
A Implementation Details489

A.1 Deep Active Learning Decomposition490

For any uncertainty sampling algorithm, picking the top-B most uncertain examples can be easily491

decomposed into an iterative procedure that picks the next most uncertain example. Next, for diversity492

based deep active learning algorithms, one usually rely on a greedy iterative procedure to collect493

a batch, e.g. K-means++ for BADGE [Ash et al., 2019] and greedy K-centers for Coreset [Sener494

and Savarese, 2017]. Lastly, deep active learning algorithms such as Cluster-Margin [Citovsky495

et al., 2021] and GALAXY [Zhang et al., 2022] have already proposed their algorithms as iterative496

procedures that select unlabeled examples sequentially.497

A.2 Implementation of Modified Submodular498

Instead of requiring access to a balanced holdout set [Kothawade et al., 2021], we construct the499

balanced set using training examples. We use the Submodular Mutual Information function FLQMI500

as suggested by Table 1 of Kothawade et al. [2021]. The proposed greedy submodular optimization is501

itself an iterative procedure that selects one example at a time. While SIMILAR usually performs502

well, our modification that discards the holdout set is unfortunately ineffective in our experiments.503

This is primarily due to the lack of the holdout examples, which may often happen in practical504

scenarios.505

A.3 Stanford Car Multi-label Dataset506

We transform the original labels into 10 binary classes of507

1. If the brand is “Audi".508

2. If the brand is “BMW".509

3. If the brand is “Chevrolet".510

4. If the brand is “Dodge".511

5. If the brand is “Ford".512

6. If the car type is “Convertible".513

7. If the car type is “Coupe".514

8. If the car type is “SUV".515

9. If the car type is “Van".516

10. If the car is made in or before 2009.517

A.4 Negative Weighting for Common Classes518

For multi-label classifications, for some classes, there could be more positive associations (label of 1s)519

than negative associations (label of 0s). Therefore, in those classes, the rarer labels are negative. In520

class diverse reward hvt
div

, yi in Section 4.1, we implement an additional weighting of t

rare
⇤ vdivt ,521

where ⇤ denotes an elementwise multiplication. Here, each element t

rare,i
2 {1,�1} takes value522

�1 when COUNTt(i) is larger than half the size of labeled set. This negative weighting can been523

seen as upsampling negative class associations when positive associations are the majority.524

A.5 Model Training525

All of our experiments are conducted using the ResNet-18 architecture [He et al., 2016] pretrained on526

ImageNet. We use the Adam optimizer [Kingma and Ba, 2014] with learning rate of 1e-4 and weight527

decay of 5e-5.528

A.6 Baseline Algorithms529

In the original GALAXY work by Zhang et al. [2022], their algorithm construct K one-vs-rest530

linear graphs, one for each class. GALAXY requires finding the shortest shortest path among all531
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K graphs, an operation whose computation scales linearly in K. When K is large, this becomes532

computationally prohibitive to run. Therefore, we instead include K separate GALAXY algorithms,533

each only bisecting on one of the one-vs-rest graphs. This is equivalent with running K GALAXY534

algorithms, one for each binary classification task between class i 2 [K] and the rest. As a baseline,535

we interleave these algorithms uniformly at random.536

For Uncertainty sampling in multi-label settings, we simply have K individual uncertainty sampling537

algorithms, where the i-th algorithm samples the most uncertain example based only on the binary538

classification task of class i.539

B Proof of Theorem 5.2540

Our proof follows a similar procedure from regret analysis for Thompson Sampling of the stochastic541

multi-armed bandit problem [Lattimore and Szepesvári, 2020]. Let ↵t := {↵t,j}B
j=1 and yt :=542

{yt,j}B
j=1 denote the actions and observations from the i-th round. We define the history up to t as543

Ht = {↵1, y1,↵2, y2, ...,↵t�1, yt�1}. Moreover, for each i 2 [M ], we define Ht,i = {yt0,j 2 Ht :544

