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Al METHOD DETAILS

The Optimal Transport (Monge, 1781) is initially introduced to find a transportation plan to move
simultaneously several items at a minimal cost, such as moving a pile of sand to fill all the holes.
Recently, it is widely used for the comparison of distributions. Mathematically, given two probability
density function U and V" over space X and ), the OT (Wasserstein) distance (Thorpe, 2019) can be
defined as

Dor(U, V) = inf C(x,y)dy(x,y), (10)
XxY

where C(x, y) is the cost between two points in the space X' x ), and " denotes the set of transport
plans between support points « and y (e.g. y(x, y)). We can regard two probability density functions
U and V as piles and holes and C is the cost function of moving a unit of sand.

In our problem of multiple prompts learning, we formulate the sets of visual features and prompt
features as two discrete distributions as

M N
U= Z Um O, and V= Z Un0g,. s (11
n=1

m=1

where u and v are the discrete probability vectors that sum to 1, and dy is a Dirac delta function
placed at support point f in the embedding space. Given two support points f,,, and g,, the cost

.
function is written as C'(fy,, gn) = 1 — sim(fon,gn) =1 — Wﬁﬁ%. For simply, in this discrete
situation, C € RM*N ig a cost matrix in which each point denotes the cost between f,,, and g,.
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Algorithm A1: The training process of Prompt Learning with Optimal Transport

Input: Training few-shot image data: X = {«}, pretrained CLIP model f and g, number of prompts
N, entropy parameter A, maximum number of iterations in inner and outer loops T, Loyt
Output: The parameters of prompts {w,,|N_;}
1: Initialize {w,|Y_;}
2: for toyy = 1,2,..., T4y, in the outer loop do
3:  Obtain a visual feature set F' € RM*¢ with the visual encoder f(z);

4: Generate prompt feature set G € RY*C of each class with the textual encoder {g(t7)}|N_;;
5: Calculate the cost matrix C, = 1 — F ' G, € RM*N of each class

6: Calculate the OT distance with an inner loop: Initialize the v©® =1,§ =0.01 and A, =0
7: fort,, =1,2,...,T;, do

8: Update u*n) = u/((exp(—C/\)vtin—1)

9: Update v(*in) = v/((exp(—C/\) Tultin))
10: Update A, = 3 [otin) — p(tin=1|/N
11: if A, < ¢ then

12: break
13: end if
14: end for

15: Obtain optimal transport plan as T} = diag(u®) exp(—Cy/\)diag(v®),
16: Calculate the OT distance dor (k) =< T}, Cj, >

17: Calculate the classification probability por(y = k|x) with the OT distance
18: Update the parameters of prompts {w,, |_, } with cross-entropy loss Lcg
19: end for

20: return {w, |Y_;}

Then, the total distance of these two distributions is written as:

M N
<T,C>=>"Y TpuCn, (12)

m=1n=1

where the T' € RM*N is a matrix of transport plan, which is learned to minimize the total distance.
Each point T5,, ,, in T is a weight of local cost C,,, ,.

The optimization problem of optimal transport is formulated as:

dor(u,v|C) = minimize < T',C >
T
, (13)
subjectto Tly=u, T 1y =v, T € RTXN.

These constraints of 7" are used to match its marginal distributions and original discrete distributions
in Eq. 11. In our framework, we treat visual features f,, and prompt features g,, equally and thus
u=1px1/Mandv =1yyx/N.

As directly optimizing the above objective is always time-consuming, we apply the Sinkhorn dis-
tance (Cuturi, 2013) to use an entropic constraint for fast optimization. The optimization problem
with a Lagrange multiplier of the entropy constraint is:

dor x(u,v|C) = minimize < T',C > —\h(T)
T
(14)
subjectto  Tly=u, T 1y =v, T € RTXN,

where h(-) is entropy and A > 0 is a hyper-parameter. Then we can have a fast optimization solution
with a few iterations as:

T* = diag(u®) exp(—C/\)diag(v"), (15)

where t denotes iteration and in each iteration u®® = u/ ((exp(—C/A\)v*~V) and v®) =

v/ ((exp(—C/A) Tu®), with the initiation v(*) = 1. The detailed algorithms of the training
and testing processes are shown in Algorithms Al and A2
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Algorithm A2: The inference process of Prompt Learning with Optimal Transport

Input: Testing image data: X = {«}, number of prompts N, number of classes K, learned prompts

{t}] fjﬁnzl , a frozen pretrained CLIP model including image encoder f and text encoderg

