (Li et al., 2018); see Appendix A for details.

1. Normalization helps with stability. We first pick a learning rate η that allows GD to converge,
and we gradually increase ρ from 0.001 to 0.1. Considering the early stage of training shown in
Figure 1. One finds that SAM has very similar behavior to GD, whereas USAM diverges even with
a small ρ – it seems that normalization helps stabilize the algorithm.

0 2 4 6 8
Epoch

0

2

4

6

8

10

Tr
ai

n
Lo

ss

GD
SAM (= 0.1)
SAM (= 0.01)
SAM (= 0.005)
SAM (= 0.001)

0 2 4 6 8
Epoch

0

2

4

6

8

10
GD
USAM (= 0.1)
USAM (= 0.01)
USAM (= 0.005)
USAM (= 0.001)

Figure 1: Role of normalization for stabilizing algorithms (η = 0.05).

2. Normalization permits moving along minima. We reduce the step size by 10 times and consider
their performance of reducing test losses in the long run. One may regard Figure 2 as the behavior
of SAM, USAM, and GD when close to a “manifold” of minima (which exists since the problem
is over-parametrized) as the training losses are close to zero. The first plot compares SAM and
USAM with the same ρ = 0.1 (the largest ρ for which USAM doesn’t diverge): notice that USAM
and GD both converge to a minimum and do not move further; on the other hand, SAM keeps
decreasing the test loss, showing its ability to drift along the manifold. We also vary ρ and compare
their behaviors (shown on the right): the ability of SAM to travel along the manifold of minimizers
seems to be robust to the size of ρ, while USAM easily gets stuck at a minimum.

0 10000 20000 30000 40000 50000
Epoch

0

1

2

3

4

5

6

7

Te
st

 L
os

s

GD
SAM (= 0.1)
USAM (= 0.1)

0 10000 20000 30000 40000 50000
Epoch

0

1

2

3

4

5

6

7

GD
SAM (= 0.1)
SAM (= 0.25)
SAM (= 0.5)
SAM (= 1)

0 10000 20000 30000 40000 50000
Epoch

0

1

2

3

4

5

6

7

GD
USAM (= 0.05)
USAM (= 0.1)
USAM (= 0.01)

Figure 2: Role of normalization when close to a manifold of minimizers (η = 0.005).

Overview of our contributions. In this work, as motivated by Figure 1 and Figure 2, we identify
and theoretically explain the two roles of normalization in SAM. The paper is organized as follows.

1. In Section 2, we study the role of normalization in the algorithm’s stability and show that
normalization helps stabilize. In particular, we demonstrate that normalization ensures that GD’s
convergence implies SAM’s non-divergence, whereas USAM can start diverging much earlier.

2. In Section 3, we study the role of normalization near a manifold of minimizers and show that the
normalization factor allows iterates to keep drifting along this manifold – giving better performance
in many cases. Without normalization, the algorithm easily gets stuck and no longer progresses.

2

3. In Section 4, to illustrate our main findings, we adopt the sparse coding example of Ahn et al.
(2023a). Their result implies a dilemma in hyper-parameter tuning for GD: a small η gives worse
performance, but a large η results in divergence. We show that this dilemma extends to USAM –
but not SAM. In other words, SAM easily solves the problem where GD and USAM often fail.

These findings also shed new light on why SAM is practical and successful, as we highlight below.

Practical importance of our results. The main findings in this work explain and underscore several
practical aspects of SAM that are mainly due to the normalization step. One practical feature of
SAM is the way the hyper-parameter ρ is tuned: Foret et al. (2021) suggest that ρ can be tuned
independently after tuning the parameters of base optimizers (including learning rate η, momentum
β, and so on). In particular, this feature makes SAM a perfect “add-on” to existing gradient-based
optimizers. Our findings precisely support this practical aspect of SAM. Our results suggest that the
stability of SAM is less sensitive to the choice of ρ, thanks to the normalization factor.

The same principle applies to the behavior of the algorithm near the minima: Recent theoretical works
(Bartlett et al., 2022; Wen et al., 2023; Ahn et al., 2023d) have shown that the drift along the manifold
of minimizers is a main feature that enables SAM to reduce the sharpness of the solution (which is
believed to boost generalization ability in practice) – our results indicate that the ability of SAM to
keep drifting along the manifold is independent of the choice of ρ, again owing to normalization.
Hence, our work suggests that the normalization factor plays an important role towards SAM’s
empirical success.

1.2 Related Work

Sharpness-Aware Optimizers. Inspired by the empirical and theoretical observation that the
generalization effect of a deep neural network is correlated with the “sharpness” of the loss landscape
(see (Keskar et al., 2017; Jastrzkebski et al., 2017; Jiang et al., 2020) for empirical observations and
(Dziugaite and Roy, 2017; Neyshabur et al., 2017) for theoretical justifications), several recent papers
(Foret et al., 2021; Zheng et al., 2021; Wu et al., 2020) propose optimizers that penalize the sharpness
for the sake of better generalization. Subsequent efforts were made on making such optimizers
scale-invariant (Kwon et al., 2021), more efficient (Liu et al., 2022; Du et al., 2022), and generalize
better (Zhuang et al., 2022). This paper focuses on the vanilla version proposed by Foret et al. (2021).

Theoretical Advances on SAM. Despite the success of SAM in practice, theoretical understanding
of SAM was absent until two recent works: Bartlett et al. (2022) analyze SAM on locally quadratic
losses and identify a component reducing the sharpness λmax(∇2L(wt)), while Wen et al. (2023)
characterize SAM near the manifold Γ of minimizers and show that SAM follows a Riemannian
gradient flow reducing λmax(∇2L(w)) when i) initialized near Γ, and ii) η is “small enough”.
Note that while the results of Wen et al. (2023) apply to more general loss functions, our result in
Theorem 16 applies to i) any initialization far from the origin, and ii) any η = o(1) and ρ = O(1). A
recent work by Ahn et al. (2023d) formulates the notion of ε-approximate flat minima and analyzed
the iteration complexity of practical algorithms like SAM to find such approximate flat minima.
A concurrent work by Si and Yun (2023) also analyzes the original version of SAM with the
normalization in (1), and makes a case that practical SAM does not converge all the way to optima.

Unnormalized SAM (USAM). USAM was first proposed by Andriushchenko and Flammarion
(2022) who observed a similar performance between USAM and SAM when training ResNet over
CIFAR-10. This simplification is further accepted by Behdin and Mazumder (2023) who study the
regularization effect of USAM over a linear regression model, by Agarwala and Dauphin (2023)
who study the initial and final dynamics of USAM over a quadratic regression model, and by Kim
et al. (2023) who study the convergence instability of USAM near saddle points. To our knowledge,
(Compagnoni et al., 2023) is the only work comparing SAM and USAM dynamics. More preciously,
they consider the continuous-time behavior of SGD, SAM, and USAM and find different behaviors of
SAM and USAM: USAM attracts local minima while SAM aims at global ones. Still, we remark that
as they are considering continuous-time variants of algorithms while we consider discrete (original)
versions, our results directly apply to the SAM deployed in practice and the USAM studied in theory.

Edge-of-Stability. In the optimization theory literature, Gradient Descent (GD) was only shown to
find minima if the learning rate η is smaller than an “Edge-of-Stability” threshold, which is related to
the sharpness of the nearest minimum. However, people recently observe that when training neural
networks, GD with a η much larger than that threshold often finds good minima as well (see (Cohen

3

et al., 2021) and references therein). Aside from convergence, GD with large η is also shown to find
flatter minima (Arora et al., 2022; Ahn et al., 2022; Wang et al., 2022; Damian et al., 2023).

2 Role of Normalization for Stability

In this section, we discuss the role of normalization in the stability of the algorithm. We begin by
recalling a well-known fact about the stability of GD: for a convex quadratic cost with the largest
eigenvalue of Hessian being β (i.e., β-smooth), GD converges to a minimum iff η < 2/β. Given this
folklore fact, we ask: how do the ascent steps in SAM (1) and USAM (2) affect their stability?

2.1 Strongly Convex and Smooth Losses

Consider an α-strongly-convex and β-smooth loss function L where GD is guaranteed to converge
once η < 2/β. We characterize the stability of SAM and USAM in the following result.
Theorem 1 (Strongly Convex and Smooth Losses). For any α-strongly-convex and β-smooth loss
function L, for any learning rate η < 2/β and perturbation radius ρ ≥ 0, the following holds:

1. SAM. The iterate wt converges to a local neighborhood around the minimizer w⋆. Formally,

L(wt)− L(w⋆) ≤
(
1− αη(2− ηβ)

)t
(L(w0)− L(w⋆)) +

ηβ3ρ2

2α(2− ηβ)
, ∀t. (3)

2. USAM. In contrast, there exists some α-strongly-convex and β-smooth loss L such that the USAM
with η ∈ (2/(β+ρβ2), 2/β] diverges for all except measure zero initialization w0.

As we discussed, it is well-known that GD converges iff η < 2/β, and Theorem 1 shows that SAM
also does not diverge and stays within an O(√ηρ)-neighborhood around the minimum as long as
η < 2/β. However, USAM diverges with an even lower learning rate: η > 2/(β+ρβ2) can already
make USAM diverge. Intuitively, the larger the value of ρ, the easier it is for USAM to diverge.

One may notice that Equation 3, compared to the standard convergence rate of GD, exhibits an additive
bias term of order O(ηρ2). This term arises from the unstable nature of SAM: the perturbation in (1)
(which always has norm ρ) prevents SAM from decreasing the loss monotonically. Thus, SAM can
only approach a minimum up to a neighborhood. For this reason, in this paper whenever we say SAM
“finds” a minimum, we mean its iterates approach and stay within a neighborhood of that minimum.

Due to space limitations, the full proof is postponed to Appendix C and we only outline it here.

Proof Sketch. For SAM, we show an analog to the descent lemma of GD as follows (see Lemma 9):

L(wt+1) ≤ L(wt)−
1

2
η(2− ηβ)∥∇L(wt)∥2 +

η2β3ρ2

2
. (4)

By invoking the strong convexity that gives L(wt)− L(w∗) ≤ 1
2α∥∇f(wt)∥2, we obtain

L(wt+1)− L(w⋆) ≤
(
1− αη(2− ηβ)

)
(L(wt)− L(w⋆)) +

η2β3ρ2

2
.

Recursively applying this relation gives the first conclusion. For USAM, we consider the quadratic
loss function same as (Bartlett et al., 2022). Formally, suppose that L(w) = 1

2w
⊤Λw where

Λ = diag(λ1, λ2, . . . , λd) is a PSD matrix such that λ1 > λ2 ≥ · · ·λd > 0. Let the eigenvectors
corresponding to λ1, λ2, . . . , λd be e1, e2, . . . , ed, respectively. Then we show the following in
Theorem 10: for any η(λ1 + ρλ2

1) > 2 and ⟨w0, e1⟩ ≠ 0, USAM must diverge. As L(w) = 1
2w

⊤Λw
is λ1-smooth and λd-strongly-convex, the second conclusion also follows.

Intuitively, the difference in stability can be interpreted as follows: during the early stage of training,
wt and ∇L(wt) often have large norms. The normalization in SAM then makes the ascent step
wt + ρ ∇L(wt)

∥∇L(wt)∥ not too far away from wt. Hence, if GD does not diverge for this η, SAM does not
either (unless the ρ-perturbation is non-negligible, i.e., ∥wt∥ ≫ ρ no longer holds). This is not true
for USAM: since the ascent step is un-normalized, it leads to a point far away from wt, making the
size of USAM updates much larger. In other words, the removal of normalization leads to much more
aggressive steps, resulting in a different behavior than GD and also an easier divergence.

4

2.2 Generalizing to Non-Convex Cases: Scalar Factorization Problem

Now let us move on to non-convex losses. We consider a scalar version of the matrix factorization
problem minU,V

1
2∥UV T − A∥22, whose loss function is defined as L(x, y) = 1

2 (xy)
2. Denote the

initialization by (x0, y0), then L(x, y) is β ≜ (x2
0+y20)-smooth inside the region {(x, y) : x2+y2 ≤

β}. Hence, a learning rate η < 2/β again allows GD to converge due to the well-known descent
lemma. The following result compares the behavior of SAM and USAM under this setup.
Theorem 2 (Scalar Factorization Problem; Informal). For the loss function L(x, y) = 1

2 (xy)
2

restricted to a β-smooth region, if we set η = 1/β < 2/β (so GD finds a minimum), then

1. SAM. SAM never diverges and approaches a minimum within an O(ρ)-neighborhood (in fact,
SAM with distinct ρ’s always find the same minimum (0, 0)).