↵t
0
,j = i} as the history of all observations made by choosing the i-th arm (algorithm).545

Now we analyze reward estimates at each round t. When given history Ht and arm i 2 [M ], each546

observation y 2 Ht,i is an unbiased estimate of ✓i as y ⇠ P✓i . Therefore, for any fixed vt, hvt, yi is547

an unbiased estimate of the expected reward hvt, ✓ii, which we denote by µt,i.548

For each arm i, we can then obtain empirical reward estimate µ̄t,i of the true expected reward µt,i549

by µ̄t,i := 1
1_|Ht,i|

P
y2Ht,i

hvt, yi where µ̄t,i = 0 if |Ht,i| = 0. Since expected rewards and reward550

estimates are bounded by [�1, 1], by standard sub-Gaussian tail bounds, we can then construct551

confidence interval,552

P
�
8i 2 [M ], t 2 [T ], |µ̄t,i � µt,i|  dt,i

�
� 1� 1

T

where dt,i :=
q

8 log(MT 2)
1_|Ht,i| . Additionally, we define upper confidence bound as U t,i =553

clip[�1,1]

�
µ̄t,i + dt,i

�
.554

At each iteration t, we have the posterior distribution P(⇥ = ·|Ht) of the ground truth ⇥ =555

{✓i}M
i=1. b⇥ = {b✓i}M

i=1 is sampled from this posterior. Consider it
?
= argmax

i2M
hvt, ✓ii and556

↵t,j = argmax
i2M

hvt, b✓ii. The distribution of it
?

is determined by the posterior P(⇥ = ·|Ht). The557

distribution of ↵t,j is determined by the distribution of b⇥, which is also P(⇥ = ·|Ht). Therefore, it
?

558

and ↵t,j are identically distributed. Furthermore, since the upper confidence bounds are deterministic559

functions of i when given Ht, we then have E[U t,↵
t,j |Ht] = E[U t,i

t
? |Ht].560

As a result, we upper bound the Bayesian regret by561

BR(TAILOR) = E

2

4
TX

t=1

BX

j=1

µt,i
t
? � µt,↵

t,j

3

5

=E

2

4
TX

t=1

BX

j=1

(µt,i
t
? � U t,i

t
?) + (U t,↵

t,j

� µt,↵
t,j

)

3

5 .

Now, note that since µ̄t,i 2 [�1, 1] we have clip[�1,1]

�
µ̄t,i + dt,i

�
= clip[�1,1]

�
µ̄t,i + dt,i

�
,562

where only the upper clip takes effect. Based on the sub-Gaussian confidence intervals563

P
�
8i 2 [M ], t 2 [T ], |µ̄t,i � µt,i|  dt,i

�
� 1 � 1

T
, we can derive the following two confidence564
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bounds:565

P(8i 2 [M ], t 2 [T ], µt,i > U t,i) = P(8i 2 [M ], t 2 [T ], µt,i > clip[�1,1](µ̄
t,i + dt,i))

= P(8i 2 [M ], t 2 [T ], µt,i > µ̄t,i + dt,i) , since µt,i  1

= P(8i 2 [M ], t 2 [T ], µt,i � µ̄t,i > dt,i)  1

2T
P(8i 2 [M ], t 2 [T ], U t,i � µt,i > 2dt,i) = P(8i 2 [M ], t 2 [T ], clip[�1,1](µ̄

t,i + dt,i)� µt,i > 2dt,i)

 P(8i 2 [M ], t 2 [T ], µ̄t,i + dt,i � µt,i > 2dt,i)

= P(8i 2 [M ], t 2 [T ], µ̄t,i � µt,i > dt,i)  1

2T
.

Now with the decomposition,566

BR(TAILOR) = E

2

4
TX

t=1

BX

j=1

µt,i
t
? � µt,↵

t,j

3

5

=E

2

4
TX

t=1

BX

j=1

µt,i
t
? � U t,i

t
?