Output: The classification of each image
1: for x in X do

2 Obtain a visual feature set F' € RM*¢ with the visual encoder f(x);

3:  Generate prompt feature set G, € RV*C of each class with the textual encoder {g(t})}|2_;;
4: Calculate the cost matrix C, = 1 — F ' G, € RM*N of each class

5: Calculate the OT distance with an inner loop: Initialize the v = 1,6 =0.0l and A, = c©
6: fort;, =1,2,...,T;, do

7: Update u*») = u/((exp(—C/\)vtin—1)

8: Update v(*in) = v/((exp(—C/\) Tultin))

9: Update A, = " |[v(tin) — ptin=V| /N
10: if A, < ¢ then
11: break
12: end if

13: end for

14:  Obtain optimal transport plan as T} = diag(u®) exp(—C},/\)diag(v®),
15: Calculate the OT distance dor (k) =< T}, Cy, >

16: Calculate the classification probability por(y = k|x) with the OT distance
17: return k* = m?XpOT(y = k|x)

18: end for

A2 EXPERIMENTAL DETAILS

A2.1 DATASET DETAILS

The datasets we used in the experiments follow CoOp (Zhou et al., 2021b), which include 11
datasets for few-shot visual recognition and 4 ImageNet-based datasets for generalization (robustness)
evaluation. The details of each dataset are shown in Table A1, including the number of classes, the
sizes of training and testing sets, and the original tasks.

A2.2 IMPLEMENTATION DETAILS

The original CoOp method has different versions with different class token positions and parameter
initialization strategies. As the performance gap among different versions is limited, we directly chose
one of them as our baseline, where the token position is “end”, the parameter initialization strategy is
“random”, and the length of learnable context tokens is set as 16. Following the widely used setting
in (Zhou et al., 2021b; 2022; Gao et al., 2021; Zhang et al., 2021a), we also chose RN50 (He et al.,
2016) as the backbone network of the visual branch. All the code of our method is based on CoOp,
which adopted the SGD optimizer with 0.002 initial learning rate, CosineAnnealingL.R schedule, and
a warmup trick with le-5 learning rate. We also followed the epoch strategy to train more epochs for
more shots. For small datasets such as FGVCAircraft, OxfordFlowers, and StanfordCars, the batch
size is set as 32, while for the larger dataset such as Imagenet and SUN397, the batch size is set as
128.

We apply NV = 4 prompts for each category and use M = 7 x 7 due to the feature map size. We
set the hyper-parameters in the Sinkhorn distances algorithm (Cuturi, 2013) as A = 0.1 for all the
datasets. We set the maximum iteration number of the inner loop as 100 and will early stop the
iteration when the average absolute update value A < 0.01. We initialize all values in the vector v
and p as 1/N and 1/M respectively. All models are conducted on the Pytorch (Paszke et al., 2019)
1.7.1 and trained on 4 NVIDIA A100 GPUs. We repeated the experiments three times with different
seeds and reported the average.
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Table Al: The detailed statistics of datasets used in experiments.

Dataset Classes  Training size  Testing size Task

Caltech101 (Fei-Fei et al., 2004) 100 4,128 2,465 Object recognition

DTD (Cimpoi et al., 2014) 47 2,820 1,692 Texture recognition
EuroSAT (Helber et al., 2019) 10 13,500 8,100 Satellite image recognition
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 Fine-grained aircraft recognition
Flowers102 (Nilsback & Zisserman, 2008) 102 4,093 2,463 Fine-grained flowers recognition
Food101 (Bossard et al., 2014) 101 50,500 30,300 Fine-grained food recognition
ImageNet (Deng et al., 2009) 1,000 1.28M 50,000 Object recognition
OxfordPets (Parkhi et al., 2012) 37 2,944 3,669 Fine-grained pets recognition
StanfordCars (Krause et al., 2013) 196 6,509 8,041 Fine-grained car recognition
SUN397 (Xiao et al., 2010) 397 15,880 19,850 Scene recognition
UCF101 (Soomro et al., 2012) 101 7,639 3,783 Action recognition
ImageNetV2 (Recht et al., 2019) 1,000 - 10,000 Robustness of collocation
ImageNet-Sketch (Wang et al., 2019) 1000 - 50,889 Robustness of sketch domain
ImageNet-A (Hendrycks et al., 2019) 200 - 7,500 Robustness of adversarial attack
ImageNet-R (Hendrycks et al., 2020) 200 - 30,000 Robustness of multi-domains

