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A Implementation Details

A.1 Deep Active Learning Decomposition

For any uncertainty sampling algorithm, picking the top-B most uncertain examples can be easily
decomposed into an iterative procedure that picks the next most uncertain example. Next, for diversity
based deep active learning algorithms, one usually rely on a greedy iterative procedure to collect
a batch, e.g. K-means++ for BADGE [Ash et al.,[2019] and greedy K-centers for Coreset [Sener
and Savarese, [2017]. Lastly, deep active learning algorithms such as Cluster-Margin [Citovsky
et al.|,[2021] and GALAXY [Zhang et al.|[2022] have already proposed their algorithms as iterative
procedures that select unlabeled examples sequentially.

A.2 Implementation of Modified Submodular

Instead of requiring access to a balanced holdout set [[Kothawade et al., 2021], we construct the
balanced set using training examples. We use the Submodular Mutual Information function FLQMI
as suggested by Table 1 of Kothawade et al. [2021]. The proposed greedy submodular optimization is
itself an iterative procedure that selects one example at a time. While SIMILAR usually performs
well, our modification that discards the holdout set is unfortunately ineffective in our experiments.
This is primarily due to the lack of the holdout examples, which may often happen in practical
scenarios.

A.3 Stanford Car Multi-label Dataset
We transform the original labels into 10 binary classes of

. If the brand is “Audi".

. If the brand is “BMW".

. If the brand is “Chevrolet".

. If the brand is “Dodge".

. If the brand is “Ford".

. If the car type is “Convertible".

. If the car type is “Coupe".

. If the car type is “SUV".

. If the car type is “Van".

. If the car is made in or before 2009.

O 0 9 O Lt A W D =

—_
=

A.4 Negative Weighting for Common Classes

For multi-label classifications, for some classes, there could be more positive associations (label of 1s)
than negative associations (label of 0s). Therefore, in those classes, the rarer labels are negative. In

class diverse reward (v’ ,y) in Section IZE, we implement an additional weighting of 17, * vgjy¢,
where * denotes an elementwise multiplication. Here, each element 1/.,,.. ; € {1, —1} takes value

—1 when COUNTY (i) is larger than half the size of labeled set. This negative weighting can been
seen as upsampling negative class associations when positive associations are the majority.

A.5 Model Training

All of our experiments are conducted using the ResNet-18 architecture [He et al.l 2016] pretrained on
ImageNet. We use the Adam optimizer [Kingma and Ba, [2014] with learning rate of le-4 and weight
decay of Se-5.

A.6 Baseline Algorithms

In the original GALAXY work by [Zhang et al.| [2022], their algorithm construct K one-vs-rest
linear graphs, one for each class. GALAXY requires finding the shortest shortest path among all
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K graphs, an operation whose computation scales linearly in K. When K is large, this becomes
computationally prohibitive to run. Therefore, we instead include K separate GALAXY algorithms,
each only bisecting on one of the one-vs-rest graphs. This is equivalent with running K’ GALAXY
algorithms, one for each binary classification task between class ¢ € [K] and the rest. As a baseline,
we interleave these algorithms uniformly at random.

For Uncertainty sampling in multi-label settings, we simply have K individual uncertainty sampling
algorithms, where the i-th algorithm samples the most uncertain example based only on the binary
classification task of class i.

B Proof of Theorem 5.2

Our proof follows a similar procedure from regret analysis for Thompson Sampling of the stochastic
multi-armed bandit problem [Lattimore and Szepesviri, 2020]. Let o/ := {a"/}/L and y'
{ytd }]’3:1 denote the actions and observations from the i-th round. We define the history up to ¢ as
Hy = {a',y', 42, ..., a'~1 y'~1}. Moreover, for each i € [M], we define H; ; = {y* € H, :
at'd = i} as the history of all observations made by choosing the i-th arm (algorithm).

Now we analyze reward estimates at each round ¢. When given history H; and arm i € [M], each
observation y € H; ; is an unbiased estimate of 6" as y ~ Py:. Therefore, for any fixed v*, (v*, y) is
an unbiased estimate of the expected reward (v?, %), which we denote by i*:*.