2. USAM. On the other hand, USAM diverges once ρ ≥ 15η – which could be much smaller than 1.

Thus, our observation in Theorem 1 is not limited to convex losses – for our non-convex scalar-
factorization problem, the stability of SAM remains robust to the choice of ρ, while USAM is
provably unstable. One may refer to Appendix D for the formal statement and proof of Theorem 2.

2.3 Experiment: Early-Stage Behaviors when Training Neural Networks

0 5 10 15 20 25 30

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100 CNN with tanh activation
GD
SAM = 0.05
SAM = 0.1
SAM = 0.2
USAM = 0.05
USAM = 0.1
USAM = 0.2

0 5 10 15 20 25 30

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100 FCN with ReLU activation
GD
SAM = 0.1
SAM = 0.3
SAM = 0.5
USAM = 0.1
USAM = 0.3
USAM = 0.5

Figure 3: Behaviors of different algorithms when training neural networks (η = 0.025).

As advertised, our result holds not only for convex or toy loss functions but also for practical neural
networks. In Figure 3, we plot the early-stage behavior of GD, SAM, and USAM with different ρ
values (while fixing η). We pick two neural networks: a convolutional neural network (CNN) with
tanh activation and a fully-connected network (FCN) with ReLU activation. We train them over
the CIFAR10 dataset and report the early-stage training losses. Similar to Figure 1, Theorem 1 and
Theorem 2, the stability of SAM is not sensitive to the choice of ρ, while USAM diverges easily.

3 Role of Normalization for Drifting Near Minima

Now, we explain the second role of normalization: enabling the algorithm to drift near minima. To
convince why this is beneficial, we adopt a loss function recently considered by Ahn et al. (2023a)
when understanding the behavior of GD with large learning rates. Their result suggests that GD
needs a “large enough” η for enhanced performance, but this threshold can never be known a-priori in
practice. To verify our observations from Figure 2, we study the dynamics of SAM and USAM over
the same loss function and find that: i) no careful tuning is needed for SAM; instead, SAM with any
configuration finds the same minimum (which is the “best” one according to Ahn et al. (2023a)); and
ii) such property is only enjoyed by SAM – for USAM, careful tuning remains essential.

3.1 Toy Model: Single-Neuron Linear Network Model

To theoretically study the role of normalization near minima, we consider the simple two-dimensional
non-convex loss L(x, y) defined over all (x, y) ∈ R2 as

L : (x, y) 7→ ℓ(x× y) , where ℓ is convex, even, and 1-Lipschitz. (5)

5

This L was recently studied in (Ahn et al., 2023a) to understand the behavior of GD with large η’s.
By direct calculation, the gradient and Hessian of L at a given (x, y) can be written as:

∇L(x, y) = ℓ′(xy)

[
y
x

]
, ∇2L(x, y) = ℓ′′(xy)

[
y
x

]⊗2

+ ℓ′(xy)

[
0 1
1 0

]
. (6)

Without loss of generality, one may assume ℓ is minimized at 0 (see Appendix E for more details
regarding ℓ). Then, L achieves minimum at the entire x- and y-axes, making it a good toy model for
studying the behavior of algorithms near a continuum of minima. Finally, note that the parametrization
x× y can be interpreted as a single-neuron linear network model – hence its name.

Before moving on to SAM and USAM we first briefly introduce the behavior of GD on such loss
functions characterized in (Ahn et al., 2023a). Since ℓ is even, without loss of generality, we always
assume that the initialization w0 = (x0, y0) satisfies y0 ≥ x0 > 0.

Theorem 3 (Theorems 5 and 6 of (Ahn et al., 2023a); Informal). For any η = γ/(y20 − x2
0), the GD

trajectory over the loss function L(x, y) = ℓ(xy) has two possible limiting points:

1. If γ < 2, then the iterates converge to (0, y∞) where y2∞ ∈ [γ/η −O(γ)−O(η/γ), γ/η +O(η/γ)].
2. If γ > 2, then the iterates converge to (0, y∞) where y2∞ ∈ [2/η −O(η), 2/η].

Intuitively, the limiting point of GD (denoted by (0, y∞)) satisfies y2∞ ≈ min{y20 − x2
0, 2/η}. For

simplicity, we denote ηGD ≈ 2/y2
0−x2

0 as the threshold of η that distinguishes these two cases.

0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

SAM
USAM
GD

Figure 4: Trajectories of dif-
ferent algorithms for the ℓ(xy)
loss (η = 0.4 and ρ = 0.1; ini-
tialization (x0, y0) = (2,

√
40) is

marked by a black dot).

Interpretation of Ahn et al. (2023a). Fixing the initialization
(x0, y0), it turns out this model has a nice connection to the sparse
coding problem, wherein it’s desirable to get a smaller y2∞ (which
we will briefly discuss in Section 4). According to Theorem 3, to
get a smaller y2∞, one must increase the learning rate η beyond ηGD.
Hence we mainly focus on the case where η > ηGD – in which case
we abbreviate y2∞ ≈ 2/η (see Table 1). However, GD diverges once
η is too large – in their language, γ cannot be much larger than 2.
This dilemma of tuning η, as we shall illustrate in Section 4 in more
detail, makes GD a brittle choice for obtaining a better y2∞.

On the other hand, from the numerical illustrations in Figure 4, one
can see that SAM keeps moving along the manifold of minimizers
(i.e., the y-axis) until the origin. This phenomenon is characterized
in Theorem 4; in short, any moderate choice of η and ρ suffices to
drive SAM toward the origin – no difficult tuning needed anymore!

In contrast, USAM does not keep moving along the axis. Instead,
a lower bound on y2∞ also presents – although smaller than the GD
version. As we will justify in Theorem 5, USAM does get trapped at
some non-zero y2∞ Thus, a dilemma similar to that of GD shows up:
for enhanced performance, an aggressive (η, ρ) is needed; however,
as we saw from Section 2, this easily results in a divergence.

Assumptions. To directly compare with (Ahn et al., 2023a), we focus on the cases where y20 − x2
0 =

γ/η and γ ∈ [12 , 2] is a constant of moderate size; hence, η is not too different from the ηGD defined
in Theorem 3. In contrast to most prior works which assume a tiny ρ (e.g., (Wen et al., 2023)), we
allow ρ to be as large as a constant (i.e., we only require ρ = O(1) in Theorem 4 and Theorem 5).

3.1.1 SAM Keeps Drifting Toward the Origin

We characterize the trajectory of SAM when applied to the loss defined in Equation 5 as follows:

Theorem 4 (SAM over Single-Neuron Networks; Informal). For any η ∈ [12ηGD, 2ηGD] and ρ =
O(1), the SAM trajectory over the loss function L(x, y) = ℓ(xy) can be divided into three phases:

1. Initial Phase. xt drops so rapidly that |xt| = O(
√
η) in O(1/η) steps. Meanwhile, yt remains

large: specifically, yt = Ω(
√

1/η). Thus, SAM approaches the y-axis (the set of global minima).

6

Table 1: Limiting points of GD, SAM, and USAM for the ℓ(xy) loss (assuming η > ηGD).
Algorithm GD SAM USAM

Limiting Point (0, y∞) y2∞ ≈ 2/η y2∞ ≈ 0 (1 + ρy2∞)y2∞ ≈ 2/η

2. Middle Phase. xt oscillates closely to the axis such that |xt| = O(
√
η) always holds. Meanwhile,

yt decreases fast until yt ≤ |xt|2 – that is, |xt| remains small and SAM approaches the origin.

3. Final Phase. wt = (xt, yt) gets close to the origin such that |xt|, |yt| = O(
√
η + ηρ). We then

show that wt remains in this region for the subsequent iterates.

Informally, SAM first approaches the minimizers on y-axis (which form a manifold) and then keeps
moving until a specific minimum. Moreover, SAM always approaches this minimum for almost
all (η, ρ)’s. This matches our motivating experiment in Figure 2: No matter what hyper-parameters
are chosen, SAM always drift along the set of minima, in contrast to the behavior of GD. This
property allows SAM always to approach the origin (0, 0) and remains in its neighborhood, while
GD converges to (0,

√
2/η) (see Table 1). The formal version of Theorem 4 is in Appendix F.

3.1.2 USAM Gets Trapped at Different Minima

We move on to characterize the dynamics of USAM near the minima. Like GD or SAM, the first few
iterations of USAM drive iterates to the y-axis. However, unlike SAM, USAM does not keep drifting
along the y-axis and stops at some threshold – in the result below, we prove a lower bound on y2t that
depends on both η and ρ. In other words, the lack of normalization factor leads to diminishing drift.

Theorem 5 (USAM over Single-Neuron Networks; Informal). For any η ∈ [12ηGD, 2ηGD] and
ρ = O(1), the USAM trajectory over the loss function L(x, y) = ℓ(xy) have the following properties:

1. Initial Phase. Similar to Initial Phase of Theorem 4, |xt| = O(
√
η) and yt = Ω(

√
1/η) hold for

the first O(1/η) steps. That is, USAM also approaches y-axis, the set of global minima.
2. Final Phase. However, for USAM, once the following condition holds for some round t:3

(1 + ρy2t)y
2
t <

2

η
, i.e., y2t < ỹ2USAM ≜

(√
8
ρ

η
+ 1− 1

)/
2ρ , (7)

|xt| decays exponentially fast, which in turn ensures y2∞ ≜ lim inft→∞ y2t ≳ (1− η2 − ρ2)y2t .

Remark. Note that USAM becomes GD as we send ρ→ 0+, and our characterized threshold y2USAM
indeed recovers that of GD (i.e., 2/η from Theorem 3) because limρ→0+(

√
8ρ/η + 1− 1)/2ρ = 2/η.

Compared with SAM, the main difference occurs when close to minima, i.e., |xt| = O(
√
η). Consis-

tent with our motivating experiment (Figure 2), the removal of normalization leads to diminishing drift
along the minima. Thus, USAM is more like an improved version of GD rather than a simplification
of SAM, and the comparison between Theorem 3 and Theorem 5 reveals that USAM only improves
over GD if ρ is large enough – in which case USAM is prone to diverges as we discussed in Section 2.

See Appendix G for a formal version of Theorem 5 together with its proof.

3.1.3 Technical Distinctions Between GD, SAM, and USAM

Before moving on, we present a more technical comparison between the results stated in Theorem 3
versus Theorem 4 and Theorem 5. We start with an intuitive explanation of why GD and USAM get
stuck near the manifold of minima but SAM does not: when the iterates approach the set of minima,
both wt and ∇L(wt) become small. Hence the normalization plays an important role: as ∇L(wt)
are small, wt and wt + ρ∇L(wt) become nearly identical, which leads to a diminishing updates of
GD and USAM near the minima. On the other hand, having the normalization term, the SAM update
doesn’t diminish, which prevents SAM from converging to a minimum and keeps drifting along the
manifold.

2Specifically, either an exponential decay yt+1 ≲ (1− ηρ2)yt or a constant drop yt+1 ≲ yt − ηρ appears
3The ỹ2

USAM in Equation 7 is defined as the solution to the equation (1 + ρy2)y2 = 2.

7

This high-level idea is supported by the following calculation: recall Equation 6 that∇L(xt, yt) =
ℓ′(xtyt)·[yt xt]

⊤. Hence, when |xt| ≪ yt in Final Phase, the “ascent gradient” direction∇L(xt, yt)
(i.e., the ascent steps in Equation 1 and Equation 2) is almost perpendicular to the y-axis. We thus
rewrite the update direction (i.e., the difference between wt+1 and wt) for each algorithm as follows.

1. For SAM, after normalization, ∇L(wt)
∥∇L(wt)∥ is roughly a unit vector along the x-axis. Hence, the

update direction is the gradient at wt+1/2 ≈ [ρ yt]
⊤. Once yt is large (making wt+1/2 far from

minima), ∇L(wt+1/2) thus have a large component along yt, which leads to drifting near minima.

2. For GD, by approximating ℓ′(u) ≈ u, we derive ∇L(xt, yt) ≈ [xty
2
t x2

tyt]
⊤. When 2/η > y2t ,

the magnitude of xt is updated as |xt+1| ≈ |xt − ηxty
2
t | = |(1 − ηy2t)xt|, which allows an

exponential decay. Thus, GD converges to a minimum and stop moving soon after 2/η > y2t .

3. For USAM, the descent gradient is taken at wt+ρ∇L(wt) ≈ [(1+ρy2t)xt (1+ρx2
t)yt]

⊤. Thus,
∇L(wt+ρ∇L(wt)) ≈ [(1+ρy2t)(1+ρx2

t)
2xty

2
t (1+ρy2t)

2(1+ρx2
t)x

2
tyt]

⊤ by writing ℓ′(u) ≈
u. This makes USAM deviate away from SAM and behave like GD: by the similar argument as
GD, USAM stops at a minimum soon after 2/η > (1 + ρy2t)(1 + ρx2

t)
2y2t ≈ (1 + ρy2t)y

2
t !