3

5+ E

2

4
TX

t=1

BX

j=1

U t,↵
t,j

� µt,↵
t,j

3

5

we can bound the two expectations individually.567

First, to bound E
hP

T

t=1

P
B

j=1 µ
t,i

t
? � U t,i

t
?

i
, we note that µt,i

t
? � U t,i

t
? is negative with high568

probability. Also, the maximum value this can take is bounded by 2 as µt,i, U t,i 2 [�1, 1]. Therefore,569

we have570

E

2

4
TX

t=1

BX

j=1

µt,i
t
? � U t,i

t
?

3

5 

0

@
TX

t=1

BX

j=1

0 · P(µt,i
t
? <= U t,i

t
?) + 2 · P(µt,i

t
? > U t,i

t
?)

1

A  2TB · 1

2T
= B.

Next, to bound E
hP

T

t=1

P
B

j=1 U
t,↵

t,j � µt,↵
t,j
i

we decompose it similar to the above:571

E

2

4
TX

t=1

BX

j=1

U t,↵
t,j

� µt,↵
t,j

3

5 

0

@
TX

t=1

BX

j=1

2P(U t,↵
t,j

� µt,↵
t,j

> 2dt,i)

1

A+

0

@
TX

t=1

BX

j=1

2dt,i

1

A

 B +

0

@
TX

t=1

BX

j=1

s
32 log(MT 2)

1 _ |Ht,↵t,j |

1

A

where recall that |Ht,i| is the number of samples collected using algorithm i in rounds  t.572

To bound the summation, we utilize the fact that 1
1_|Ht,i| 

B

k
for each k 2 [|Ht,i|, |Ht+1,i|], since573

|Ht+1,i|� |Ht,i|  B. As a result, we get574

TX

t=1

BX

j=1

s
32 log(MT 2)

1 _ |Ht,↵t,j |


TX

t=1

MX

i=1

|HT,i|X

k=1

r
32 log(MT 2) ·B

k

 O(
p
B(log T + logM)

MX

i=1

q
|HT,i|)

 O(
p
B(log T + logM)) ·O(

p
BMT ) = O(B

p
MT (log T + logM))

where last two inequalities follow from simple algebra and the fact that
P

M

i=1 |HT,i| = TB.575

Finally, to combine all of the bounds above, we get BR(TAILOR)  B + B +576

O(B
p

MT (log T + logM)) = O(B
p
MT (log T + logM)).577
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C Time Complexity578

Let Ntrain denote the total neural network training. The time complexity of collecting each batch579

for each active learning algorithm Ai can be separated into Pi and Qi, which are the computa-580

tion complexity for preprocessing and selection of each example respectively. As examples of581

preprocessing, BADGE [Ash et al., 2019] computes gradient embeddings, SIMILAR [Kothawade582

et al., 2021] further also compute similarity kernels, GALAXY [Zhang et al., 2022] constructs583

linear graphs, etc. The selection complexities are the complexities of each iteration of K-means++584

in BADGE, greedy submodular optimization in SIMILAR, and shortest shortest path computa-585

tion in GALAXY. Therefore, for any individual algorithm Ai, the computation complexity is then586

O(Ntrain + TPi + TBQi) where T is the total number of rounds and B is the batch size. When587

running TAILOR , as we do not know which algorithms are selected, we provide a worst case upper588

bound of O(Ntrain+T · (
P

M

i=1 Pi)+TB ·maxi2[M ] Qi), where the preprocessing is done for every589

candidate algorithm. In practice, some of the preprocessing operations such as gradient embedding590

computation could be shared among multiple algorithms, thus only need to be computed once. While591

the computation of rewards and Thompson sampling updates incur some extra complexity, they592

are usually dominated in practice by the complexity of neural network training and running each593

candidate algorithm.594
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D Study of Candidate Algorithms595

We compare the performance when we use the following two sets of candidate algorithms:596

