APPENDIX FOR "CHATSR: CONVERSATIONAL SYMBOLIC REGRESSION"

A APPENDIX: DETAILED SETTINGS OF HYPERPARAMETERS DURING TRAINING THE SETTRANSFORMER.

764	Table 3: Hyperparameters of SetTransformer			
765				
766	hyperparameters	Numerical value		
767	Np	0		
768	activation	'relu'		
769	bit16	True		
770	dec_layers	5		
771	dec_pf_dim	512		
772	dim_hidden	512		
773	dim_input	3		
774	dropout	0		
775	input_normalization	False		
776	length_eq	60		
777	linear	False		
778	ln	True		
770	lr 	0.0001		
700	mean n Long	0.5		
700	n_r_enc	J		
781	num fasturas	20		
782	num heads	20		
783	num inds	50		
784	output dim	50 60		
785	sinuisodal embeddings	False		
786	src pad idx	0		
787	std	0.5		
788	trg pad idx	0		
789				
790				
791				
792				
793				
794				
795				
796				
797				

T-1.1. 2. II. of SotTronofo

B APPENDIX: DETAILS OF THE EXPRESSIONS FOR THE VARIOUS PROPERTIES INVOLVED IN THE ZERO-SHOT EXPERIMENT

To test ChatSR's Zero-shot capability, we designed some properties not included in the training dataset for testing. They include Continuous Monotonic Decreasing, Continuous Globally Monotonically Increasing, Origin-Centered Symmetric, Continuous Convex and Continuous Concave are the five properties. For each property, 10 functions satisfying this property are designed. The form of the function is as follows Table 4,5,6,7,8.

Function Index	Expression	Domain
1	$f(x) = -x - \ln(x+1)$	$x \ge 0$
2	$f(x) = e^{-x} - x^2$	\mathbb{R}
3	$f(x) = \frac{1}{x+1} - \sqrt{x}$	x > 0
4	$f(x) = 10 - x^2 - \arctan(x)$	\mathbb{R}
5	$f(x) = \frac{1}{\sqrt{x+1}} - \ln(x+2)$	$x \ge 0$
6	$f(x) = e^{-x}\cos(x) + \frac{1}{x+1}$	x > 0
7	$f(x) = -\ln(x+1) + x^{-0.5}$	x > 0
8	$f(x) = \sqrt{x+1} - 3\ln(x+2)$	$x \ge 0$
9	$f(x) = e^{-x^2} - x$	\mathbb{R}
10	$f(x) = -x^{3/2} - \tan^{-1}(x)$	$x \ge 0$

Table 4: List of Continuous Monotonic Decreasing Functions

Function Index	Expression	Domain
1	$f(x) = x + \ln(x^2 + 1)$	\mathbb{R}
2	$f(x) = e^x + x^2$	\mathbb{R}
3	$f(x) = x + \arctan(x)$	\mathbb{R}
4	$f(x) = x\sqrt{x^2 + 1}$	\mathbb{R}
5	$f(x) = x^3 + 3x$	\mathbb{R}
6	$f(x) = x + \sqrt{x+2} + \ln(x^2 + 1)$	$x \ge -2$
7	$f(x) = e^x + \ln(x^2 + 1)$	\mathbb{R}
8	$f(x) = \sqrt{x^2 + 1} + x^3$	\mathbb{R}
9	$f(x) = x + \arcsin(\tanh(x))$	\mathbb{R}
10	$f(x) = \ln(x+2) + e^x$	x > -2

Table 5: List of Continuous Globally Monotonically Increasing Functions

864 865	Function Index	Expressions	Domain
866	1	$f(x) = x\sin(x)$	$x \in \mathbb{R}$
867	2	$f(x) = 3x^3 - 2x$	$x \in \mathbb{R}$
868	3	$f(x) = \log(1+x) - \log(1-x)$	$x \in (-1, 1)$
869	4	$f(x) = e^x - e^{-x}$	$x \in \mathbb{R}$
870	5	$f(x) = \arctan(x) - \arctan(-x)$	$x \in \mathbb{R}$
871	6	$f(x) = x(x^2 + 3)$	$x \in \mathbb{R}$
872	° 7	$f(x) = x^5 - 10x^3 + 9x$	$x \in \mathbb{R}$
874	8	$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$	$x \in \mathbb{R}$
875	9	$f(x) = 5 \min(x) - \frac{1}{2}$ $f(x) = 7x - x^7$	$x \in \mathbb{R}$
876	10	$f(x) = x\cos(x) + \sin(x)$	$x \in \mathbb{R}$
877		$J(w) = w \cos(w) + \sin(w)$	

