A Detailed Background

In this section, we explain the terminologies related to Ethereum blockchain, transactions and NFTs,
etc.

A.1 Blockchain and Ethereum

Blockchain, a distributed ledger technology, has drawn continuous attention recent years. Blockchains
are made up of securely linked blocks with cryptography techniques [53], where each block contains
information of the previous block (e.g., cryptographic hash). Then, consensus algorithms or protocols
are applied to validate transactions and keep them being consistent. By this way, the blockchain trans-
actions are immutable, traceable and publicly available. Ethereum is a decentralized, programmable
blockchain, which means users can construct various decentralized applications on the blockchain.
Ether (ETH) is the native cryptocurrency of Ethereum, and every transaction incurred in the Ethereum
needs a specific fee paid in ETH. According to the market capitalization, ETH is the second-largest
cryptocurrency behind Bitcoin.

A.2 Account and Transaction

Ethereum account is the key to access and explore the Ethereum ecosystem. Every Ethereum account
is associated with a unique address, akin to an email address for an inbox. The address can be used
to receive or send funds to the corresponding account. Accounts in the Ethereum can be classified
into two types: (1) Externally-owned account (EOA) and (2) Contract account. All the accounts are
denoted as a 64 character hex string.

Transactions are messages sent from one account to another account. One of the simplest transaction
is transferring ETH from one account to another, which will change the state of the Ethereum
Virtual Machine (EVM) and need to be broadcast to the whole Ethereum network. Each transaction
requires amount of fees to pay for the computation. The key information in a transaction includes
the receive address, the sender address, value, data, gas limit, and the max fee per gas, etc. There
are three categories of transactions within the Ethereum: 1) regular transactions, which indicates the
transactions between two externally-owned accounts; 2) contract deployment transactions, which are
special transactions without receive addresses; 3) execution of a contract, whose receive address is
the smart contract address. When the transaction is submitted, its life cycle can be simplified into the
following three steps: 1) an externally-owned account sends a transaction and generates a transaction
hash; 2) the transaction is broadcast across the network; 3) a validator verifies the transaction and
includes it into a block. Once the transaction is successfully executed, it can never be altered.

A.3 Smart Contract and Non-Fungible Token

Smart contract is an important feature in the Ethereum blockchain [88], which is a computer program
that runs on the Ethereum to automatically execute or control relevant events and actions according
to its logic. Smart contracts have largely reduced the requirements for trusted intermediaries, fraud
losses and arbitration costs, etc. As we have mentioned before, smart contracts also belong to a
type of Ethereum account, and it can interact with user accounts. Moreover, anyone can program a
smart contract and deploy it to Ethereum, as long as the code is complied successfully and can be
executed by the EVM. Smart contracts are the fundamental building blocks for various applications
like decentralized finance (DeFi) and game finance (GameFi).

Non-Fungible Token (NFT) is one of the most successful applications on Ethereum. NFTs are tokens
that can be used to represent the ownership of any unique asset such as image, video and audio.
Different from fungible items where one dollar is exchangeable for another one dollar, NFTs are not
interchangeable with each other, since they all have unique properties and are not divisible. Smart
contracts manage the ownership and the transferability of NFTs. Specifically, when NFTs are minted
or transferred, it triggers the code stored in the smart contract, and then the relevant actions are
executed. Each NFT token will have an owner after mint, and this information can be easily verified in
Ethereum. The NFTs can be bought and sold on any NFT market like OpenSea, LooksRare or X2Y?2.
More recently, the NFT and DeFi have been combined to form a number of interesting applications
including NFT-backed loans, fractional ownership and certificates of authenticity.
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B Related Work

In this section, we present the related work on graph analysis.

Analyses of Social Networks, Citation Networks and the Internet. There exist lots of prior
works focusing on analysing social networks and citation networks like Flickr, Yahoo! 360 and
LiveJournal [5, 38, 39, 41]. These studies investigate the graph properties including density, degree
distribution and clustering coefficient, etc. Among them, [17] observed that the node degrees followed
a power-law distribution in most real-world networks. [9] studied the graphs from the perspective of
connectivity, where large strongly connected components (i.e., SCC) widely existed in the graphs.
[23] classified social network’s links into strong ties and weak ties, with strong ties indicating tighter
clustering. [77, 37] explained the social networks’ small-world phenomenon. [41] showed that the
citation graphs demonstrated denser densities and decreasing diameters as time goes by. Then, a
forest-fire graph generation model was proposed to simulate these phenomena. [64] proposed a
jellyfish model to describe the topology of the Internet, which abstracted the structure in a human
understandable way.