Hence, the normalization factor in the ascent gradient helps maintain a non-diminishing component
along the minima, leading SAM to keep drifting. This distinguishes SAM from GD and USAM.

3.2 USAM Gets Trapped Once Close to Minima

In this section, we extend our arguments to nonconvex costs satisfying Polyak-Lojasiewicz (PL)
functions (see, e.g., (Karimi et al., 2016)). Recall that f satisfies the µ-PL condition if 1

2∥∇L(w)∥
2 ≥

µ(L(w)−minw L(w)) for all w. Building upon the analysis of Andriushchenko and Flammarion
(2022), we show the following result when applying USAM to β-smooth and µ-PL losses.

Theorem 6 (USAM over PL Losses; Informal). For β-smooth and µ-PL loss L, for any η < 1/β and
ρ < 1/β, and for any initialization w0, ∥wt − w0∥ ≤ poly(η, ρ, β, µ) ·

√
L(w0)−minw L(w), ∀t.

This theorem has the following consequence: Suppose that USAM encounters a point w0 that is close
to some minimum (i.e., L(w0) ≈ minw L(w)) during training. Then Theorem 6 implies that the
total distance traveled by USAM from w0 is bounded – in other words, the distance USAM moves
along the manifold of minimizers can only be of order O(

√
L(w0)−minw L(w)).

As a remark, we compare Theorem 6 with the recent result by Wen et al. (2023): their result essentially
implies that, for small enough η and ρ, SAM iterates initialized close to a manifold of the minimizers
approximately track some continuous dynamics (more precisely, a Riemannian gradient flow induced
by a “sharpness” measure they find) and keep drifting along the manifold. This property is indeed in
sharp contrast with USAM whose total travel distance is bounded.

The formal statement and proof of Theorem 6 are contained in Appendix H.

3.3 Experiments for Practical Neural Networking Training

0 20 40 60 80 100
Epoch

42
44
46
48
50
52
54
56
58

Te
st

 A
cc

ur
ac

y

0 20 40 60 80 100
Epoch

30
40
50
60
70
80
90

100

Tr
ai

n
Ac

cu
ra

cy

SGD
SAM (= 0.01)
SAM (= 0.05)
SAM (= 0.1)
USAM (= 0.01)
USAM (= 0.05)
USAM (= 0.1)

Figure 5: Training ResNet18 on CIFAR-10 from a bad global minimum (η = 0.001, batch size = 128).

We close this section by verifying our claims in practical neural network training. We train a ResNet18
on the CIFAR-10 dataset, initialized from a poor global minimum generated as per Liu et al. (2020)

8

(we used the “adversarial checkpoint” released by Damian et al. (2021)). This initialization has 100%
training accuracy but only 48% test accuracy – which lets us observe a more pronounced algorithmic
behavior near the minima via tracking the test accuracy. From Figure 5, we observe:

1. GD gets stuck at this adversarial minimum, in the sense that the test accuracy stays ats 48%.
2. SAM keeps drifting while staying close to the manifold of minimizers (because the training

accuracy remains 100%), which results in better solutions (i.e., the test accuracy keeps increasing).
3. USAM with small ρ gets stuck like GD, while USAM with larger ρ’s deviate from this manifold.

Hence, USAM faces the dilemma that we describe in Subsection 3.1: a conservative hyper-parameter
configuration does not lead to much drift along the minima, while a more aggressive choice easily
leads to divergence. However, the stability of SAM is quite robust to the choice of hyper-parameter
and they all seem to lead to consistent drift along the minima.
Remark. Apart from the “adversarial checkpoint” which is unrealistic but can help highlight different
algorithms’ behavior when they are close to a bad minimum, we also conduct the same experiments
but instead initialized from a “full-batch checkpoint” (Damian et al., 2021), which is the 100%
training accuracy point reached by running full-batch GD on the training loss function. The result is
plotted as Figure 8 in Subsection B.1. One can observe that USAM still gets stuck at the “full-batch
checkpoint”, while SAM keeps increasing its test accuracy via drifting along the minima manifold.

4 Case Study: Learning Threshold Neurons for Sparse Coding Problem

To incorporate our two findings into a single example, we consider training one-hidden-layer ReLU
networks for the sparse coding problem, a setup considered in (Ahn et al., 2023a) to study the role of
η in GD. Without going into details, the crux of their experiment is to understand how GD with large
η finds desired structures of the network – in this specific case, the desired structure is the negative
bias in ReLU unit (also widely known as “thresholding unit/neuron”). In this section, we evaluate
SAM and USAM under the same setup, illustrating the importance of normalization.

0 200 400 600 800 1000

Time (X Step)
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

0 200 400 600 800 1000

Time (X Step)

0.8

0.6

0.4

0.2

0.0

0.2
Bi

as
GD = 0.1
GD = 0.05
GD = 0.025

Figure 6: Behavior of GD for sparse coding problem.

Main observation of Ahn et al. (2023a). Given
this background, the main observation of Ahn
et al. (2023a) is that i) when training the ReLU
network with GD, different learning rates induce
very different trajectories; and ii) the desired
structure, namely a negative bias in ReLU, only
arises with large “unstable” learning rates for
which GD exhibits unstable behaviors. We re-
produce their results in Figure 6, plotting the test
accuracy on the left and the bias of ReLU unit
on the right. As they claimed, GD with larger η
learns more negative bias, which leads to better
test accuracy.

Their inspiring observation is however a bit discouraging for practitioners. According to their
theoretical results, such learning rates have to be quite large – large to the point where GD shows
very unstable behavior (à la Edge-of-Stability (Cohen et al., 2021)). In practice, without knowledge
of the problem, this requires a careful hyper-parameter search to figure out the correct learning rate.
More importantly, such large and unstable learning rates may cause GD to diverge or lead to worse
performance. More discussions can be found in the recent paper by Kaur et al. (2022).

In contrast, as we will justify shortly, SAM does not suffer from such a “dilemma of tuning” –
matching with our results in Theorem 4. Moreover, the removal of normalization no longer attains
such a property, as we demonstrated in Theorem 5. In particular, for USAM, one also needs to
carefully tune η and ρ for better performance – as we inspired in Theorem 5 and Theorem 6, small
(η, ρ) makes the iterates get stuck early; on the other hand, as we presented in Section 2, an aggressive
choice causes USAM to diverge. The following experiments illustrate these claims in more detail.

In Figure 7, we plot the performance of SAM, USAM, and GD with different η’s (while fixing ρ) –
gray lines for GD, solid lines for SAM, and dashed lines for USAM. From the plot, USAM behaves
more similarly to GD than SAM: the bias does not decrease sufficiently when the learning rate is not
large enough, which consequently to leads poor test accuracy. On the other hand, no matter what

9

0 200 400 600 800 1000
Time (X Step)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

0 200 400 600 800 1000
Time (X Step)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Bi
as

GD
SAM =0.1
SAM =0.05
SAM =0.025
USAM =0.1
USAM =0.05
USAM =0.025

Figure 7: Behaviors of different algorithms for sparse coding problem (ρ = 0.01). The gray curves
(corresponding to GD with different learning rates) are taken from Figure 6 with the same set of η’s.

η is chosen for SAM, bias is negative enough and ensures better generalization. Hence, Figure 7
illustrates that compared to SAM, USAM is less robust to the tuning of η.

In Figure 9 (deferred to Subsection B.2), we also compare these three algorithms when varying ρ and
fixing η. In addition to what we observe in Figure 7, we show that normalization also helps stability
– USAM quickly diverges as we increase ρ, while SAM remains robust to the choice of ρ. Thus,
USAM is also less robust to the tuning of ρ. In other words, our observation in Figure 7 extends to ρ.

Hence, putting Figure 7 and Figure 9 together, we conclude that SAM is robust to different con-
figurations of (η, ρ) while USAM is robust to neither of them. Hence, the normalization of SAM
eases hyper-parameter tuning, which is typically a tough problem for GD and many other algorithms
– normalization boosts the success of SAM in practice.

5 Conclusion

In this paper, we investigate the role played by normalization in SAM. By theoretically characterizing
the behavior of SAM and USAM on both convex and non-convex losses and empirically verifying
our conclusions via real-world neural networks, we found that normalization i) helps stabilize the
algorithm iterates, and ii) enables the algorithm to keep moving along the manifold of minimizers,
leading to better performance in many cases. Moreover, as we demonstrate via various experiments,
these two properties make SAM require less hyper-parameter tuning, supporting its practicality.

In this work, we follow a recent research paradigm of “physics-style” approaches to understanding
deep neural networks based on simplified models (c.f. (Zhang et al., 2022; Garg et al., 2022; von
Oswald et al., 2023; Abernethy et al., 2023; Allen-Zhu and Li, 2023; Liu et al., 2023; Li et al.,
2023; Ahn et al., 2023a,b,c)). We found such physics-style approaches quite helpful, especially for
complex modern neural networks. We hope that our work builds stepping stones for future works on
understanding working mechanisms of modern deep neural networks.

Acknowledgments

Kwangjun Ahn was supported by the ONR grant (N00014-20-1-2394) and MIT-IBM Watson as well
as a Vannevar Bush fellowship from Office of the Secretary of Defense. Suvrit Sra acknowledges
support from an NSF CAREER grant (1846088), and NSF CCF-2112665 (TILOS AI Research
Institute). Kwangjun Ahn also acknowledges support from the Kwanjeong Educational Foundation.
We thank Kaiyue Wen, Zhiyuan Li, and Hadi Daneshmand for their insightful discussions.

10

References
Jacob Abernethy, Alekh Agarwal, Teodor V Marinov, and Manfred K Warmuth. A mechanism for

sample-efficient in-context learning for sparse retrieval tasks. arXiv preprint arXiv:2305.17040,
2023.

Atish Agarwala and Yann N Dauphin. Sam operates far from home: eigenvalue regularization as a
dynamical phenomenon. arXiv preprint arXiv:2302.08692, 2023.

Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of gradient
descent. In Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 247–257. PMLR, 2022.

Kwangjun Ahn, Sébastien Bubeck, Sinho Chewi, Yin Tat Lee, Felipe Suarez, and Yi Zhang. Learning
threshold neurons via the “edge of stability”. NeurIPS 2023 (arXiv:2212.07469), 2023a.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. NeurIPS 2023 (arXiv:2306.00297), 2023b.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
attention is (maybe) all you need (to understand transformer optimization). arXiv 2310.01082,
2023c.

Kwangjun Ahn, Ali Jadbabaie, and Suvrit Sra. How to escape sharp minima. arXiv preprint
arXiv:2305.15659, 2023d.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pages 639–668. PMLR, 2022.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge of
stability in deep learning. In International Conference on Machine Learning, pages 948–1024.
PMLR, 2022.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7360–7371, 2022.

Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
tion: Bouncing across ravines and drifting towards wide minima. arXiv preprint arXiv:2210.01513,
2022.

Kayhan Behdin and Rahul Mazumder. Sharpness-aware minimization: An implicit regularization
perspective. arXiv preprint arXiv:2302.11836, 2023.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pages
483–513. PMLR, 2020.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2021.

Enea Monzio Compagnoni, Antonio Orvieto, Luca Biggio, Hans Kersting, Frank Norbert Proske, and
Aurelien Lucchi. An sde for modeling sam: Theory and insights. arXiv preprint arXiv:2301.08203,
2023.

Alex Damian, Tengyu Ma, and Jason D. Lee. Label noise SGD provably prefers flat global minimizers.
In Advances in Neural Information Processing Systems, 2021.

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. In International Conference on Learning Representations, 2023.

11

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent Tan. Efficient sharpness-aware minimization for improved training of neural networks. In
International Conference on Learning Representations, 2022.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In Proceedings
of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Stanislaw Jastrzkebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint arXiv:1711.04623,
2017.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. In 8th International Conference on Learning
Representations, 2020.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, pages 795–811. Springer, 2016.

Simran Kaur, Jeremy Cohen, and Zachary C Lipton. On the maximum hessian eigenvalue and
generalization. arXiv preprint arXiv:2206.10654, 2022.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee. Stability analysis of sharpness-aware
minimization. arXiv preprint arXiv:2301.06308, 2023.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning, pages 5905–5914. PMLR, 2021.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pages 2–47. PMLR, 2018.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: To-
wards a mechanistic understanding. International Conference on Machine Learning (ICML)
(arXiv:2303.04245), 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. ICLR (arXiv:2210.10749), 2023.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and sgd
can reach them. Advances in Neural Information Processing Systems, 33:8543–8552, 2020.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12360–12370, 2022.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. In Advances in Neural
Information Processing Systems, 2022.

12

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
to optima. NeurIPS 2023 (arXiv:2306.09850), 2023.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Zixuan Wang, Zhouzi Li, and Jian Li. Analyzing sharpness along gd trajectory: Progressive
sharpening and edge of stability. Advances in Neural Information Processing Systems, 35:9983–
9994, 2022.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness? In International Conference on Learning Representations, 2023.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8156–8165, 2021.