Table 6: Expressions that are Origin-Centered Symmetric (Odd Functions)

Function Index	Expression	Domain
1	$f(x) = x^4 + 2x^2 + 1$	$x \in \mathbb{R}$
2	$f(x) = e^x + x^2$	\mathbb{R}
3	$f(x) = x^2 + \log(1 + e^x)$	$x \in \mathbb{R}$
4	$f(x) = x\sinh(x) + \cosh(x)$	$x \in \mathbb{R}$
5	$f(x) = x^2 + \sqrt{x^2 + 1}$	$x \in \mathbb{R}$
6	$f(x) = e^{x^2} - x$	$x \in \mathbb{R}$
7	$f(x) = x^2 + \arctan(x)$	$x \in \mathbb{R}$
8	$f(x) = \sqrt{1 + e^x}$	$x \in \mathbb{R}$
9	$f(x) = x + \log(1 + x^2)$	$x \in \mathbb{R}$
10	$f(x) = x^6 + x^4 - x^3 + x + e^{-x}$	$x \in \mathbb{R}$

Table 7: List of Continuous Convex Functions

Function Index	Expression	Domain
1	$f(x) = -x^4 + 2x^2 + 1$	$x \in \mathbb{R}$
2	$f(x) = -e^x + 3x - 2$	$x \in \mathbb{R}$
3	$f(x) = -x^2 + \log(1 + x^2)$	$x \in \mathbb{R}$
4	$f(x) = -\cosh(x)$	$x \in \mathbb{R}$
5	$f(x) = -x^2 - \sqrt{x^2 + 1}$	$x \in \mathbb{R}$
6	$f(x) = -e^{x/2} - x^2$	$x \in \mathbb{R}$
7	$f(x) = \log(1 + e^{-x})$	$x \in \mathbb{R}$
8	$f(x) = -\sqrt{1+x^2}$	$x \in \mathbb{R}$
9	$f(x) = -\log(x^2 + 1)$	$x \in \mathbb{R}$
10	$f(x) = -x^6 - x^4 + x^3 - x + e^{-x^2}$	$x \in \mathbb{R}$

Table 8: List of Continuous Concave Functions

C APPENDIX: TEST DATASET IN DETAIL

Table 9,10,11 shows in detail the expression forms of the data set used in the experiment, as well as the sampling range and sampling number. Some specific presentation rules are described below

• The variables contained in the regression task are represented as $[x_1, x_2, ..., x_n]$.

• U(a, b, c) signifies c random points uniformly sampled between a and b for each input variable. Different random seeds are used for training and testing datasets.

• E(a, b, c) indicates c points evenly spaced between a and b for each input variable.