Table A2: The few-shot visual recognition accuracy on 11 datasets.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots
Caltech1o] ~ BLOT  89.83:+£0.33 90.67+0.21 90.80+0.20 91.54+0.33 92.24+0.38
CoOp  87.51+1.02 87.84+1.10 89.52+0.80 90.28 +0.42 91.99 £ 0.31
DTD PLOT  46.55+2.62 51.24+1.95 56.03+0.43 61.70 +0.35 65.60 &= 0.82
CoOp  43.62+1.96 45.35+0.31 53.94+1.37 59.69+0.13 62.51 +0.25
EuroSAT PLOT 54.05+5.95 64.21£1.90 72.36+2.29 78.15+2.65 82.23+0.91
CoOp  52.12+5.46 59.00 +3.48 68.61 +3.54 77.08+2.42 83.69 +0.47
FGVCAircraft FLOT  17:90£0.09 18.94+044 22364042 26.17+0.29 31.49+0.89
Tt \coop 8594579 16.52+£2.38 20.63+2.46 26.63+0.86 31.43 +0.96
Flowers]0p  PLOT  7L72:+£0.97 81.19+0.79 87.82+0.20 92.43+0.25 94.76 +0.34
CoOp  67.98+1.98 77.58£1.46 86.10+1.05 91.27+0.83 94.49 +0.40
FOODlo]  BLOT  77.74+047 77.70£0.02 77.21+043 7531+0.30 77.09+0.18
CoOp  74.25+1.52 72.61+1.33 73.49+2.03 71.58+0.79 74.48+0.15
ImaceNet PLOT  59.54+0.16 60.64+0.06 61.49+0.23 61.92+0.09 63.01+0.13
g CoOp  56.99 +1.03 56.40 = 0.87 58.48 +0.47 60.39+0.57 61.91+0.17
Oxfordpers  ELOT  87.49+0.57 86.64+£0.63 83.63+£0.26 87.39+0.74 87.21 +0.40
CoOp  85.99+0.28 82.22+2.15 86.65+0.97 85.36+1.00 87.02+0.89
StanfordCars ELOT  56.60+0.36 57.52£0.71 63.41+£0.29 67.03+£0.50 72.80 £ 0.75
CoOp  55.81+1.67 58.41+0.43 62.74+0.16 67.64+0.06 73.60+0.19
SUN397 PLOT  62.47+0.43 61.71+£0.65 65.09+0.43 67.48+0.04 69.96 = 0.24
CoOp  60.12+0.82 59.60 & 0.76 63.24 +0.63 65.77 +0.02 68.36 & 0.66
UCFI01 PLOT  64.53+0.70 66.83+0.43 69.60 +0.67 74.45+0.50 77.26 + 0.64
CoOp  62.13+1.14 64.05+0.99 67.79+0.71 72.71+0.50 76.90 % 0.50
Averase PLOT  62.59+1.13 65.23+£0.72 68.60 +0.52 71.23+0.51 73.94 +0.54
& CoOp  59.56 +2.06 61.78+1.39 66.47+1.29 69.85+0.69 73.33 & 0.42

A2.3 FEW-SHOT RECOGNITION ACCURACY

In Section 4.3.1, we provide a line chart to show and compare the performance of PLOT and CoOp.
Here, we provide detailed performance results on all 11 few-shot recognition datasets in Table A2,
where we use gray for our method and white for CoOp. To highlight, we respectively use dark cyan
and light cyan to represent the performance of PLOT and CoOp on the average of all 11 datasets. We
repeat all experiments 3 times and report the mean and standard deviation in the table.
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A2.4 ABLATION STUDIES DETAILS

In this section, we provide more details about the different variants in Table 2. We compare PLOT
with the other 6 baseline methods briefly described below:

* CoOp: CoOp is the baseline method that only learns a single prompt and matches this single
prompt and the global visual feature. We apply the officially released code to reproduce this
method.

* “G”: In this paper, we propose to explore whether we can learn multiple prompts for more
comprehensive textual representation and fine-grained visual-textual alignment. “G” denotes
that we build multiple prompts (similar to our PLOT ) and learn them by matching them
with the single global visual feature.

* “G+V”: Matching all local prompts to a single visual feature will reduce the diversity of
the learned prompts. To improve the variety of learned prompts, “G+V” further adds an
objective function to increase the distances between every two prompts.

* “G+E”: “G+E” is also a method to increase the variety of prompts by separated initializations.
It applies predefined different initializations to replace the random initialization, such as "a

"non non

photo of a", "this is a photo", "this is a", and "one picture of a".