To summarize, the major findings of existing works are as follows: 1) power law degree distribution,
where some nodes exhibit significantly large degrees; 2) preferential attachment growth model, where
the likelihood of a new node establishing a connection with an existing node is directly tied to the
degree of the existing node; 3) density of the graphs follows a rapid decline, and then becomes steady.
For surveys of graph analysis, interested readers can refer to [27, 76]. Although the graph analyses
are extensively studied in those networks, it is not clear whether these findings are still valid in this
emerging NFT transaction network.

Graph Analyses of Cryptocurrency Transaction Networks. Due to the decentralized nature of
blockchain, this makes it possible for everyone to access all the transaction information. Several
recent works have studied the properties of Bitcoin and other cryptocurrency transaction networks.
For instance, [26, 59, 48] studied the user behaviors in Bitcoin transaction network. [66] classified
and visualized the information extracted from the Bitcoin network. [80] and [1] forecast the price
of BTC via modeling the local topological structure of the Bitcoin graph. Apart from Bitcoin,
other cryptocurrencies like Zcash [34], EOS [29] and Monero [51] had also been conducted similar
analyses. [8] analyzed the transaction linkability in Zcash, which revealed the underlying privacy
concerns. [16, 2] discussed the key factors that impact the scalability of various blockchain systems.
[24] identified arbitrage behaviors among multiple cryptocurrency exchange markets (e.g., Kraken,
Coinbase and Gemini) through weighted cycle detection. However, the majority of these works are
performed on analyzing static graphs, whereas graphs are usually evolving over time in the real-world
scenarios. Moreover, the aforementioned studies that analyze Bitcoin and other cryptocurrencies
only involve transactions related to value or token transfers. Different from Bitcoin, recent popular
blockchains like Ethereum and Solana support deploying smart contracts to provide diverse services,
where human controlled accounts and program controlled agents coexist in the network, making the
transaction network even more complicated. It is of great interest to us to investigate this type of
transaction network.

Analyses of the Ethereum Blockchain. Given the possibility to access comprehensive information
within the blockchain transaction network, some recent efforts follow the pioneer studies on social
networks, citation networks and the Internet [39, 41, 64] to analyze the static Ethereum transaction
network. Particularly, [40] measured four interaction networks to give new insights on the Ethereum
graph properties. [18, 11] characterized major activities including money transfer and contract
creation on Ethereum via graph analysis. [46] learned from Ethereum graph to perform price anomaly
prediction. [86, 6] investigated the evolutionary dynamics of Ethereum activities through the lens of
temporal graphs.

Instead of studying all the transactions in the Ethereum, [65] only considered transactions relevant to
ERC20 tokens which were fungible tokens circulated in the Ethereum, and the results showed that
they presented obvious social signals in the trading network. [12] performed a systematic analyses
on the whole ERC20 token activities. [72] studied massive individual token networks from a graph
analysis perspective, and found that they were largely dominated by a single hub and spoke pattern.
Since tokens could be heavily influenced by various events like mint, burnt, transfer or staking, these
aforementioned works only provide a general intuition about the structure of token distributions, the
flow and spread of assets on the blockchain.

17



Similar graph analysis approaches have also been applied to Non-fungible tokens (NFTs), where
NFT tokens are unique and not comparable with each other. For example, [78] used the Louvain
algorithm [71] to extract the community based structures from the networks, which characterized
the relationships between buyers and sellers. [52] showed that the NFT’s sale history and visual
appearance were two good indicators to predict its price. [10] analyzed several popular NFT projects,
and concluded that the structure of NFT networks was qualitatively similar to social networks. [73]
quantified suspicious wash trading behaviors in NFT market via closed cycle detection in the network.
Although NFTs play a crucial role in the Ethereum ecosystem, none of the aforementioned studies
explore the temporal properties of the NFT transaction network from the temporal graph point of
view.