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng Tao. Improving
sharpness-aware minimization with fisher mask for better generalization on language models. In
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4064–4085, 2022.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, James
s Duncan, Ting Liu, et al. Surrogate gap minimization improves sharpness-aware training. In
International Conference on Learning Representations, 2022.

13

Appendix

A Setup of the Motivating Experiment 15

B Additional Experimental Results 15

B.1 Running SAM and USAM from Other Initializations 15

B.2 Varying ρ While Fixing η in Sparse Coding Example 15

C Omitted Proof for Smooth and Strongly Convex Losses 16

C.1 SAM Allows a Descent Lemma Like GD . 16

C.2 USAM Diverges on Quadratic Losses . 17

D Omitted Proof for Scalar Factorization Problems 18

D.1 SAM Always Converges on Scalar Factorization Problems 18

D.2 USAM Diverges with Small ρ . 19

E Assumptions in the Single-Neuron Linear Network Model 20

F Omitted Proof of SAM Over Single-Neuron Linear Networks 20

F.1 Basic Properties and Notations . 20

F.2 Initial Phase: xt Decreases Fast while yt Remains Large 21

F.3 Middle Phase: y Keeps Decreasing Until Smaller Than |xt| 23

F.4 Final Phase: Both xt and yt Oscillates Around the Origin 24

G Omitted Proof of USAM Over Single-Neuron Linear Networks 25

G.1 Basic Properties and Notations . 25

G.2 Initial Phase: xt Decreases Fast while yt Remains Large 26

G.3 Final Phase: yt Gets Trapped Above the Origin 28

H Omitted Proof of USAM Over General PL functions 29

14

A Setup of the Motivating Experiment

In the motivating experiments (Figure 1 and Figure 2), we follow the over-parameterized matrix
sensing setup as Li et al. (2018) and Blanc et al. (2020). Specifically, we do the following:

1. Generate the true matrix by sampling each entry of U⋆ ∈ Rd×r independently from a standard
Gaussian distribution and let X⋆ = U⋆(U⋆)⊤.

2. Normalize each column of U⋆ to unit norm so that the spectral norm of U⋆ is close to one.
3. For every sensing matrix Ai (i = 1, 2, . . . ,m), sample the entries of Ai independently from a

standard Gaussian distribution. Then observe bi = ⟨Ai, X
⋆⟩.

In particular, for the experiments, we chose r = 5, d = 100, and m = 5dr.

B Additional Experimental Results

B.1 Running SAM and USAM from Other Initializations

0 20 40 60 80 100 120 140
Epoch

0.750

0.755

0.760

0.765

0.770

0.775

Te
st

 A
cc

ur
ac

y

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Ac

cu
ra

cy

SGD
SAM = 0.1
SAM = 0.5
SAM = 1
USAM = 0.1
USAM = 0.5
USAM = 1

Figure 8: Training ResNet18 on CIFAR-10 from a “full-batch checkpoint” of Damian et al. (2021)
(η = 0.001, batch size = 128).

B.2 Varying ρ While Fixing η in Sparse Coding Example

0 200 400 600 800 1000
Time (X Step)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

0 200 400 600 800 1000
Time (X Step)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Bi
as

GD
SAM =0.5
SAM =0.3
SAM =0.1
SAM =0.01
USAM =0.5
USAM =0.3
USAM =0.1
USAM =0.01

Figure 9: Behaviors of different algorithms for sparse coding problem (η = 0.025). Note that USAM
with ρ = 0.5 (the dashed violet curve) diverges and becomes invisible except for the very beginning.

Aside from Figure 7 which varies η while fixing ρ, we perform the same experiment when varying ρ
and fixing η. The main observation for SAM is similar to that of Figure 7: different hyper-parameters
all keep decreasing the bias and give better test accuracy – even with the tiniest choice ρ = 0.01.

15

However, for USAM, there are three different types of ρ’s as shown in Figure 9:

1. For tiny ρ = 0.01, the bias doesn’t decrease much. Consequently, the performance of USAM
nearly degenerates to that of GD – while SAM with ρ = 0.01 still gives outstanding performance.

2. For moderate ρ = 0.1 and ρ = 0.3, USAM manages to decrease the bias and improve its accuracy,
though with a slower speed than SAM with the same choices of ρ.

3. For large ρ = 0.5 (where SAM still works well; see the solid curve in blue), USAM diverges.

Thus, the dilemma described in Section 4 indeed applies to not only η but also ρ – matching our main
conclusion that normalization helps make hyper-parameter tuning much more manageable.

C Omitted Proof for Smooth and Strongly Convex Losses

We shall first restate Theorem 1 here for the ease of presentation.

Theorem 7 (Restatement of Theorem 1). For any α-strongly-convex and β-smooth loss function L,
for any learning rate η ≤ 2/β and perturbation radius ρ ≥ 0, the following holds:

1. SAM. The iterate wt converges to a local neighborhood around the minimizer w⋆. Formally,

L(wt)− L(w⋆) ≤
(
1− αη(2− ηβ)

)t
(L(w0)− L(w⋆)) +

ηβ3ρ2

2α(2− ηβ)
, ∀t.

2. USAM. In contrast, there exists some α-strongly-convex and β-smooth loss L such that the USAM
with η ∈ (2/(β+ρβ2), 2/β] diverges for all except measure zero initialization w0.

We will show these two conclusions separately. The proof directly follows from Theorem 8 and
Theorem 10.

C.1 SAM Allows a Descent Lemma Like GD

Theorem 8 (SAM over Strongly Convex and Smooth Losses). For any α-strongly-convex and
β-smooth loss function L, for any learning rate η ≤ 2/β and perturbation radius ρ ≥ 0, the following
holds for SAM:

L(wt)− L(w⋆) ≤ (1− αη(2− ηβ))t(L(w0)− L(w⋆)) +
ηβ3ρ2

2α(2− ηβ)
.

Proof. We first claim the following analog of descent lemma, which we state as Lemma 9:

L(wt+1) ≤ L(wt)−
1

2
η(2− ηβ)∥∇L(wt)∥2 +

η2β3ρ2

2
.

By definition of strong convexity, we have

L(wt)− L(w⋆) ≤ ⟨∇L(wt), wt − w⋆⟩ − α

2
∥wt − w⋆∥2 ≤ 1

2α
∥∇f(wt)∥2 ,

where the last inequality uses the fact that ⟨a, b⟩ − 1
2∥b∥

2 ≤ 1
2∥a∥

2. Thus, combining the two
inequalities above, we obtain

L(wt+1) ≤ L(wt)− αη(2− ηβ)(L(wt)− L(w⋆)) +
η2β3ρ2

2
,

which after rearrangement becomes

L(wt+1)− L(w⋆) ≤ (1− αη(2− ηβ))(L(wt)− L(w⋆)) +
η2β3ρ2

2
.

Unrolling this recursion, we obtain

L(wt)− L(w⋆) ≤ (1− αη(2− ηβ))t(L(w0)− L(w⋆)) +
η2β3ρ2

2

t−1∑
k=0

(1− αη(2− ηβ))k

16

≤ (1− αη(2− ηβ))t(L(w0)− L(w⋆)) +
η2β3ρ2

2

∞∑
k=0

(1− αη(2− ηβ))k

= (1− αη(2− ηβ))t(L(w0)− L(w⋆)) +
η2β3ρ2

2αη(2− ηβ)
.

This completes the proof.

Lemma 9 (SAM Descent lemma). For a convex loss L that is β-smooth, SAM iterates wt satisfy the
following when the learning rate η < 2

β and ρ ≥ 0:

L(wt+1) ≤ L(wt)−
1

2
η(2− ηβ)∥∇L(wt)∥2 +

η2β3ρ2

2
, ∀t.

Proof. Let vt ≜ ∇L(wt)/∥∇L(wt)∥ and wt+1/2 ≜ wt+ρvt so we have wt+1 = wt−η∇L(wt+1/2).
Then the β-smoothness of L yields

L(wt+1) ≤ L(wt)− η⟨∇L(wt),∇L(wt+1/2)⟩+
η2β

2
∥∇L(wt+1/2)∥2.

We start with upper bounding the norm of∇L(wt+1/2):

∥∇L(wt+1/2)∥2 = ∥∇L(wt+1/2)−∇L(wt)∥2 − ∥∇L(wt)∥2 + 2⟨∇L(wt+1/2),∇L(wt)⟩
≤ β2ρ2 − ∥∇L(wt)∥2 + 2⟨∇L(wt+1/2),∇L(wt)⟩,

Hence, as long as η < 2
β , we have the following upper bound on L(wt+1):

L(wt+1) ≤ L(wt)− η⟨∇L(wt+1/2),∇L(wt)⟩+
η2β

2
∥∇L(wt+1/2)∥2

≤ L(wt)− η⟨∇L(wt+1/2),∇L(wt)⟩+
η2β

2

(
βρ2 − ∥∇L(wt)∥2 + 2⟨∇L(wt+1/2),∇L(wt)⟩

)
= L(wt)−

η2β

2
∥∇L(wt)∥2 − (η − η2β)⟨∇L(wt+1/2),∇L(wt)⟩+

η2β3ρ2

2
.

Now we lower bound
〈
∇L(wt+1/2),∇L(wt)

〉
. Note that

⟨∇L(wt + ρvt),∇L(wt)⟩ = ⟨∇L(wt + ρvt)−∇L(wt),∇L(wt)⟩+ ∥∇L(wt)∥2

=
∥∇L(wt)∥

ρ
⟨∇L(wt + ρvt)−∇L(wt), ρvt⟩+ ∥∇L(wt)∥2 ≥ ∥∇L(wt)∥2 ,

where the last inequality uses the following standard fact about convex functions: for any w1, w2,
⟨∇L(w1)−∇L(w2), w1 − w2⟩ ≥ 0. Hence, we arrive at

L(wt+1) ≤ L(wt)−
η2β

2
∥∇L(wt)∥2 − (η − η2β)⟨∇L(wt+1/2),∇L(wt)⟩+

η2β3ρ2

2

≤ L(wt)−
η2β

2
∥∇L(wt)∥2 − (η − η2β)∥∇L(wt)∥2 +

η2β3ρ2

2

≤ L(wt)−
1

2
η(2− ηβ)∥∇L(wt)∥2 +

η2β3ρ2

2
,

and thus finishing the proof.

C.2 USAM Diverges on Quadratic Losses

Theorem 10 (USAM over Quadratic Losses). Following (Bartlett et al., 2022), consider the quadratic
loss L induced by a PSD matrix Λ. Without loss of generality, let L minimize at the origin. Formally,

L(w) = 1

2
w⊤Λw , where Λ = diag(λ1, . . . , λd) , (8)

where λmax = λ1 > · · · ≥ λd > 0 and vmax = e1, e2, . . . , ed are the eigenvectors corresponding to
λ1, λ2, . . . , λd, respectively. Then the iterates of USAM Equation 2 applied to Equation 8 satisfy:

17

1. If η(λmax + ρλ2
max) < 2, then the iterates converges to the global minima exponentially fast.

2. If η(λmax + ρλ2
max) > 2 and if ⟨w0, vmax⟩ ≠ 0, then the iterates diverge.

Moreover, such a loss function L is λ1-smooth and λd-strongly-convex.

Proof. As∇ℓ(w) = Λw, the USAM update Equation 2 reads

wt+1 = wt − η∇L(wt + ρ∇L(wt)) =
(
I − ηΛ− ηρΛ2

)
wt.

Hence, if η(λmax + ρλ2
max) < 2, then since

∥∥I − ηΛ− ηρΛ2
∥∥ < 1, we have that ∥wt∥ → 0

exponentially fast. On the other hand, if η(λmax + ρλ2
max) > 2, then |1− ηλ1 − ηλ2

1| > 1. Since
∥wt∥ ≥ |1 − ηλ1 − ηλ2

1|t|⟨w0, e1⟩|, it follows that the iterates diverge as long as ⟨w0, vmax⟩ ̸= 0.
Finally, as∇2L(w) = Λ, we directly know that L is λ1-smooth and λd-strongly-convex.

D Omitted Proof for Scalar Factorization Problems

Theorem 11 (Formal Version of Theorem 2). Consider the scalar factorization loss L(x, y) =
1
2 (xy)

2. If (x0, y0) satisfies 2x0 > y0 > x0 ≫ 0 and η = (x2
0 + y20)

−1, then i) SAM finds a
neighborhood of the origin with radius O(ρ) for all ρ, and ii) USAM diverges as long as ρ ≥ 15η.

This theorem is a combination of Theorem 12 and Theorem 15 that we will show shortly.