* “M”: One key difference between PLOT and CoOp is to utilize the feature map for more
fine-grained information. To evaluate whether our improvement mainly comes from using
a feature map, we design a method “M”, which removes the OT distance of PLOT and
matches local visual features and multiple textual prompts by the average distance of each
visual-textual pair.

e “M+V”: Similar to “G+V”, we add an objective function to increase the distances between
every two prompts to the method “M” to increase the variety of prompts.

A2.5 BASE-TO-NEW RESULTS

To investigate the generalization of our method for other baseline prompt-learning-based methods,
we apply our PLOT to CoCoOp Zhou et al. (2022), by learning multiple textual prompts (e.g. N=4)
instead of the single prompt in CoCoOp. We name it COPLOT. Specially, we learn multiple prompts
and use the same meta-network for all local prompts. Then we apply the Optimal Transport to
calculate the distance between multiple local prompts and local visual features. We evaluate both
CoCoOp and CoPLOT in the setting of "base-to-new" and implement them using the same RN50
backbone. The results on the 11 datasets with 16 shots are provided in Table A3. We observe that
PLOT achieves improvement on most datasets and on average, which demonstrates that it can be
applied to different prompt-learning-based methods. For example, on average,PLOT achieves almost
3% improvement on the "new" side without the reduction of "base" performance. It suggests that
these two methods are complementary: CoCoOp proposes a conditional formulation that uses each
image feature as the context condition to refine the single prompt, while PLOT aims to learn multiple
prompts.

A2.6 ZERO-SHOT SETTING ANALYSIS

PLOT can not benefit in the setting of zero-shot learning. Below we provide some experimental
details and corresponding analysis. CLIP shows that manually designing the prompts can still achieve
good performance. We obtain 7 prompts by prompt engineering on the ImageNet dataset and can
further ensemble them to obtain 60.38% top 1 accuracy. In this section, we replace the cosine
distance between the global visual feature and prompt ensemble with the OT distance between the
feature map and all 7 prompts. However, without any learning, the OT distance only obtains 58.78%
accuracy. It is a limitation of the PLOT to still need few-shot data for optimization, which cannot be
directly applied in the zero-shot setting. We argue there are two reasons why the OT distance does
not work without learning: 1) prompt engineering selects prompts based on the global feature and
cosine distance, instead of OT distance with feature map; 2) all these selected prompts are close to
the global feature and lack the complementarity.
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Table A3: Comparison of CoCoOp Zhou et al. (2022) and CoPLOT(ours) in the base-to-new
generalization setting. All methods are implemented with RN50 backbone and evaluated with 16
shots. We report the performance of the base classes, new classes, and the mean of them. We show
that PLOT can be applied to CoCoOp Zhou et al. (2022) and achieve improvement.

(a) Average .

(b) ImageNet.

(c) Caltech101.

Base New | H

Base New| H

Base New | H

CoCoOp 75.7 64.6‘70.2

CoCoOp 68.3 63.1 ‘65.7

CoCoOp 95.0 90.0‘92.5

CoPLOT 759 67.6|71.8 CoPLOT 68.2 63.1]65.7 CoPLOT 954 90.9|93.2
(d) OxfordPets. (e) StanfordCars. (f) Flowers102.
Base New| H Base New| H Base New| H

CoCoOp 92.3 94.6‘93.5

CoCoOp 61.8 65.3‘63.6

CoCoOp 912 67.5 ‘79.4

CoPLOT 92.1 959 94 CoPLOT 63.2 66.5|64.9 CoPLOT 89.6 69.2|79.4
(g) Food101. (h) FGVCAuircraft. (i) SUN397.
Base New| H Base New| H Base New| H

CoCoOp 85.0 86 ‘85‘5

CoCoOp 255 25.7 ‘25.6

CoCoOp 75.1 73.6‘74.4

CoPLOT 85.0 85.2(85.1 CoPLOT 25.6 26.6|26.1 CoPLOT 752 732 -
(j) DTD. (k) EuroSAT. (1) UCFI101.
Base New | H Base New | H Base New| H
CoCoOp 73.1 50.0 |61.6 CoCoOp 88.9 33.5(61.2 CoCoOp 76.5 61.6]69.1
CoPLOT 72.6 51.4|62.0 CoPLOT 91.0 55.3|73.2 CoPLOT 774 66.2|71.8

Table A4: The training and inference time comparison.