C Basic Structure Properties

The following four properties are discussed in this section:

Assortativity characterizes the tendencies of nodes getting attached to similar nodes through a
specific metric. Following [4], we calculate the degree assortativity as follows:
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where k; and k; represent the degrees at the ends of edge (¢,7) € £. || denotes the number of
edges. The assortativity « lies in the range of [-1, 1], where a positive « indicates that high degree
nodes have high probabilities of linking to other nodes with high degrees on average. In contrast,
when « is negative, it is a disassortative network and the high-degree nodes are more likely to link
to low-degree nodes. More specifically, when a = 0, we say the network is neutral, and neither the
tendencies of linking to high-degree nor low-degree nodes are observed. Figure 4a shows that the
assortativity of NFT transaction network is negative in the recent six years, and it increases year by
year, gradually approaching to zero. This indicates that the emerging transaction network is evolving
from disassortative to assortative, which means there are more and more hub nodes available for
themselves to connect to each other to increase the assortativity. A detailed analysis is given in
Section 4.2.

ey

Density calculates the ratio of existing edges over the number of possible edges [49]. The density d
is 1 for a complete network, and it can be larger than 1 when self-loops or multi-edges are taken into
consideration. We compute the density of a directed network as follows:
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where || indicates the number of edges and |V| represents node numbers. As we can see in Figure
4b, the density drops rapidly, which indicates the network becomes sparser over time. The decrease
of density is mainly caused by the increment of edges are less than the node increment. It also means
that the network utilization is quite low and the interactions between different nodes are very limited
(i.e., one node only interacts with a few other nodes). This is understandable, since creating a account
(i.e., node) is free, but making transactions (i.e., creating edges) cost gas fees. This property is quite
different from citation networks [41], where density becomes denser over the time.

d @

Reciprocity in a directed network is determined by the proportion of bidirectional edges to the
number of total edges [67, 3]. Formally, the reciprocity r is calculated as:

Lo 2 W@ 5) € EAGD €E))
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where |€] indicates the number of edges. I(-) is an indicator function and it returns 1 when node
1 and j have bidirectional edge, otherwise it returns 0. The trend of reciprocity is demonstrated in
Figure 4c. The relation between reciprocity and time is not monotonous. In general, it increases at
the first, and then decreases in the following several years. This may be due to the emerging of NFT
swapping, which allows users to swap their NFTs with each other. However, as time goes on, the
NFT market becomes more and more mature, and users are prone to trading instead of swapping their
NFTs to gain more profits.

3

18



—0.05 —m— Half a year = Half a year
—%— One year 5 One year
—e— Two years

—8— Two years

-0.10
1073 4

—0.151

-0.201

Assortativity

-0.30 1074

-0.351

1076 4
2017 2018 2019 2020 2021 2022 2017 2018 2019 2020 2021 2022
Year Year

(a) Assortativity (b) Density

-8 Half a year 0.225 |~ Half a year
—%— One year —¢ One year
—e— Two years

—8— Two years

0.20 0.200 1

0.1754

o
=
&

0.150 1

Reciprocity

0.125

0.101 0.1004

Clustering coefficient

0.075 1

0.050 1

2017 2018 2019 2020 2021 2022 2017 2018 2019 2020 2021 2022
Year Year

(c) Reciprocity (d) Clustering Coefficient

Figure 4: Evolution of network global properties with different time granularity.

Average Clustering Coefficient evaluates to what extend the nodes in a network tend to tightly
cluster together [61], which is computed by averaging local clustering coefficient across all nodes.
Node v;’s local clustering coefficient ¢; is the percentage of edges among its neighborhood divided
by all the possible edges between its neighborhood. We formulate the local clustering coefficient for
directed network as:
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where N; = {vj te; €EVey € &} is the neighborhood of node i. Edge e;1 indicates the link
between node j and node k. Thus, the equation for the average clustering coefficient is as follows:

VI

1
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where |V| denotes the number of nodes. In Figure 4d, we present the clustering coefficient for the
NFT transaction network across six years. We can observe that the average clustering coefficient is
growing stably, which indicates the network is forming an increasing number of tightly connected
clusters or communities. One possible explanation is that those accounts in a tightly connected
clusters are actually controlled by the same person, and they utilize multiple accounts to conduct
money laundering and wash trading [73], etc.