922			
923	Name	Expression	Dataset
924	Nguyen-1	$\frac{x_1^2 + x_2^2 + x_1}{x_1^2 + x_1}$	U(-1, 1, 20)
925	Nguven-2	$x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)
926	Nguyen-3	$x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)
927	Nguyen-4	$x_1^6 + x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)
928	Nguyen-5	$\sin(x_1^2)\cos(x_1) - 1$	U(-1, 1, 20)
929	Nguyen-6	$\sin(x_1) + \sin(x_1 + x_1^2)$	U(-1, 1, 20)
930	Nguyen-7	$\log(x_1 + 1) + \log(x_1^2 + 1)$	U(0, 2, 20)
931	Nguyen-8	$\sqrt{x_1}$	U(0, 4, 20)
932	Nguyen-9	$\sin(x_1) + \sin(x_2^2)$	U(0, 1, 20)
933	Nguyen-10	$2\sin(x_1)\cos(x_2)$	U(0, 1, 20)
934	Nguyen-11	$x_{1}^{x_{2}}$	U(0, 1, 20)
935	Nguyen-12	$x_1^4 - x_1^3 + rac{1}{2}x_2^2 - x_2$	U(0, 1, 20)
936	Nguyen-2'	$4r_{+}^{4} + 3r_{-}^{3} + 2r_{-}^{2} + r_{-}$	U(-1, 1, 20)
937	Nguyen-5'	$\sin(x_1^2)\cos(x_1) = 2$	U(-1, 1, 20)
938	Nguyen-8'	$\frac{3}{2}$	U(0, 4, 20)
939	Nguyen-8"	$\sqrt[3]{x^2}$	U(0, 4, 20)
940		<u>V - 1</u>	
941	Nguyen-1 ^c	$3.39x_1^3 + 2.12x_1^2 + 1.78x$	U(-1, 1, 20)
942	Nguyen-5°	$\sin(x_1^2)\cos(x) = 0.75$	U(-1, 1, 20)
945	Nguyen-7°	$\log(x+1.4) + \log(x_1^2+1.3)$	U(0, 2, 20)
945	Nguyen-8	$\sqrt{1.23x}$	U(0, 4, 20)
946	Nguyen-10	$\sin(1.5x)\cos(0.5x_2)$	0(0, 1, 20)
947	Korns-1	$1.57 + 24.3 * x_1^4$	U(-1, 1, 20)
948	Korns-2	$0.23 + 14.2 \frac{(x_4 + x_1)}{(3x_2)}$	U(-1, 1, 20)
949	Korns-3	$4.9\frac{(x_2-x_1+\frac{1}{x_3})}{(3x_3))} - 5.41$	U(-1, 1, 20)
950	Korns-4	$0.13sin(x_1) - 2.3$	U(-1, 1, 20)
951	Korns-5	$3+2.13log(x_5)$	U(-1, 1, 20)
952	Korns-6	$1.3 + 0.13\sqrt{ x_1 }$	U(-1, 1, 20)
953	Korns-7	$2.1(1 - e^{-0.55x_1})$	U(-1, 1, 20)
954	Korns-8	$6.87 + 11\sqrt{ 7.23x_1x_4x_5 }$	U(-1, 1, 20)
955	Korns-9	$12\sqrt{ 4.2x_1x_2x_2 }_2$	U(-1, 1, 20)
956	Korns-10	$0.81 + 24.3 \frac{2x_1 + 3x_2^2}{4x_3^3 + 5x_4^4}$	U(-1, 1, 20)
957	Korns-11	$6.87 + 11cos(7.23x_1^3)$	U(-1, 1, 20)
958	Korns-12	$2 - 2.1 cos(9.8 x_1^3) sin(1.3 x_5)$	U(-1, 1, 20)
959	Korns-13	$32.0 - 3.0 \frac{tan(x_1)}{tan(x_2)} \frac{tan(x_3)}{tan(x_4)}$	U(-1, 1, 20)
960	Korns-14	$22.0 - (4.2\cos(x_1) - \tan(x_2))\frac{tanh(x_3)}{\sin(x_4)}$	U(-1, 1, 20)
961	Korns-15	$12.0 - \frac{6.0tan(x_1)}{e^{x_2}} (log(x_3) - tan(x_4))))$	U(-1, 1, 20)
962	Jin-1	$2.5x_1^4 - 1.3x_1^3 + 0.5x_2^2 - 1.7x_2$	U(-3, 3, 100)
963	Jin-2	$8.0x_1^2 + 8.0x_2^3 - 15.0$	U(-3, 3, 100)
964	Jin-3	$0.2x_1^3 + 0.5x_2^3 - 1.2x_2 - 0.5x_1$	U(-3, 3, 100)
965	Jin-4	$1.5 \exp x + 5.0 \cos(x_2)$	U(-3, 3, 100)
966	Jin-5	$6.0sin(x_1)cos(x_2)$	U(-3, 3, 100)
967	Jin-6	$1.35x_1x_2 + 5.5sin((x_1 - 1.0)(x_2 - 1.0))$	U(-3, 3, 100)
968			/

Table 9: Specific formula form and value range of the three data sets Nguyen, Korns, and Jin.