D.1 SAM Always Converges on Scalar Factorization Problems

Let wt = [xt yt]
⊤ be the t-th iterate. Denote∇t = ∇L(wt) = [xty

2
t x2

tyt]
⊤. For each step t, the

actual update of SAM is therefore the gradient taken at

w̃t = wt + ρ
∇t

∥∇t∥
=

[
xt + ρytz

−1
t

yt + ρxtz
−1
t

]
, where z−1

t =
sign(xtyt)√

x2
t + y2t

.

By denoting ∇̃t = ∇L(w̃t), the update rule of SAM is[
xt+1

yt+1

]
= wt+1 = wt − η∇̃t =

[
xt − η

(
xt + ρytz

−1
t

)(
yt + ρxtz

−1
t

)2
yt − η

(
xt + ρytz

−1
t

)2(
yt + ρxtz

−1
t

)].
We make the following claim:

Theorem 12 (SAM over Scalar Factorization Problems). Under the setting of Theorem 11, there
exists some threshold T for SAM such that |xt|, |yt| ≤ 5ρ for all t ≥ T .

Proof. We first observe that SAM over L(x, y) always pushes the iterate towards the minima (which
are all the points on the x- and y- axes). Formally:

• If xt ≥ 0, then xt+1 ≤ xt. If xt ≤ 0, then xt+1 ≥ xt.
• If yt ≥ 0, then yt+1 ≤ yt. If yt ≤ 0, then yt+1 ≥ yt.

This observation can be verified by noticing sign(ρytz
−1
t) = sign(yt) sign(xtyt) = sign(xt) and

similarly sign(ρxtz
−1
t) = sign(yt). In other words, sign(xt + ρytz

−1
t) = sign(xt) and thus always

pushes xt towards the y-axis. The same also holds for yt by symmetry.

In analog to the descent lemma for GD, we can show the following lemma:

Lemma 13. When picking η = (x2
0 + y20)

−1, we have L(wt+1)−L(wt) < 0 as long as xt, yt ≥ 5ρ.

Proof. As ∇2L(x, y) =

[
y2 2xy
2xy x2

]
, we know L is β ≜ (x2

0 + y20)-smooth inside the region

{(x, y) : x2 + y2 ≤ β}. Then we have (recall that η = (x2
0 + y20)

−1 = 1/β)

L(wt+1)− L(wt) ≤ ⟨∇L(wt), wt+1 − wt⟩+
β

2
∥wt+1 − wt∥2

18

= −η⟨∇t, ∇̃t⟩+
β

2
η2∥∇̃t∥2 = −η

(
⟨∇t − 1

2∇̃t, ∇̃t⟩
)
.

To make sure that it’s negative, we simply want

0 ≤ ⟨∇t − 1
2∇̃t, ∇̃t⟩ =

(
xty

2
t −

1

2

(
xt + ρytz

−1
t

)(
yt + ρxtz

−1
t

)2)(
xt + ρytz

−1
t

)(
yt + ρxtz

−1
t

)2
+(

x2
tyt −

1

2

(
xt + ρytz

−1
t

)2(
yt + ρxtz

−1
t

))(
xt + ρytz

−1
t

)2(
yt + ρxtz

−1
t

)
,

which can be ensured once(
xt + ρytz

−1
t

)(
yt + ρxtz

−1
t

)2 ≤ 2xty
2
t ,

(
xt + ρytz

−1
t

)2(
yt + ρxtz

−1
t

)
≤ 2x2

tyt.

If we have xt, yt ≥ 5ρ, then as z−1
t ≤ min{x−1

t , y−1
t }, we have(

xt + ρytz
−1
t

)(
yt + ρxtz

−1
t

)2 ≤ (xt + ρ)(yt + ρ)2 ≤ 1.23xty
2
t < 2xty

2
t ,

which shows the first inequality. The second one follows from symmetry.

Therefore, SAM will progress until xt ≤ 5ρ or yt ≤ 5ρ. Without loss of generality, assume that
xt ≤ 5ρ; we then claim that yt will soon decrease to O(ρ).

Lemma 14. Suppose that |xt| ≤ 5ρ but yt ≥ 5ρ. Then |xt+1| ≤ 5ρ but yt+1 ≤ (1− 1
2ηρ

2)yt.

Proof. First, show that |xt| remains bounded by 5ρ. Assume xt ≥ 0 without loss of generality:

xt+1 = xt − η
(
xt + ρytz

−1
t

)(
yt + ρxtz

−1
t

)2
≥ xt − η(5ρ+ ρ)(yt + ρ)

2

≥ −η6ρ
(

4

5η
+ ρ2 + 2ρ

√
4

5η

)
≥ −5ρ, (9)

where the second last line uses y2t ≤ y20 =
y2
0

x2
0+y2

0
η−1 ≤ 4

5η
−1 and the last one uses η = (x2

0 +

y20)
−1 ≪ 1. Meanwhile, we see that yt decreases exponentially fast by observing the following:

yt+1 = yt − η(yt + ρxtz
−1
t)(xt + ρytz

−1
t)2

≤ yt − ηyt(ρytz
−1
t)2

≤
(
1− 1

2
ηρ2

)
yt,

where the last line uses z−1
t = (x2

t + y2t)
−1/2 ≥ (2y2t)

−1/2 = 2−1/2y−1
t as yt ≥ 5ρ ≥ |xt|.

So eventually we have |xt|, |yt| ≤ 5ρ. Recall that Equation 9 infers |xt+1| ≤ 5ρ from |xt| ≤ 5ρ.
Hence, by symmetry, we conclude that |xt+1|, |yt+1| ≤ 5ρ hold as well. Therefore, SAM always
finds an O(ρ)-neighborhood of the origin, i.e., it is guaranteed to converge regardless of ρ.

D.2 USAM Diverges with Small ρ

For USAM, the dynamics can be written as[
xt+1

yt+1

]
=

[
xt

yt

]
− η∇L

(
xt + ρxty

2
t

yt + ρx2
tyt

)
=

[
xt − η(xt + ρxty

2
t)(yt + ρx2

tyt)
2

yt − η(xt + ρxty
2
t)

2(yt + ρx2
tyt)

]
. (10)

We make the following claim which is similar to Theorem 10:
Theorem 15 (USAM over Scalar Factorization Problems). Under the setup of Theorem 11, for
any ρ ≥ 15η, |xt+1| ≥ 2|xt| and |yt+1| ≥ 2|yt| for all t ≥ 1; in other words, USAM diverges
exponentially fast.

19

Proof. Prove by induction. From Equation 10, our conclusion follows once

η
∣∣(xt + ρxty

2
t)(yt + ρx2

tyt)
2
∣∣ ≥ 3|xt|, η

∣∣(xt + ρxty
2
t)

2(yt + ρx2
tyt)

∣∣ ≥ 3|yt|.

According to our setup that η = (x2
0 + y20)

−1, y0 ≤ 2x0, and the induction statement that, we have
η ≥ (5x2

t)
−1. The second inequality then holds as long as∣∣(ρxty

2
t)

2(ρx2
tyt)

∣∣ ≥ 15x2
t |yt|, i.e., ρ3x2

ty
4
t ≥ 15,

which is true as x2
t ≥ x2

0, y4t ≥ y40 , y0 ≥ x0, and ρ ≥ 15η ≥ 3x−2
0 . Note that the bounds on ρ are

very loose, and we made no effort to optimize it; instead, we only aimed to show that USAM starts to
diverge from a ρ = Θ(η)≪ 1.

E Assumptions in the Single-Neuron Linear Network Model

Assumptions on ℓ. Following Ahn et al. (2023a), we make the following assumptions about ℓ:

(A1) ℓ is a convex, even, 1-Lipschitz function that is minimized at 0.
(A2) ℓ is twice continuously differentiable near the origin with ℓ′′(0) = 1, which infers the existence

of a constant c > 0 such that |ℓ′(s)| ≤ |s| for all |s| ≤ c.
(A3) We further assume a “linear tail” away from the minima, i.e., |ℓ′(s)| ≥ c/2 for all |s| ≥ c and

|ℓ′(s)| ≥ |s|/2 for |s| ≤ c.

Some concrete example of loss functions satisfying the above assumption include a symmetrized
logistic loss 1

2 log(1 + exp(−2s)) + 1
2 log(1 + exp(2s)) and a square root loss

√
1 + s2 One may

refer to their paper for more details.

F Omitted Proof of SAM Over Single-Neuron Linear Networks

Theorem 16 (Formal Version of Theorem 4). For a loss L over (x, y) ∈ R2 defined as L(x, y) =
ℓ(xy) where ℓ satisfies Assumptions (A1), (A2), and (A3), if the initialization (x0, y0) satisfies:

y0 ≥ x0 ≫ 0, y20 − x2
0 =

γ

η
, y20 = C

γ

η
,

where γ ∈ [12 , 2] and C ≥ 1 is constant, then for all hyper-parameter configurations (η, ρ) such that4

ηρ+
√
Cγη ≤ min

{
1

2
, C

}√
γ

η
,

4
√
C

c
η−1 = O(min{η−1.5ρ−1γ

1/2, η−2}),

we can decompose the trajectory of SAM (defined in Equation 1) into three phases, whose main
conclusions are stated separately in three theorems and are informally summarized here:

1. (Theorem 20) Until xt = O(
√
γη), we must have yt = Ω(

√
γ/η), and xt+1 ≤ xt − Ω(

√
γη).

2. (Theorem 26) After Initial Phase and until yt ≤ |xt|, |xt| = O(ηρ+
√
η) still holds. Meanwhile,

yt+1 ≤ yt −min{Ω(ηρ2)yt,Ω(ηρ)} (i.e., yt either drops by Ω(ηρ) or decays by Ω(ηρ2)).
3. (Theorem 32) After Middle Phase, we always have |xt|, |yt| = O(ηρ+

√
η).

F.1 Basic Properties and Notations

Recall the update rule of SAM in Equation 1: wt+1 ← wt − η∇L(wt + ρ ∇L(wt)
∥∇L(wt)∥). By writing wt

as
[
xt

yt

]
, substituting L(x, y) = ℓ(xy), and utilizing the expressions of∇L(x, y) in Equation 6, we

have:

wt + ρ
∇L(wt)

∥∇L(wt)∥
=

[
xt

yt

]
+ ρ

ℓ′(xtyt)

|ℓ′(xtyt)|
√

x2
t + y2t

[
yt
xt

]
=

[
xt

yt

]
+ ρ

sign(xtyt)√
x2
t + y2t

[
yt
xt

]
, (11)

4As y0 ≫ 0, we must have η ≪ 1; thus, these conditions automatically hold when η = o(1) and ρ = O(1).

20

where the second step uses the fact that ℓ is a even function so ℓ′(t) has the same sign with t. Define

zt =

√
x2
t+y2

t

sign(xtyt)
. Then wt + ρ ∇L(wt)

∥∇L(wt)∥ =

[
xt + ρytz

−1
t

yt + ρxtz
−1
t

]
. Further denoting ℓ′

(
(xt + ρytz

−1
t)(yt +

ρxtz
−1
t)

)
by ℓ′t, one can simplify the update rule Equation 1 as follows:

wt+1 =

[
xt

yt

]
− ηℓ′

(
(xt + ρytz

−1
t)(yt + ρxtz

−1
t)

)[yt + ρxtz
−1
t

xt + ρytz
−1
t

]
=

[
xt

yt

]
− ηℓ′t

[
yt + ρxtz

−1
t

xt + ρytz
−1
t

]
. (12)

Assumption. Following footnote 1, we assume that xt, yt ̸= 0 for all t.

We are ready to give some basic properties of Equation 12. First, we claim that the sign of ℓ′t is the
same as the product xtyt. Formally, we have the following lemma:

Lemma 17 (Sign of Gradient in SAM). If xt ̸= 0, yt ̸= 0, then sign(xt) = sign(xt + ρytz
−1
t) and

sign(yt) = sign(yt + ρxtz
−1
t). In particular, if xt ̸= 0, yt ̸= 0, we must have sign(ℓ′t) = sign(xtyt).

Proof. Note that sign(zt) = sign(xtyt), so sign(ytz
−1
t) = sign(xt). Similarly, sign(xtz

−1
t) =

sign(yt). Thus, we have sign(xt) = sign(xt + ρytz
−1
t) and sign(yt) = sign(yt + ρxtz

−1
t), which

in turn shows that sign(ℓ′t) = sign
(
sign(xt + ρytz

−1
t) sign(yt + ρxtz

−1
t)

)
= sign(xtyt).

Using Lemma 17, the SAM update can be equivalently written as[
xt+1

yt+1

]
=

[
xt

yt

]
− ηℓ′t

[
yt
xt

]
− η|ℓ′t|

[
ρxt(x

2
t + y2t)

−1/2

ρyt(x
2
t + y2t)

−1/2

]
. (13)

We then claim the following property, which can be intuitively interpolated as SAM always goes
towards the minimizes (i.e., both axes) for each step, although sometimes it may overshoot.
Lemma 18. Suppose that xt, yt ̸= 0. Then, the following basic properties hold:

• If xt > 0, then xt+1 < xt. If xt < 0, then xt+1 > xt.
• If yt > 0, then yt+1 < yt. If yt < 0, then yt+1 > yt.