Furthermore, Figure 4 also illustrates the trends of different properties under different time granu-
larities. In particular, the networks constructed with different time granularities could highlight the
anomalies during its evolving procedure. Here, the anomaly means a property value that is much
more larger or smaller than the value in its neighborhood time periods. For instance, the reciprocity
in Figure 4c indicates that its value in the middle of 2018 is twice larger than that of the other time
period. Since this abnormal value is observed in a half-year granularity, we can dive into a finer time
scale, which is 3-month and monthly time scopes. The results are illustrated in Figure 5. As we can
see in Figure 5a, the reciprocity values are significantly different between the first and the second
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Figure 5: Finer time granularity analysis on reciprocity.

._.
<

N N w w IS

S & 8 & 8

Number of accounts

-
&

Number of average transactions

=
)

"“H‘"""l|"""|||II||II|I|I|||||

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Active duration (days) Active duration (days)

«

(a) Number of active accounts (b) Number of average transactions

Figure 6: Accounts’ active periods.

half of year 2018. Meanwhile, we further investigate the data with a monthly basis, which makes it
possible for us to locate the specific months. Figure 5b demonstrates that the anomaly is lasting from
January to August, and reaches its peak at February. These finer granularity analyses demonstrate
that monthly data may be more helpful in the scenario of anomaly detection.

D Dynamic Behavior Analyses

D.1 Active Period of Nodes

Based on our aforementioned analyses, the NFT transaction network is highly active with new nodes
continuously adding in. We now proceed to investigate the nodes’ active periods. Here, the node’s
active period is defined as the time interval between its first transaction and its last transaction. In this
case, we discard those nodes with only one transaction in the dataset. Figure 6 presents the statistical
information for node’s active duration in the scale of days. Note that, we only show the active periods
from 1 day to 40 days in Figure 6a. According to our data, 23.43% of the nodes have the active
period of 1 day, and up to 47.25% nodes’ active periods are 1 month. This is consistent with our
previous observations regarding the highly increasing number of edges. It’s worth noting that only
one account has the active period of nearly 5 years. After checking the data, we find out that this
node is associated with the Null address (i.e., 0x000...000). It is not a surprise, since all NFT mint
activities would build connections with the Null address. This also indicates that there exist new NFT
tokens being continuously minted, which reveals the fast growing speed of NFT market.

Then, we explore the impact of a node’s active period on the number of transactions it engages in.
One natural hypothesis is that the longer the node’s active period, the more transactions it will create,
which is consistent with the user behaviours in social networks. Figure 6b shows the number of
average transactions with different active periods. As can be seen, the active period and its average
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Figure 7: Distributions of tokens and collections.

transactions are positively correlated. The number of transactions increase exponentially as the active
periods become longer. We also notice two spikes with active periods of 8 days and 39 days. Among
them, address 0x610...6627 causes the spikes of average transactions in active periods of 8 days,
which is a Ethereum Name Service (ENS) migration contract to migrate second-level names from
the old registry and registrar to the new ones. It creates more than 685,000 transactions within 8
days. To summarize, even through there are some addresses with rather limited active periods, we
can generally conclude that most of the addresses are quite active with lots of transactions.

D.2 Holding Tokens and Collections

To reveal the characteristics of the NFT economy, we analyse the distributions of holding tokens and
collections for different accounts. Formally, we trace all the received tokens and sent tokens for each
account. Through this way, we can know the owner of each token and the quantity of tokens held by
an account. Figure 7a shows that both the accounts’ holding tokens and collections are power law
distributions. Specifically, 42.10% of the accounts hold only one token, and 58.50% of the accounts
hold tokens from one NFT collection. Moreover, there are about 81.70% accounts holding no more
than 10 tokens, and 91.40% of accounts hold tokens from no more than 10 collections. In the middle
of year 2022, the largest “holder” is the Null address (i.e., 0x000...000), which involves 809,125
tokens from 8,126 collections. Note that the Null address is a special account, and sending tokens
to Null address means destroying the tokens whereas receiving tokens from Null address indicates
minting tokens. There are several reasons that people destroy their tokens, including reducing the
supply to increase a collection’s value or rectifying error information in the tokens. Then, we look at
the next valid holding address. The second largest holder is associated with address 0x000...7a2 3,
which holds 381,570 tokens from 1,454 collections. Since it holds so many tokens, we are interested
in uncovering its identity. Therefore, we try to uncover all the relevant activities associated with the
address 0x000...7a2. First of all, we search the address in the Ethereum Name Service and find that
the address is bound with the name stronghands.eth’. Then, we search the keyword “stronghands”
with Google, and the results show that it is a blockchain community!?, which supports issuing tokens,
trading NFTs and bridge integrations, etc.