Settings CoOp PLOT (N=1) PLOT (N=2) PLOT (N=4) PLOT (N=28)
Training Time (s) 1.127 1.135 1.148 1.182 1.267
Inference Time (images/s) 719.1 714.4 690.7 653.0 519.8

A2.7 COMPUTATION COST EVALUATION

As shown in Table A4, we provide the comparison of the training time and inference seed of the
baseline method CoOp (Zhou et al., 2021b) and our PLOT with the different number of prompts. We
report the one-epoch time training on the 1-shot setting of the Food101 (Bossard et al., 2014) dataset
and the number of images processed by the model in 1 second. Taking N = 4 as an example, PLOT
only reduces the 9.2% inference speed and requires an extra 4.9% training time, which is acceptable
given the performance improvement.

A3 VISUALIZATION

A3.1 MORE ANALYSIS ON VISUALIZATION

In this section, we provide some visualization examples of the transport plans 1" related to different
prompts (N=4). We translate each transport plan into colorful heatmaps and resize them to their
original size and combine them with the raw image. As shown in Figure 4, we provide the heatmaps
of 4 categories in ImageNet. We observe that different transport plans highlight different regions of
the image, which demonstrates that the learned multiple prompts are complementary. For the class
“Brambling”, the prompts respectively focus on the head, tail, wing, and environment. For “Dog
Sled”, the prompts are related to dogs, the sled, some ties, and the snow environment.
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Table AS5: The nearest words for 16 context vectors of all N = 4 prompts learned by PLOT . N/A
means non-Latin characters.

Number Prompt 1 Prompt 2 Prompt 3 Prompt 4
1 ag pa trying gaz

2 flint as field white

3 leaving wit N/A t

4 sot 1 icons ario

5 tint N/A eclub safe

6 tar yl indiffe class

7 attn N/A ts represented
8 2 job cold attend

9 rollingstones built yeah vie

10 N/A brought band recognized
11 N/A or love old

12 bel ] late stel

13 head ag industry awhile
14 artifact bad N/A ded

15 an chie across these

16 5 in actual visiting

A3.2 VISUALIZATION OF FAILURE CASES

To better understand the method and further discover the reason for the failure cases. we visualize
the attention maps of some failure cases. As shown in Figure A1, we showed two failure examples
with class "2000 AM General Hummer" in the StanfordCars dataset. During the training, we set
the number of prompts as 4, but in these visualization results, we found that some of the learned
prompts remarkably coincide with each other. These prompts can be roughly divided into two classes:
Foreground and Background. For example, in both images, prompts 2 (right top) and 3 (left down)
focus on the foreground car, while the others focus on the background. It demonstrates that not all
classes have multiple complementary attributes, which motivates us to go further to learn the dynamic
local prompts numbers to reduce the computational load in the future.

A3.3 INTERPRETATION OF TEXT PROMPTS

The learned prompts are difficult to be understood by humans since the parameters are optimized
in the continuous space (Zhou et al., 2021b). CoOp proposes to use the word which is nearest to
learned prompts in the embedding space to visualize the prompts. Following this manner, we show
the nearest words of our learned prompts in Table AS5. Similar to CoOp, most words can not be
directly understood by human logic. However, we still find the relations between the learned prompts
and the corresponding optimal transport plan. As shown in Figure 4 in the main paper, we can
observe that the optimal transport plan for Prompt 1 always focuses on the “head”, such as the head
of “brambling”, the head of “rooster”, and even the head of “aircraft carrier”. It is because the word
“head” is in Prompt 1. Similarly, we can find that Prompt 4 prefers the white part of images, such
as the white environment in the image of “brambling” and the snow in the image of “dog sled”. It
demonstrates that the learned multiple prompts focus on different characteristics of categories.

A3.4 T-SNE OF PROMPTS

To better understand the learned prompts, we provide a visualization with T-SNE Van der Maaten
& Hinton (2008) for the learned textual prompts. Specifically, we randomly select 10 classes from
ImageNet and generate the textual embedding with our learned prompts. Then, we obtain 4 x 10
embeddings with dimension d = 1024. Then we apply the T-SNE to reduce the dimension and
visualize the embeddings. As shown in Figure A2, the textual embeddings of the same class with
different prompts are clustered well. Besides, despite being well clustered, we found that the textual
embeddings also have intra-diversities.
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2000 AM General
Hummer SUV

2000 AM General
Hummer SUV

Figure Al: Failure Visualization. We provide the heatmaps of transport plan T related to each prompt
on 2 failure examples in the StanfordCars dataset.

T-SNE projection of Prompts
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Figure A2: T-SNE Visualization of 10 classes with different prompts. We apply the T-SNE for the
embeddings of 10 randomly selected classes in ImageNet with different prompts. Different color
denotes different classes. We observe that the textual embeddings cluster well.
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