Proof. We only show the case that xt > 0 as the other cases are similar. Recall the dynamics of xt:

xt+1 = xt − ηℓ′t · ρz−1
t xt − ηℓ′t · yt .

Since xt ̸= 0, Lemma 17 implies that sign(ℓ′t) = sign(xtyt), and so

xt+1 = xt − ηℓ′t · ρz−1
t xt − ηℓ′t · yt

= xt − η sign(xtyt)|ℓ′t| · ρ sign(xtyt)(x
2
t + y2t)

−1/2xt − η sign(xtyt)|ℓ′t| · sign(yt)|yt|
= xt − η|ℓ′t| · ρ(x2

t + y2t)
−1/2xt − η|ℓ′t| · |yt| ≤ xt,

where the last line uses the assumption that xt > 0.

F.2 Initial Phase: xt Decreases Fast while yt Remains Large

As advertised in Theorem 16, we group all rounds until xt ≤ c
4

√
γη as Initial Phase. Formally:

Definition 19 (Initial Phase). Let t1 be the largest time such that xt >
c
4

√
γη for all t ≤ t1. We call

the iterations [0, t1] Initial Phase.

Theorem 20 (Main Conclusion of Initial Phase; SAM Case). For t0 = Θ(min{η−1.5ρ−1γ1/2, η−2}),
we have yt ≥ 1

2

√
γ/η for all t ≤ min{t0, t1} under the conditions of Theorem 16. Moreover, we

have xt+1 ≤ xt − c
4

√
γη for all t ≤ min{t0, t1}, which consequently infers t1 ≤ t0 under the

conditions of Theorem 16, i.e., min{t0, t1} is just t1. This shows the first claim of Theorem 16.
Remark. This theorem can be intuitively explained as follows: At initialization, x0, y0 are both
Θ(

√
1/η). However, after t1 iterations, we have |xt1+1| = O(

√
η); meanwhile, yt is still of order

Ω(
√
1/η) (much larger than O(√η)). Hence, |xt| and |yt| get widely separated in Initial Phase.

21

Proof. This theorem is a direct consequence of Lemma 21 and Lemma 24.

Lemma 21. There exists t0 = Θ(min{η−1.5ρ−1γ1/2, η−2}) such that |yt| ≥ 1
2

√
γ/η for t ≤ t0. If

η is sufficiently small s.t. ηρ+
√
Cγη ≤ 1

2

√
γ/η, then yt ≥ 1

2

√
γ/η for t ≤ min{t1, t0}.

Proof. Let t0 be defined as follows:

t0 ≜ max

{
t :

(
1− 8√

C
η1.5γ−1/2ρ− η2

)t

≥ 1

4

}
. (14)

Then, it follows that t0 = Θ(min{η−1.5ρ−1γ1/2, η−2}). We first prove the following claim.

Claim 22. For all t ≤ t0, y2t ≥ 1
4γ/η.

Proof. We prove this claim by induction. We trivially have y20 = Cγ/η ≥ 1
4Cγ/η. Now suppose

that the conclusion holds up to some t < t0, i.e., y2t′ ≥ 1
4γ/η for all t′ ≤ t. We consider y2t+1− x2

t+1:

y2t+1 − x2
t+1 = (1− ηℓ′t · ρz−1

t)2(y2t − x2
t)− (ηℓ′t)

2(y2t − x2
t)

= (1− 2ηℓ′t · ρz−1
t + η2(ℓ′t · ρz−1

t)2 − η2(ℓ′t)
2) · (y2t − x2

t)

(a)

≥ (1− 2ηρz−1
t − η2) · (y2t − x2

t)

≥ (1− 2ηρy−1
t − η2) · (y2t − x2

t)

(b)

≥ (1− 8√
C
η1.5γ−1/2ρ− η2) · (y2t − x2

t),

where (a) used ℓ′t ≤ 1 (thanks to Assumption (A1)) and (b) used the induction hypothesis y2t ≥
1
4Cγ/η. This further implies that

y2t+1 − x2
t+1 ≥

(
1− 8√

C
η1.5γ−1/2ρ− η2

)t+1

(y20 − x2
0) =

(
1− 8√

C
η1.5γ−1/2ρ− η2

)t+1
γ

η
.

Thus, by the definition of t0, we must have y2t+1 ≥ y2t+1−x2
t+1 ≥ 1

4γ/η, which proves the claim.

Next, we prove the second conclusion.

Claim 23. If ηρ+
√
Cγη ≤ 1

2

√
γ/η, then yt ≥ 1

2

√
γ/η for t ≤ min{t0, t1}.

Proof. Still show by induction. Let yt ≥ 1
2

√
γ/η > 0 for some t < min{t0, t1}. Consider yt+1.

By Definition 19, xt is positive for all t ≤ t1. Thus, using Lemma 18, we have xt ≤ x0 ≤ y0 =√
Cγ/η. Since xt, yt > 0, we have sign(ℓ′t) = sign(xtyt) = sign(xt) > 0 and hence (13) gives

yt+1 = yt − η|ℓ′t|ρ(x2
t + y2t)

−1/2|yt| − η|ℓ′t||xt|
≥ yt − ηρ− η|xt|,

where we used the facts that |ℓ′t| ≤ 1 and (x2
t + y2t)

−1/2 ≤ min{|xt|−1, |yt|−1}. Hence, we get

yt+1 ≥ yt − ηρ−
√

Cγη ≥ 0

since ηρ+
√
Cγη ≤ 1

2

√
γ/η ≤ yt. By Claim 22, yt+1 ≥ 0 implies yt+1 ≥ 1

2

√
γ/η as well.

Combining Claim 22 and Claim 23 finishes the proof of Lemma 21.

Lemma 24. For any t ≤ min{t0, t1}, we have

xt+1 ≤ xt −
c

4

√
γη .

In particular, if η is sufficiently small s.t. 4
√
C

c η−1 ≤ t0, then we must have t1 ≤ 4
cη

−1 − 1 < t0.

22

Proof. Since xt > 0 for all t ≤ t1, we have sign(ℓ′t) = sign(xtyt) = sign(yt) from Lemma 17 and
Lemma 21, so the SAM update (13) becomes

xt+1 = xt − η|ℓ′t| · ρ(x2
t + y2t)

−1/2xt − η|ℓ′t| · |yt|.

Since xt > 2c
√

η
Cγ , we have

(xt + ρytz
−1
t)(yt + ρxtz

−1
t) > xtyt ≥ 2c

√
η

γ
· 1
2

√
γ

η
≥ c ,

which implies that ℓ′t ≥ c/2 from Assumption (A3). Together with Lemma 21, we have

xt+1 = xt − η|ℓ′t| · ρ(x2
t + y2t)

−1/2z−1
t xt − η|ℓ′t| · |yt|

≤ xt − η|ℓ′t| · |yt| ≤ xt − η
c

2

1

2

√
γ

η
= xt −

c

4

√
γη.

Let t′1 ≜
√

Cγ/η
c
4

√
γη = 4

√
C

c η−1. Since x0 ≤
√
Cγ/η, we have xt′1

< c
4

√
γη as long as t1 ≤ t0. Thus,

it follows that t1 ≤ t′1 − 1 < t0, as desired.

F.3 Middle Phase: y Keeps Decreasing Until Smaller Than |xt|

Then we move on to the second claim of Theorem 16. We define all rounds until yt < |xt| that are
after Initial Phase as Middle Phase. Formally, we have the following definition.

Definition 25 (Middle Phase). Let t2 be the first time that yt < |xt|. We call (t1, t2] Middle Phase.

Before presenting the main conclusion of Middle Phase, we first define a threshold B that we measure
whether a variable is “small enough”, which we will use throughout this section. Formally,

B ≜ max

{
2

c

√
η

Cγ
, ηρ+

√
Cηγ

}
.

Theorem 26 (Main Conclusion of Middle Phase; SAM Case). Under the conditions of Theorem 16,
|yt| ≤

√
Cγ/η and |xt| ≤ B throughout Middle Phase. Under the same conditions, we further have

yt+1 ≤ yt −min{ 12ηρ
2yt,

c
2
√
2
ηρ} for all t1 ≤ t ≤ t2 – showing the second claim of Theorem 16.

Remark. This theorem can be understood as follows. Upon entering Middle Phase, |xt| is bounded
by O(ηρ+√η). This then gets preserved throughout Middle Phase. Meanwhile, in t2 iterations, yt
drops rapidly such that yt2+1 ≤ |xt2+1| = O(ηρ+

√
η). In other words, xt and yt are both “close

enough” to 0 after Middle Phase; thus, SAM finds the flattest minimum (which is the origin).

Proof. The claims are shown in Lemma 27, Lemma 28 and Lemma 30, respectively.

Lemma 27. If ηρ+
√
Cγη <

√
Cγ/η, then during the Middle Phase, |yt| ≤ y0 ≤

√
Cγ/η.

Proof. When sign(yt+1) = sign(yt), then Lemma 18 implies that |yt+1| ≤ |yt|. Now consider the
case sign(yt+1) = − sign(yt). For simplicity, say yt > 0 and yt+1 < 0. Since yt > 0, we have
sign(ℓ′t) = sign(xtyt) = sign(xt) and hence Equation 13 gives

yt+1 = yt − η|ℓ′t|ρ(x2
t + y2t)

−1/2|yt| − η|ℓ′t||xt|
≥ −ηρ− η|xt| ≥ −ηρ− ηyt

≥ −ηρ− η

√
Cγ

η
= −ηρ−

√
Cγη ,

which shows that |yt+1| ≤ ηρ+
√
Cγη. This proves the statement.

Lemma 28. Suppose that |xt| ≤ B = max
{

2
c

√
η
Cγ , ηρ+

√
Cηγ

}
. Then we have |xt+1| ≤ B.

23

Proof. By symmetry, we only consider the case where xt > 0. If xt+1 ≥ 0, then we have 0 ≤
xt+1 ≤ xt due to Lemma 24. If xt+1 < 0, then since xt > 0, it follows that

xt+1 = sign(xt)xt+1 = |xt| − η|ℓ′t|ρ(x2
t + y2t)

−1/2|xt| − η|ℓ′t||yt|

≥ |xt| − ηρ− η
√

Cγ/η ≥ −ηρ−
√
Cηγ , (15)

where the last inequality is because |yt| ≤ y0 ≤
√
Cγ/η. This concludes the proof.

Corollary 29. Note that, by definition of Initial Phase in Definition 19, we already have |xt1+1| ≤ B.

Hence, this lemma essentially says |xt| ≤ B = max
{

2
c

√
η
Cγ , ηρ+

√
Cηγ

}
for all t1 < t ≤ t2.

Lemma 30. If yt ≥ |xt|, then we must have

yt+1 ≤ yt −min

{
1

2
ηρ2yt,

c

2
√
2
ηρ

}
.

Proof. Since yt ≥ |xt|, we have (x2
t + y2t)

−1/2 ≥ (2y2t)
−1/2 = (

√
2yt)

−1. Consider two cases:

i) if |(xt + ρytz
−1
t)(yt + ρxtz

−1
t)| ≥ c, then |ℓ′t| ∈ [c2 , 1] according to Assumption (A3). Moreover,

since sign(ℓ′t) = sign(xtyt) = sign(xt), it follows that

yt+1 = yt − η|ℓ′t| · ρ(x2
t + y2t)

−1/2yt − ηℓ′t · xt

=
(
1− η|ℓ′t|ρ(x2

t + y2t)
−1/2

)
yt − η|ℓ′t||xt|

≤
(
1− ηctρ(

√
2yt)

−1
)
yt

≤ yt − ηρ
c

2

1√
2
= yt − Ω(ηρ). (16)

ii) otherwise, it follows from (A3) that

|ℓ′t| ≥
1

2
|(xt + ρytz

−1
t)(yt + ρxtz

−1
t)| .

As sign(xt) = sign(ρytz
−1
t) and sign(yt) = sign(ρxtz

−1
t), it follows that

|ℓ′t| · ρz−1
t yt ≥

1

2
|(xt + ρytz

−1
t)(yt + ρxtz

−1
t)| · ρz−1

t yt

≥ 1

2
(ρytz

−1
t)2yt

we must have

yt+1 ≤ yt −
1

2
η(ρytz

−1
t)2(yt) ≤ yt −

1

2
ηρ2yt = (1− Ω(ηρ2))yt, (17)

where we used z−1
t ≥ (

√
2yt)

−1 and thus ytz−1
t ≥ 1/

√
2.