For each arm 4, we can then obtain empirical reward estimate " i of the true expected reward '’
by gt = m D oyeH, (v, y) where i** = 0if |Hy ;| = O Since expected rewards and reward

estimates are bounded by [—1, 1], by standard sub-Gaussian tail bounds, we can then construct
confidence interval,

‘ ‘ , 1
P (Vi € [M],t € [T)],|a"" — pb'| < d"') > 1— 7
where di% = %};{ff) Additionally, we define upper confidence bound as U*? =

clip;_y 3 (a4 d™).

At each iteration ¢, we have the posterior distribution P(©@ = -|H;) of the ground truth © =
{61}, © = {§'}M, is sampled from this posterior. Consider if = argmax;c;(v*,6%) and
ahl = arg max;¢ 5, (v, o ‘). The distribution of i{ is determined by the posterior P(© = -|H;). The

distribution of a7 is determined by the distribution of ©, which is also P(© = -|H,). Therefore, i’
and o'/ are identically distributed. Furthermore, since the upper confidence bounds are deterministic

functions of ¢ when given H;, we then have E[Ut’”‘t’j |H,] = E[U"|H,).

As a result, we upper bound the Bayesian regret by

T B
BR(TAILOR) = E | > )~ pt:

t=1 j=1

Now, note that since " € [—1,1] we have clip_; ,; (2" +d"*) = clip_., 3 (3" +d"*),
where only the upper clip takes effect. Based on the sub-Gaussian confidence intervals
P (Vi € [M],t € [T],|p"" — p™| < d>") > 1 — 1, we can derive the following two confidence
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565 bounds:
€ [17], Mt’l > elipp_y yy (" +d"))
[M],t € [T], u"" > =" +d""), since pt* < 1

<
m
=)
<
I
=
<
m m
\;#

. M T i =t t,e
Vi€ [M]t € [T],p"" =t > d™) < o

€ [M]vt € [T]7clip[71’1] (ﬂtyi + dt Z) - Nti > 2dt7i)
vie [M],t € [T],p"" +d"" — pt' > 2d")

: 1
Vie [M],t € [T], 5" — p"' > d"") < o7

se6 Now with the decomposition,

BR(TAILOR) = E Zzutﬂi — et
t=1 j=1

T B T B A _
—K Z Zﬂt,ii _ Ut,ii +E ZZ Ut,at’] o umat”

t=1j=1 t=1 j=1

567 we can bound the two expectations individually.

ses  First, to bound E {ZtT:l Zle bt — U4 | we note that pbi* — Ubi* is negative with high

s69 probability. Also, the maximum value this can take is bounded by 2 as ut* Ut € [—1,1]. Therefore,
570 we have

T B T B 1
SNt —ut | < [ SSDT00P(ut <= UM 2 P(ut > UMY | <278 57 =

t=1 j=1 t=1 j=1

571 Next, to bound E {Zt 1 Z Ut ol _ ut’“w} we decompose it similar to the above:

T B T B
E ZZUt,a” ta‘J ZZQP UtaJ_ t,at’j>2dt,i) + ZZth,i

t=1 j=1 t=1 j=1 t=1 j=1

<B4+ ZZ 32log(M1T2)

t=1 j=1 1\/|Htat1|

sz where recall that | H, ;| is the number of samples collected using algorithm ¢ in rounds < ¢.

573 To bound the summation, we utilize the fact that
574 |Hyg1,i] — |Ht i| < B. As aresult, we get

ZZ 32log(MT?)
1\/|Hto/’7|
T M |Hr,l
32log(MT?)- B
DRIPIELS
M
< O(V/B(logT +1log M) Y "+ /|Hrl)
=1

< O(y/B(logT +1log M)) - O(WBMT) = O(B\/MT(log T + log M))

lle ] S £ foreach k € [|Hy |, |Heq1,4]], since

575 where last two inequalities follow from simple algebra and the fact that Y., |Hrp ;| = T'B.