Table 6 and Table 7 list the top-10 largest holders in the year of 2020 and 2021, respectively. As can
be seen, most top-10 holders in 2020 continue to be top-10 holders in 2021 as well. It is interesting to
note that the relative positions are almost same, except that address Oxd9a...6a5 and 0x721...ace swap
their positions in 2021, and the Null address becomes the second largest “holder”. Among them,
address Oxffl...2¢c8 drops out of the top-10 list in 2021, and address Oxe05...9d5 enters the top-10
list in 2021, which are annotated as bold. The little difference in top-10 list for year 2020 and 2021
indicates that it is very difficult to be one of the top holders for new users, since it costs a lot of money
to mint or buy NFTs. Moreover, when looking at the numbers in Table 6 and Table 7, we can find that

70x6109DD117AA5486605FC85¢040ab00163a75c662
80x0008d343091ef8bd3efa730f6aae5a26a285¢7a2
*https://app.ens.domains/address/0x0008d343091ef8bd3efa730f6aae5a26a285¢7a2
"%https://www.stronghands.io/
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Table 6: Top-10 accounts’ holding tokens and collections in 2020.

Account Address Tokens  Collections
0x0008d343091ef8bd3efa730f6aaec5a26a285¢c7a2 363,962 36
0x26cdee4269273elea5dfac6b5791df2656897738 343,413 14
Oxeda8dfcal75cdcad4ae370f5Sb7aaff24bd1c9c8ef 308,916 13
0xf7ee6c2f811b52c72efd167albb3f4adaale0f89 216,477 39
0x09cledcladad99436b5¢c22a395174a1320ee716b 166,321 1
0xf33bd4edc6dcd7240966£20401014ad0018d065b 161,368 19
0xd9ab699e5e196139b8alc8f70ead01b2137fc6a5 152,788 16
0x721931508df2764fd4f70c53da646cb8aed16ace 149,115 49
0x0000000000000000000000000000000000000000 143,849 683
0xff18298382948028f9d93c4e32bel1382204022¢8 140,025 22

Table 7: Top-10 accounts’ holding tokens and collections in 2021.

Account Address Tokens  Collections
0x0008d343091ef8bd3efa730f6aae5a26a285¢7a2 378,893 198
0x0000000000000000000000000000000000000000 365,565 1,914
0x26cdee4269273elea5dfac6b5791df2656897738 343,413 14
Oxe4a8dfcal75cdcadae370fSb7aaff24bd1c9c8ef 308,880 13
0xf7ee6c2f811b52c72efd167albb3f4adaale0f89 217,172 83
0x09cledcladad99436b5¢c22a395174a1320ee716b 166,321 1
0xe052113bd7d7700d623414a0a4585bcae754e9d5 163,499 1,467
0xf33bd4edc6dcd7240966120401014ad0018d065b 161,413 20
0x721931508df2764fd4f70c53da646cb8aed16ace 159,464 204
0xd9ab699e5e196139b8alc8f70ead01b2137fc6a5 152,788 16

the top holders’ tokens and collections are rapidly growing. One exception is the address 0x09c... 16D,
which holds 166K tokens from the same collection (i.e., DozerDoll, a game dirven NFT). On average,
they hold 10K more tokens in 2021 compared with the year 2020. This is because there are more and
more tokens as well as collections. Figure 7b also verifies this observation. Take the year of 2021 as
an example, it increases 17,428 collections and 14 million tokens. Thus, the whole NFT ecosystem is
still in its bull market.