1. Active learning algorithms only: Uncertainty sampling, GALAXY and EMAL for multi-597

label classification; Uncertainty sampling, GALAXY and BADGE for multi-class classifica-598

tion.599

2. Active learning and search algorithms: Uncertainty sampling, GALAXY, MLP, EMAL600

and Weak Sup for multi-label classification; Uncertainty sampling, GALAXY, MLP, BADGE601

and Modified Submodular for multi-class classification.602

Note Modified Submodular is classified as an active search algorithms since we are using a balanced603

set of training examples as the conditioning set. We are effectively searching for examples similar to604

the ones that are annotated in these classes.605

As shown in Figures 5 and 6, regardless of the meta algorithm, the performance is better when using606

active learning algorithms as candidates only. Nonetheless, even with active search algorithms as607

candidates, TAILOR still outperforms other meta active learning algorithms.608

Figure 5: SVHN, Balanced Accuracy

Figure 6: CelebA, mAP
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E Full Results609

All of the results below are averaged from four individual trials except for Imagenet, which is the610

result of a single trial.611

E.1 Multi-label Classification612

(a) Mean Average Precision (b) Number of Labels in Rarest Class

Figure 7: CelebA

(a) Mean Average Precision (b) Number of Labels in Rarest Class

Figure 8: COCO
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(a) Mean Average Precision (b) Number of Labels in Rarest Class

Figure 9: VOC

(a) Mean Average Precision (b) Number of Labels in Rarest Class

Figure 10: Stanford Car
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E.2 Multi-class Classification613

(a) Balanced Accuracy (b) Number of Labels in Rarest Class

Figure 11: CIFAR-10, 2 classes

(a) Balanced Accuracy (b) Number of Labels in Rarest Class

Figure 12: CIFAR-100, 10 classes

(a) Balanced Accuracy (b) Number of Labels in Rarest Class

Figure 13: SVHN, 2 classes
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(a) Balanced Accuracy (b) Number of Labels in Rarest Class

Figure 14: Kuzushiji-49

(a) Balanced Accuracy (b) Number of Labels in Rarest Class

Figure 15: Caltech256
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E.3 Multi-label Search614

Figure 16: CelebA, Total Number of Positive Labels

Figure 17: COCO, Total Number of Positive Labels

Figure 18: VOC, Total Number of Positive Labels
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Figure 19: Stanford Car, Total Number of Positive Labels
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F What Algorithms Does TAILOR Choose?615

In the following two figures, we can see TAILOR chooses a non-uniform set of algorithms to focus on616

for each dataset. On CelebA, TAILOR out-perform the best baseline, EMAL sampling, by a significant617

margin. As we can see, TAILOR rely on selecting a combination of other candidate algorithms instead618

of only selecting EMAL.619

On the other hand, for the Stanford car dataset, we see TAILOR ’s selection mostly align with the620

baselines that perform well especially in the later phase.

Figure 20: TAILOR Top-10 Most Selected Candidate Algorithms on CelebA Dataset

Figure 21: TAILOR Top-10 Most Selected Candidate Algorithms on Stanford Car Dataset
621

In the following figures, we plot the number of times the most frequent candidate algorithm is chosen.622

As can be shown, TAILOR chooses candidate algorithm much more aggressively than other meta623

algorithms in eight out of the ten settings.624
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Figure 22: CIFAR-10, 2 Classes, Number of Pulls of The Most Frequent Selection

Figure 23: CIFAR-100, 10 Classes, Number of Pulls of The Most Frequent Selection

Figure 24: SVHN, 2 Classes, Number of Pulls of The Most Frequent Selection
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Figure 25: ImageNet-1k, Number of Pulls of The Most Frequent Selection

Figure 26: Kuzushiji-49, Number of Pulls of The Most Frequent Selection

Figure 27: Caltech256, Number of Pulls of The Most Frequent Selection
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Figure 28: CelebA, Number of Pulls of The Most Frequent Selection

Figure 29: COCO, Number of Pulls of The Most Frequent Selection

Figure 30: VOC, Number of Pulls of The Most Frequent Selection
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Figure 31: Stanford Car, Number of Pulls of The Most Frequent Selection
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