Combining item 16 and item 17, we obtain the desired conclusion.

F.4 Final Phase: Both xt and yt Oscillates Around the Origin

It only remains to show that the iteration never escapes the origin.
Definition 31 (Final Phase). We denote by “Final Phase” all iterations after t2.
Theorem 32 (Main Conclusion of Final Phase; SAM Case). For all t > t2, we have |xt|, |yt| ≤ B

where B = max
{

2
c

√
η
Cγ , ηρ+

√
Cηγ

}
.

Remark. As we will see shortly, when entering Final Phase, both |xt| and |yt| are bounded by
O(ηρ+√η). This theorem essentially says that they can never exceed this bound in Final Phase. In
other words, in Final Phase, both xt and yt are oscillating around 0.

Proof. We first show the following lemma, ruling out the possibility of |yt| > B after Middle Phase:

24

Lemma 33. If ηρ+ ηB ≤ B,5 then |yt2+1| ≤ B = max
{

2
c

√
η
Cγ , ηρ+

√
Cηγ

}
.

Proof. The proof will be very similar to Lemma 28. Recall that by Definition 25, we must have
yt2 > 0. If yt2+1 > 0 as well, then |yt2+1| = yt2+1 ≤ |xt2+1| ≤ B. Otherwise,

yt2+1 = sign(yt2)yt2+1 = |yt2 | − η|ℓ′t2 |ρ(x
2
t2 + y2t2)

−1/2|yt2 | − η|ℓ′t2 ||xt2 | ≥ −ηρ− ηB,

where we used |xt2 | ≤ B. We proved our claim as ηρ+ ηB ≤ B.

According to Lemma 28 Lemma 33, we have

|xt2+1|, |yt2+1| ≤ B = max

{
2

c

√
η

Cγ
, ηρ+

√
Cηγ

}
. (18)

Hence, it only remains to do a reduction, stated as follows.

Lemma 34. If ηρ+ ηB ≤ B, then |xt+1|, |yt+1| ≤ B as long as |xt|, |yt| ≤ B.

Proof. Without loss of generality, let xt > 0 for some t > t2 and show that |xt+1| ≤ B – which is
identical to the proof of Lemma 27. By symmetry, the same also holds for |xt|.

Our conclusion thus follows from an induction based on Equation 18 and Lemma 34.

G Omitted Proof of USAM Over Single-Neuron Linear Networks

Theorem 35 (Formal Version of Theorem 5). For a loss L over (x, y) ∈ R2 defined as L(x, y) =
ℓ(xy) where ℓ satisfies Assumptions (A1), (A2), and (A3), if the initialization (x0, y0) satisfies:

y0 ≥ x0 ≫ 0, y20 − x2
0 =

γ

η
, y20 = C

γ

η
,

where γ ∈ [12 , 2] and C ≥ 1 is constant, then for all hyper-parameter configurations (η, ρ) such that6

η ≤ 1

2
, ηρ ≤ min

{
1

2
, C−1γ−1

}
, 2
√
Cη−1 = O(min{η−1ρ−1, η−2}), Cγ

(
1 + ρC

γ

η

)
≥ 16,

we can characterize the initial and final phases of the trajectory of USAM (defined in Equation 2) by
the following two theorems, whose main conclusions are informally summarized below:

1. (Theorem 39) Until xt = O(
√
γη), we must have yt = Ω(

√
γ/η), and xt+1 ≤ xt − Ω(

√
γη).

2. (Theorem 44) Once (1 + ρy2t)y
2
t ≲ 2/η, |xt| decays exponentially and thus USAM gets stuck.

Different from Theorem 16, there is no characterization of Middle Phase here, which means the
iterates can also stop above the threshold ỹ2USAM defined in Equation 7 (the technical reason is sketched
in subsubsection 3.1.3, i.e., SAM gradients non non-negligible when yt is large, while USAM
gradients vanish once |xt| is small). However, we remark that the main takeaway of Theorem 35 is to
contrast SAM (which always attains y2∞ ≈ 0) with USAM (which must stop once (1+ρy2t)y

2
t ≲ 2/η).

G.1 Basic Properties and Notations

Recall the update rule of USAM in Equation 2: wt+1 ← wt − η∇L(wt + ρ∇L(wt)). Still writing
wt as [xt yt]

⊤, we have

wt+1 =

[
xt

yt

]
− η∇L

([
xt

yt

]
+ ρℓ′(xtyt)

[
yt
xt

])
5Recall that B = max{ 2

c

√
η
Cγ

, ηρ+
√
Cηγ}, we only need to ensure that ηB ≤

√
Cηγ, which can be

done by η ≤ min{cCγ, 1
4
Cγρ−2, 1

2
}. As the RHS is of order Ω(1), η = O(1) again suffices.

6Similar to Theorem 16, these conditions are satisfied once η = o(1) and ρ = O(1).

25

=

[
xt

yt

]
− ηℓ′

(
(xt + ρℓ′(xtyt)yt)(yt + ρℓ′(xtyt)xt)

)[yt + ρℓ′(xtyt)xt

xt + ρℓ′(xtyt)yt

]
. (19)

Due to the removal of normalization, ℓ′ are taken twice at different points in Equation 19. For
simplicity, we denote ℓ̃′t = ℓ′(xtyt) and ℓ′t = ℓ′((xt + ρℓ̃′tyt)(yt + ρℓ̃′txt)). The update rule can be
rewritten as:

xt+1 = xt − ηℓ′t · (yt + ρℓ̃′txt), yt+1 = yt − ηℓ′t · (xt + ρℓ̃′tyt). (20)

Similar to the SAM case, we shall approximate ℓ̃′t and ℓ′t according to the magnitude of xtyt and
(xt + ρℓ̃′tyt)(yt + ρℓ̃′txt). We first have the following lemma similar to Lemma 17:

Lemma 36 (Sign of Gradient in USAM). If xt ̸= 0, yt ̸= 0, then sign(xt) = sign(xt + ρℓ̃′tyt) and
sign(yt) = sign(yt+ρℓ̃′txt). In particular, if xt ̸= 0, yt ̸= 0, then sign(ℓ′t) = sign(ℓ̃′t) = sign(xtyt).

Proof. First of all, sign(ℓ̃′t) = sign(xtyt) according to Assumption (A1). Therefore,

sign(xt + ρℓ̃′tyt) = sign(xt + ρ sign(xtyt)yt) = sign(xt),

sign(yt + ρℓ̃′txt) = sign(yt + ρ sign(xtyt)xt) = sign(yt),

giving our first two claims. The last conclusion follows by definition.

Moreover, we also have the following lemma analog to Lemma 18:
Lemma 37. Suppose that xt, yt ≥ 0. Then, the following basic properties hold:

• If xt > 0, then xt+1 < xt. If xt < 0, then xt+1 > xt.
• If yt > 0, then yt+1 < yt. If yt < 0, then yt+1 > yt.

Proof. We only prove the statement for xt > 0 as the proof is similar for other cases. Recall the
dynamics of xt:

xt+1 = xt − ηℓ′t · (yt + ρℓ̃′txt).

Since xt ̸= 0, Lemma 36 implies that sign(ℓ′t) = sign(ℓ̃′t) = sign(xtyt), and so

xt+1 = xt − ηℓ′t · (yt + ρℓ̃′txt)

= xt − η sign(xtyt)|ℓ′t| · (yt + ρ sign(xtyt)|ℓ̃′t|xt)

= xt − η|ℓ′t| · (|yt|+ ρ|ℓ̃′t|xt) ≤ xt,

where the last line uses the assumption that xt > 0.

G.2 Initial Phase: xt Decreases Fast while yt Remains Large

The definition of Initial Phase is very similar to the one of SAM – and the conclusion is also analogue,
although the proofs are slightly different because of the different update rule.
Definition 38 (Initial Phase). Let t1 be the largest time such that xt >

1
2

√
γη for all t ≤ t1. We

denote by “Initial Phase” the iterations [0, t1].
Theorem 39 (Main Conclusion of Initial Phase; USAM Case). For t0 = Θ(min{η−1ρ−1, η−2}),
we have yt ≥ 1

2

√
γ/η for all t ≤ min{t0, t1} under the conditions of Theorem 35. Moreover, we

have xt+1 ≤ xt − 1
2

√
Cγη for all t ≤ min{t0, t1}, which consequently infers t1 ≤ t0 under the

conditions of Theorem 35, i.e., min{t0, t1} is just t1. This shows the first claim of Theorem 35.

Proof. This theorem is a combination of Lemma 40 and Lemma 43.

Similar to Lemma 21, yt in USAM also cannot be too small in the first few iterations:

Lemma 40. There exists t0 = Θ(min{η−1ρ−1, η−2}) such that for t ≤ t0, we have |yt| ≥ 1
2

√
γ/η.

Assuming η ≤ 1
2 , then yt ≥ 1

2

√
γ/η for t ≤ min{t1, t0}.

26

Proof. The proof idea follows from Lemma 21. Let t0 be defined as follows:

t0 ≜ max

{
t :

(
1− η2 − 2ηρ

)t ≥ 1

4

}
. (21)

Then, it follows that t0 = Θ(min{η−1ρ−1, η−2}). We first show that y2t cannot be too small until t0:

Claim 41. For all t ≤ t0, y2t ≥ 1
4γ/η.

Proof. Prove by induction. Initially, y20 = Cγ/η ≥ 1
4γ/η. Then consider some t < t0 such that

y2t′ ≥ 1
4γ/η for all t′ ≤ t. By Equation 20, we have

y2t+1 − x2
t+1 =

(
yt − ηℓ′t · (xt + ρℓ̃′tyt)

)2

−
(
xt − ηℓ′t · (yt + ρℓ̃′txt)

)2

= (y2t − x2
t) + (ηℓ′t)

2
(
(xt + ρℓ̃′tyt)

2 − (yt + ρℓ̃′txt)
2
)
+

2xt · ηℓ′t · (yt + ρℓ̃′txt)− 2yt · ηℓ′t · (xt + ρℓ̃′tyt)

= (y2t − x2
t) + (ηℓ′t)

2(x2
t − y2t) + (ηℓ′t)

2(ρℓ̃′t)
2(y2t − x2

t) + 2ηℓ′t · ρℓ̃′t(x2
t − y2t)

=
(
1− (ηℓ′t)

2 + (ηℓ′t)
2(ρℓ̃′t)

2 − 2ηℓ′t · ρℓ̃′t
)
(y2t − x2

t).

Using Assumption (A1), we know that |ℓ′t| ≤ 1 and |ℓ̃′t| ≤ 1, giving

y2t+1 − x2
t+1 ≥

(
1− η2 − 2ηρ

)
(y2t − x2

t) ≥ · · · ≥
(
1− η2 − 2ηρ

)t+1
(y20 − x2

0).

By definition of t0 and condition that t < t0, we have y2t+1 ≥ y2t+1 − x2
t+1 ≥ 1

4γ/η.

Claim 42. Suppose that
√
Cγη ≤ 1

2

√
γ/η, i.e., η ≤ 1

2

√
C. Then yt ≥ 1

2

√
γ/η for all t ≤ t0.

Proof. We still consider the maximum single-step difference in yt. Suppose that for some t′ <

min{t0, t1}, yt′ ≥ 1
2

√
γ/η for all t′ ≤ t. According to Equation 20 and Assumption (A1),

yt+1 = yt − ηℓ′t · (xt + ρℓ̃′tyt) ≥ yt − η(xt + ρyt) ≥ (1− ηρ)yt − η
√

Cγ/η,

where the last inequality used Lemma 37 to conclude that xt ≤ x0 ≤ y0 =
√
Cγ/η. Hence,

as the first term is non-negative and
√
Cγη ≤ 1

2

√
γ/η, we must have yt+1 ≥ 0, which implies

yt+1 ≥ 1
2

√
γ/η according to Claim 41.

Putting these two claims together gives our conclusion. Note that the condition η ≤ 1
2

√
C in Claim 42

can be inferred from the assumptions η ≤ 1
2 and C ≥ 1 made in Theorem 35.

After showing that yt never becomes too small, we are ready to show that xt decreases fast enough.
Lemma 43. For t ≤ min{t0, t1}, we have

xt+1 ≤ xt −
1

2

√
γη .

In particular, if η is sufficiently small s.t. 2
√
Cη−1 ≤ t0, then we must have t1 ≤ 2

√
Cη−1 − 1 < t0.

Proof. Since xt > 0 for all t ≤ t1, we have sign(ℓ′t) = sign(xtyt) = sign(yt) from Lemma 36
Lemma 40, so the USAM update (20) simplifies as follows according to Assumption (A1) and
Lemma 40

xt+1 = xt − η|ℓ′t| · (|yt|+ ρ|ℓ′t||xt|) ≤ xt − η|yt| ≤ xt −
1

2

√
γη.