576 Finally, to combine all of the bounds above, we get BR(TAILOR) < B + B +
577 O(By/MT(logT +log M)) = O(B\/MT(log T + log M)).
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C Time Complexity

Let Nipqin denote the total neural network training. The time complexity of collecting each batch
for each active learning algorithm A; can be separated into P; and (Q;, which are the computa-
tion complexity for preprocessing and selection of each example respectively. As examples of
preprocessing, BADGE [Ash et al.,[2019] computes gradient embeddings, SIMILAR [Kothawade
et al.| [2021] further also compute similarity kernels, GALAXY [Zhang et al., 2022] constructs
linear graphs, etc. The selection complexities are the complexities of each iteration of K-means++
in BADGE, greedy submodular optimization in SIMILAR, and shortest shortest path computa-
tion in GALAXY. Therefore, for any individual algorithm Ay, the computation complexity is then
O(Ntrain + TP; + TBQ);) where T is the total number of rounds and B is the batch size. When
running TAILOR , as we do not know which algorithms are selected, we provide a worst case upper
bound of O(Nypain + T - (Zf\il P;) 4T B-max;c[p Qs), where the preprocessing is done for every
candidate algorithm. In practice, some of the preprocessing operations such as gradient embedding
computation could be shared among multiple algorithms, thus only need to be computed once. While
the computation of rewards and Thompson sampling updates incur some extra complexity, they
are usually dominated in practice by the complexity of neural network training and running each
candidate algorithm.
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D Study of Candidate Algorithms

We compare the performance when we use the following two sets of candidate algorithms:

1. Active learning algorithms only: Uncertainty sampling, GALAXY and EMAL for multi-
label classification; Uncertainty sampling, GALAXY and BADGE for multi-class classifica-
tion.

2. Active learning and search algorithms: Uncertainty sampling, GALAXY, MLP, EMAL
and Weak Sup for multi-label classification; Uncertainty sampling, GALAXY, MLP, BADGE
and Modified Submodular for multi-class classification.

Note Modified Submodular is classified as an active search algorithms since we are using a balanced
set of training examples as the conditioning set. We are effectively searching for examples similar to
the ones that are annotated in these classes.

As shown in Figures [5]and [6} regardless of the meta algorithm, the performance is better when using
active learning algorithms as candidates only. Nonetheless, even with active search algorithms as
candidates, TAILOR still outperforms other meta active learning algorithms.
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soo E Full Results

610 All of the results below are averaged from four individual trials except for Imagenet, which is the
611 result of a single trial.

612 E.1 Multi-label Classification
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E.2 Multi-class Classification
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614 E.3 Multi-label Search
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ss F  What Algorithms Does TAILOR Choose?

616 In the following two figures, we can see TAILOR chooses a non-uniform set of algorithms to focus on
617 for each dataset. On CelebA, TAILOR out-perform the best baseline, EMAL sampling, by a significant
618 margin. As we can see, TAILOR rely on selecting a combination of other candidate algorithms instead
619 of only selecting EMAL.

620 On the other hand, for the Stanford car dataset, we see TAILOR ’s selection mostly align with the
baselines that perform well especially in the later phase.
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Figure 20: TAILOR Top-10 Most Selected Candidate Algorithms on CelebA Dataset
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Figure 21: TAILOR Top-10 Most Selected Candidate Algorithms on Stanford Car Dataset
621

622 In the following figures, we plot the number of times the most frequent candidate algorithm is chosen.
623 As can be shown, TAILOR chooses candidate algorithm much more aggressively than other meta
624 algorithms in eight out of the ten settings.
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Figure 26: Kuzushiji-49, Number of Pulls of The Most Frequent Selection
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Figure 27: Caltech256, Number of Pulls of The Most Frequent Selection
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Figure 28: CelebA, Number of Pulls of The Most Frequent Selection
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Figure 29: COCO, Number of Pulls of The Most Frequent Selection
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Figure 30: VOC, Number of Pulls of The Most Frequent Selection
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Figure 31: Stanford Car, Number of Pulls of The Most Frequent Selection
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