D.3 Evolution of Diameters

We study the diameter of the NFT transaction network in this section, which reflects the communi-
cation efficiency among different nodes. Generally, the network’s diameter is defined as the largest
shortest path among all pairs of nodes in the network. As pointed out by [41, 42], this metric is very
sensitive to the noise in the network. For instance, a single long path would result in a large diameter.
Thus, we resort to the effective diameter used in [41], which is defined as the 90-th percentile of the
shortest path length among all pairs of nodes. Figure 8 presents the diameters as it evolves over time
by years. The blue line shows the diameter calculated with the whole transaction network, which
includes the special Null address. In contrast, the red line indicates the diameter computed without
the Null address, which means all the NFT minting and destroying activities are removed from the
network. We can observe that these two lines show totally different trends, i.e., one is increasing and
the other is decreasing. The final diameter is about 3.0 in 2022 when including the Null address, and
it is only half of the value when removing the Null address. It is surprised to see that the Null address
has such large influence on this property. With in-depth analysis, we find that there are about 3.5
million addresses connecting with the Null address, which accounts for 77.3% of the total addresses.
Thus, the Null address is a huge hub node, and provides a shortcut for nodes to reach each other. As a
result, the diameter is smaller in this situation, and every non-mint action would increase its value
when the network expands.

To eliminate the effect of the Null address, we focus on the analysis of diameter without Null address,
which reveals the transaction behavior patterns without mint. Similar to citation networks that the
diameter is shrinking observed by Leskovec et al [41], our results show that the diameter also shrinks
in NFT transaction network, i.e., decreasing from 5.94 to 4.72. Then, we explore the graph structure
to see whether we can explain the diameter shrinking phenomenon. Specifically, we observe that
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about 42.28% of the nodes have the degree of 1 in the final network. Those nodes with degree 1 are
the key factor that leads to the increase of diameter. Thus, we remove these degree 1 nodes, and
calculate the effective diameter of the remaining part. The value is 4.20, which shrinks again. After
that, we repeat this process again, and find that it only has 2.26% nodes with degree 1 in the remaining
part. Similarly, we delete those degree 1 nodes, and compute its effective diameter again, which is
4.28 and stays the same as before. This suggests that there is a giant component with extremely high
connectivity, and nodes with degree 1 is only a thin layer at the outside of the well-connected giant
component. This observation brings new challenges for some downstream tasks.

E More Analyses on Continuous Subgraph Matching

Frameworks. We evaluate the performance of six recent CSM frameworks in this section. (1)
SJ-Tree [13] proposes a lazy search algorithm, and the search strategy is determined by a vertex-to-
vertex basis, which depends on the likelihood of a matching in the vertex neighborhood. (2) IEDyn
[30, 31] randomly selects a node from query graph, then it products matching order by conducting
DFS on the query graph. (3) SymBi [50] employs a dynamic candidate space as an auxiliary data
structure for filtering. (4) Graphflow [33] first generates matching order offline, and then retrieves
it in online processing. (5) TurboFlux [35] employs a concise representation of the intermediate
results, and a novel edge transition model is proposed to identify the update operations that may
affect the current solutions. (6) RapidFlow [68] performs batch subgraph matching via designing a
query reduction technique, then dual matching is utilized to leverage the duality of the graph in the
matching procedure.

Settings. Similar to the link prediction task, we also remove all the transactions related to the
Null address, which gets rid of the impact of the extreme large degree node. In previous studies
[69, 35, 13], the initial graph is constructed using the first 90% of edges, while the rest 10% of edges
are employed as insertion streams. In our scenario, we know the exact time of each transaction,
thus we use NFT transactions from year 2017 to the end of 2021 as the initial graph, and then the
transactions in the year of 2022 are regarded as the insertion streams. Since the original nodes and
edges do not have fine-grained labels, each node is assigned a label randomly selected from a pool of
30 labels. We do not assign labels for edges following the previous works [69, 35]. For evaluation
metrics, we report the query time, which denotes the time taken by the online matching procedure
to execute. We discard the graph update time, since it’s same for all the frameworks. To complete
the experiments under an affordable time, a one-hour time limit is imposed for query processing
(i.e., 3.6 x 10° ms). Additionally, we also calculate the number of matched subgraphs for each query
graph.