Let t′1 =

√
Cγ/η

1
2

√
γη

= 2
√
Cη−1, then t′1 − 1 < t0 and thus xt′1

< 1
2

√
γη, i.e., t1 < t0 must holds.

27

G.3 Final Phase: yt Gets Trapped Above the Origin

Now, we are going to consider the final-stage behavior of USAM.
Theorem 44 (Main Conclusion of Final Phase; USAM Case). After Initial Phase, we always have
|xt| ≤

√
Cγη and |yt| ≤

√
Cγ/η. Moreover, once we have η(1 + ρy2t)y

2
t = 2− ϵ for some t ≥ t1

and ϵ > 0, we must have |xt+1| ≤ exp(−Ω(ϵ))|xt| for all t ≥ t. This consequently infers that y2∞,
which is defined as lim inft→∞ y2t , satisfies y2∞ ≥ (1− 4Cγ(η + ρCγ)2ϵ−1)y2t . As ϵ is a constant
independent of η and ρ and can be arbitrarily close to 0, this shows the second claim of Theorem 35.

Proof. The first conclusion is an analog of Lemma 28 and Lemma 27 (which allows a simpler
analysis thanks to the removal of normalization), as we will show in Lemma 45. The second part
requires a similar (but much more sophisticated) analysis to Lemma 15 of Ahn et al. (2023a), which
we will cover in Lemma 47.

Lemma 45. Suppose that |xt| ≤
√
Cγη, |yt| ≤

√
Cγ/η. Assuming ηρ ≤ 1, then |xt+1| ≤

√
Cγη

and |yt+1| ≤
√

Cγ/η as well. Furthermore, |xt| ≤
√
Cγη and |yt| ≤

√
Cγ/η hold for all t > t1.

Proof. Suppose that xt ≥ 0 without loss of generality. The case where xt+1 ≥ 0 is trivial by
Lemma 37. Otherwise, using Lemma 36 and Equation 20, we can write

xt+1 = xt − ηℓ′t · (yt + ρℓ̃′txt) = xt − η|ℓ′t| · (|yt|+ ρ|ℓ̃′t|xt).

By Assumption (A1), |ℓ′t| and |ℓ̃′t| are bounded by 1. By the condition that ηρ ≤ 1,

xt+1 ≥ (1− ηρ)xt − η|yt| ≥ −
√
Cγη,

where we used |yt| ≤ sqrtCγ/η. Similarly, for yt+1, only considering the case where yt ≥ 0 and
yt+1 ≤ 0 suffices. We have the following by symmetry

yt+1 = yt−ηℓ′t ·(xt+ρℓ̃′tyt) ≥ yt−η(|xt|+ρyt) = (1−ηρ)yt−η|xt| ≥ −η1.5
√

Cγ ≥ −
√

Cγ/η,

where we used |xt| ≤
√
Cγη.

The second part of the conclusion is done by induction. According to the definition of Initial Phase,
we have |xt1+1| ≤ 1

2

√
γη. As C ≥ 1 ≥ 1

4 , we consequently have |xt| ≤
√
Cγη for all t > t1 from

the first part of the conclusion. Regarding |yt|, recall Lemma 40 infers yt > 0 for all t ≤ t1 + 1 and
Lemma 37 infers the monotonicity of yt, we have yt1+1 ≤ y0 =

√
Cγ/η. Hence, |yt| ≤

√
Cγ/η

for all t > t1 as well.

Before showing the ultimate conclusion Lemma 47, we first show the following single-step lemma:
Lemma 46. Suppose that η(1 + ρy2t)y

2
t < 2 and |xt| ≤

√
Cγη for some t. Define ϵt = 2− η(1 +

ρy2t)y
2
t (then we must have ϵt ∈ (0, 2)). Then we have

|xt+1| ≤ |xt| exp
(
−min

{
(1 + ρCγη)ϵt,

2− ϵt
8

})
. (22)

Proof. Without loss of generality, assume that xt > 0. From Equation 20, we can write:

xt+1 = xt − ηℓ′t · (yt + ρℓ̃′txt) = xt − η|ℓ′t| · (|yt|+ ρ|ℓ̃′t|xt),

where we used sign(ℓ′t) = sign(ℓ̃′t) = sign(xtyt) = sign(yt) (Lemma 36). By Assumption (A2),

xt+1 ≥ xt − η
∣∣∣(xt + ρℓ̃′tyt

)(
yt + ρℓ̃′txt

)∣∣∣(|yt|+ ρ|xtyt|xt

)
= xt − η

(
xt + ρ|ℓ̃′t||yt|

)(
|yt|+ ρ|ℓ̃′t|xt

)(
|yt|+ ρx2

t |yt|
)

≥ xt − η(xt + ρxty
2
t)(|yt|+ ρx2

t |yt|)
(
|yt|+ ρx2

t |yt|
)

=
(
1− η(1 + ρy2t)(1 + ρx2

t)
2y2t

)
xt

≥
(
1− (1 + ρCγη)η(1 + ρy2t)y

2
t

)
xt

≥ −(1− (1 + ρCγη)ϵt)xt, (23)

28

where we used |xt| ≤
√
Cγη. For the other direction, we have the following by Assumption (A3):

xt+1 ≤ xt − η
|(xt + ρℓ̃′tyt)(yt + ρℓ̃′txt)|

2

(
|yt|+ ρ

|xtyt|
2

xt

)
= xt − η

(xt + ρ|ℓ̃′t||yt|)(|yt|+ ρ|ℓ̃′t|xt)

2

(
|yt|+ ρ

x2
t

2
|yt|

)
≤ xt − η

(xt + ρxty
2
t)(|yt|+ ρ|yt|x2

t)

8

(
|yt|+ ρ

x2
t

2
|yt|

)
=

(
1− η

8
(1 + ρy2t)(1 + ρx2

t)

(
1 + ρ

x2
t

2

)
y2t

)
xt

≤
(
1− η

8
(1 + ρy2t)y

2
t

)
xt =

(
1− 2− ϵ

8

)
xt, (24)

where we used (1 + ρx2
t) ≥ 1 and (1 + ρ

x2
t

2) ≥ 1. Equation 22 follows from Equation 23 and
Equation 24.

Lemma 47. Let t be such that i) η(1 + ρy2t)y
2
t = 2 − ϵ where ϵ ∈ (0, 2

9) is a constant, and ii)
|xt| ≤

√
Cγη. Then we have the following conclusion on lim inft→∞ y2t , denoted by y2∞ in short:

y2∞ = lim inf
t→∞

y2t ≥
(
1− 4Cγ(η + ρCγ)2ϵ−1

)
y2t .

While the ϵ−1 looks enormous, it is a constant independent of η and ρ; in other words, we are
allowed to set ϵ as close to zero as we want. As we only consider the dependency on η and ρ, we can
abbreviate this conclusion as y2∞ ≥ (1−O(η2 + ρ2))y2t , as we claim in the main text.

Proof. In analog to Equation 23, we derive the following for yt:

y2t+1 ≥
(
1− η

(
1 + ρy2t

)2
(1 + ρx2

t)x
2
t

)2

y2t ≥
(
1− 2η(1 + ρCγ/η)2(1 + ρCγη)x2

t

)
y2t ,

where the second inequality uses Lemma 45. Let dt = y2t − y2t , then we have

dt+1 ≤ dt + 2η(1 + ρCγ/η)2(1 + ρCγη)x2
ty

2
t ≤ dt + 4η−1(η + ρCγ)2y2t x

2
t ,

where we used the assumption that ρCγη ≤ 1 and the fact that y2t is monotonic (thus y2t ≤ y2t).

According to Equation 22, we have |xt+1| ≤ |xt| exp(−Ω(ϵ)) for all t ≥ t2. Hence, we have

d∞ = lim sup
t→∞

dt ≤ dt +

∞∑
t=t

4η−1(η + ρCγ)2y2t x
2
t = 4η−1(η + ρCγ)2y2t · ϵ−1x2

t ,

where we used dt = 0 (by definition) and the sum of geometric series. Plugging back x2
t ≤ Cγη,

y2∞ = lim inf
t→∞

y2t ≥ y2t − 4Cγ(η + ρCγ)2y2t ,

as claimed.

H Omitted Proof of USAM Over General PL functions

Theorem 48 (Formal Version of Theorem 6). For any µ-PL and β-smooth loss function L, for any
learning rate η < 1/β and ρ < 1/β, for any initialization w0, the following holds for USAM:

∥wt −w0∥ ≤ η(1 + βρ)

√
2β2

µ

(
1− 2µη(1− ρβ)

(
ηβ

2
(1− ρβ)

))−1/2√
L(w0)− L∗, ∀t ≥ 0,

where L∗ is the short-hand notation for minw L(w).

We first state the following useful result by Andriushchenko and Flammarion (2022, Theorem 10).

29

Lemma 49 (Descent Lemma of USAM over Smooth and PL Losses). For any β-smooth and µ-PL
loss function L, for any learning rate η < 1/β and ρ < 1/β, the following holds for USAM:

L(wt)− L⋆ ≤
(
1− 2µη(1− ρβ)

(
1− ηβ

2
(1− ρβ)

))t

(L(w0)− L⋆), ∀t ≥ 0.

Proof of Theorem 48. We follow the convention in Karimi et al. (2016): Let X ⋆ be the set of global
minima and xp be the projection of x onto the solution set X ⋆. From β-smoothness, it follows that

∥∇L(x)∥ = ∥∇L(x)−∇L(xp)∥ ≤ β∥x− xp∥, ∀x.

Now since L is β-smooth and µ-PL, Theorem 2 from (Karimi et al., 2016) implies that the quadratic
growth condition holds, i.e.,

2

µ
(L(x)− L⋆) ≥ ∥x− xp∥2, ∀x.

Thus, it follows that

∥∇L(x)∥2 ≤ 2β2

µ
(L(x)− L⋆), ∀x.

Moreover, from β-smoothness, we have

∥∇L(x+ ρ∇L(x))∥ ≤ ∥∇L(x)∥+ β∥ρ∇L(x)∥ = (1 + βρ)∥∇L(x)∥, ∀x.

Thus, by the update rule of USAM (2), it follows that

∥wt − w0∥ ≤ η

t−1∑
i=0

∥∇L(wi + ρ∇L(wi))∥

≤ η(1 + βρ)

t−1∑
i=0

∥∇L(wi)∥

≤ η(1 + βρ)

t−1∑
i=0

√
2β2

µ
(L(wi)− L⋆)

= η(1 + βρ)

√
2β2

µ

t−1∑
i=0

√
L(wi)− L⋆.

Now we only to invoke the USAM descent lemma stated before, i.e., Lemma 49, giving

t−1∑
i=0

√
L(wi)− L∗ ≤

t−1∑
i=0

(
1− 2µη(1− ρβ)

(
1− ηβ

2
(1− ρβ)

))i/2√
L(w0)− L∗

≤
(
1− 2µη(1− ρβ)

(
ηβ

2
(1− ρβ)

))−1/2√
L(w0)− L∗.

Putting the last two inequalities together then give our conclusion.

30

	Introduction
	Motivating Experiments and Our Contributions
	Related Work

	Role of Normalization for Stability
	Strongly Convex and Smooth Losses
	Generalizing to Non-Convex Cases: Scalar Factorization Problem
	Experiment: Early-Stage Behaviors when Training Neural Networks

	Role of Normalization for Drifting Near Minima
	Toy Model: Single-Neuron Linear Network Model
	SAM Keeps Drifting Toward the Origin
	USAM Gets Trapped at Different Minima
	Technical Distinctions Between GD, SAM, and USAM

	USAM Gets Trapped Once Close to Minima
	Experiments for Practical Neural Networking Training

	Case Study: Learning Threshold Neurons for Sparse Coding Problem
	Conclusion
	Appendices
	Setup of the Motivating Experiment
	Additional Experimental Results
	Running SAM and USAM from Other Initializations
	Varying While Fixing in Sparse Coding Example

	Omitted Proof for Smooth and Strongly Convex Losses
	SAM Allows a Descent Lemma Like GD
	USAM Diverges on Quadratic Losses

	Omitted Proof for Scalar Factorization Problems
	SAM Always Converges on Scalar Factorization Problems
	USAM Diverges with Small

	Assumptions in the Single-Neuron Linear Network Model
	Omitted Proof of SAM Over Single-Neuron Linear Networks
	Basic Properties and Notations
	Initial Phase: xt Decreases Fast while yt Remains Large
	Middle Phase: y Keeps Decreasing Until Smaller Than xt
	Final Phase: Both xt and yt Oscillates Around the Origin

	Omitted Proof of USAM Over Single-Neuron Linear Networks
	Basic Properties and Notations
	Initial Phase: xt Decreases Fast while yt Remains Large
	Final Phase: yt Gets Trapped Above the Origin

	Omitted Proof of USAM Over General PL functions