Results. As we have discussed in Section 4.2, there exist lots of hub nodes in the NFT transaction
network. Therefore, we are interested in whether updating the index of hub nodes will have a great
impact on the query time. Specifically, except Graphflow, all the remaining frameworks belong to
the index-based incremental computation. In this context, the query time consists of the index time,
which signifies the time spent on updating the index, and the enumeration time that enumerates the
matched results. Therefore, we first sort the node degrees in the descending order, and the results
show that the top-50 largest hub nodes have the largest degree with 433,114 and the smallest degree
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Table 8: Temporal link prediction results with live-update settings in sampled subset. We repeat
experiments with 3 random seeds to report the mean as well as standard deviation of AUC and MRR.
We also present the results under different time snapshot granularities, e.g., days, weeks and months.

Models Snapshot Days Snapshot Weeks Snapshot Months
AUC MRR AUC MRR AUC MRR

Dyngraph2vec | 77.3942.04 40.29+5.75 | 75.33+£7.15 36.844+4.97 | 72.03£2.73 34.83+4.20

TGCN 95.49+0.78 62.40£7.89 | 91.09+0.46 41.69+7.82 | 86.13£1.33  43.67+6.23

EvolveGCN 84.34+£2.81 4091£7.96 | 79.13£0.92 40.72£3.82 | 78.40+3.33  42.86+3.71
GCRN-GRU 91.41£1.24 33.65+£9.48 | 90.78+2.43 42.884+0.48 | 82.64+0.22 38.99+0.18
GCRN-LSTM | 93.974+1.66 41.63+3.22 | 90.16£1.83  39.20+7.19 | 83.38+0.71 37.22+2.63
DynGEM 95.67£0.74  49.25£6.01 | 93.34+0.98 45.41+5.29 | 90.75£1.29 41.38+0.61
Roland-MA 97.55+0.59 37.18+£6.76 | 94.59+0.50 44.26+1.26 | 87.69+2.17 37.98+4.61
Roland-MLP 96.38£1.07 60.44£10.0 | 89.25+0.89 52.324+3.20 | 87.89+£0.96 42.02+3.37
Roland-GRU 96.52+0.08  69.34+2.68 | 92.83+0.82 52.744+2.60 | 91.01+0.77 41.59+2.02

with 7,623. Then, we delete the top-50 hub nodes sequentially and report the query time in Figure 9
for pattern 1 and pattern 3. Note that, we remove the randomly assigned node labels in this situation,
which counts the query time associated with the hub nodes. As can be seen, the query time almost
remains the same with acceptable fluctuations across all the frameworks except for RapidFlow. This
is because RapidFlow is extremely efficient (i.e, only taking several hundred milliseconds), thus a
slight fluctuation will be very obvious in the figure. We can conclude that these four frameworks are
applicable to graphs with dense structures. They can effectively serve as a bridge to generate ground
truth for continuous subgraph matching, providing valuable support for the training of deep graph
learning models.

F Temporal Link Prediction Results on Sampled Subset

To fully evaluate the models’ performance, we also sample a subset of data spanning from January
1st 2020 to August 31st 2020. This subset contains 88,112 nodes and 203,221 edges. We provide the
temporal link prediction results under live update setting in Table 8. As can be seen from the results,
we can draw similar conclusions. Notably, we also observe that with the increase in time granularity,
the performance of the models exhibits a corresponding decline within this sub-sampled dataset.

G TEA and TET Plots

Following the definitions in [57], we present Temporal Edge Appearance (TEA) and Temporal Edge
Traffic (TET) plots in Figure 10. Specifically, a TEA plot visualizes the proportion of recurring
edges compared to newly joined edges at each timestamp within a temporal graph. In Figure 10a,
the gray bar represents the count of edges that are previously observed, while the red bar signifies
the quantity of new edges generated at each subsequent time step. The TEA plot illustrates that our
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Figure 10: TEA and TET plots.

dataset exhibits a substantial proportion of newly formed edges at each time step, which means the
transaction graph is highly active. In contrast, a TET plot represents the recurrent pattern of edges
across different time intervals. Edges are colored to indicate whether they appear solely in the training
set (green), solely in the test set (red), or in both sets (orange). As it is time consuming to plot all the
124 million edges in the figure, we randomly sample 2 million edges and show the results in Figure
10b. We have tried to use all the data, but the plotting process was unable to complete within 12
hours. The sampled 2 million edges subset showcases a subtle recurrence pattern, which is consistent
with our analyses in previous sections.
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