972			
973			
974	Name	Expression	Dataset
975	Neat-1	$x_1^4 + x_1^3 + x_1^2 + x$	U(-1, 1, 20)
976	Neat-2	$x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1^3$	U(-1, 1, 20)
977	Neat-3	$\sin(x_1^2)\cos(x) - 1$	U(-1, 1, 20)
978	Neat-4	$\log(x+1) + \log(x_1^2 + 1)$	$\mathrm{U}(0,2,20)$
979	Neat-5	$2\sin(x)\cos(x_2)$	U(-1, 1, 100)
980	Neat-6	$\sum_{k=1}^{x} \frac{1}{k}$	E(1, 50, 50)
981	Neat-7	$2 - 2.1\cos(9.8x_1)\sin(1.3x_2)$	$E(-50, 50, 10^5)$
982	Neat-8	$\frac{e^{-(x_1)^2}}{1.2+(x_2-2.5)^2}$	U(0.3, 4, 100)
983	Neat-9	$\frac{1}{1+r^{-4}} + \frac{1}{1+r^{-4}}$	E(-5, 5, 21)
984		$1+x_1$ $1+x_2$	W(1 1 00)
985	Keijzer-1	$0.3x_1 \sin(2\pi x_1)$	U(-1, 1, 20)
986	Keijzer-2	$2.0x_1 sin(0.5\pi x_1)$	U(-1, 1, 20)
987	Keijzer-3	$0.92x_1 sin(2.41\pi x_1)$	U(-1, 1, 20)
988	Keijzer-4	$x_1^*e^{-1}\cos(x_1)\sin(x_1)\sin(x_1)^*\cos(x_1) - 1$	U(-1, 1, 20)
989	Keijzer-5	$3 + 2.13log(x_5)$ $x_1(x_{1+1})$	U(-1, 1, 20)
990	Keijzer-6		U(-1, 1, 20)
991	Keijzer-/	$log(x_1)$	U(0, 1, 20)
992	Keijzer-8	$\sqrt{(x_1)}$	U(0, 1, 20)
993	Keijzer-9	$log(x_1 + \bigvee_{x_2} x_1^2 + 1)$	U(-1, 1, 20)
994	Keijzer-10		U(-1, 1, 20)
995	Keijzer-11	$x_1x_2 + sin((x_1 - 1)(x_2 - 1))$	U(-1, 1, 20)
996	Keijzer-12	$x_1^4 - x_1^5 + \frac{-2}{2} - x_2$	U(-1, 1, 20)
997	Keijzer-13	$6sin(x_1)cos(x_2)$	U(-1, 1, 20)
998	Keijzer-14	$\frac{\overline{2+x_1^2+x_2^2}}{2+x_1^2+x_2^2}$	U(-1, 1, 20)
999	Keijzer-15	$\frac{x_1^3}{5} + \frac{x_2^3}{2} - x_2 - x_1$	U(-1, 1, 20)
1000	Livermore-1	$\frac{1}{3} + x_1 + sin(x_1^2))$	U(-3, 3, 100)
1001	Livermore-2	$sin(x_1^2) * cos(x1) - 2$	U(-3, 3, 100)
1002	Livermore-3	$sin(x_1^3) * cos(x_1^2)) - 1$	U(-3, 3, 100)
1003	Livermore-4	$log(x_1 + 1) + log(x_1^2 + 1) + log(x_1)$	U(-3, 3, 100)
1004	Livermore-5	$x_1^4 - x_1^3 + x_2^2 - x_2$	U(-3, 3, 100)
1005	Livermore-6	$4x_1^4 + 3x_1^3 + 2x_1^2 + x_1$	U(-3, 3, 100)
1000	Livermore-7	$rac{(exp(x1)-exp(-x_1)}{2})$	U(-1, 1, 100)
1007	Livermore-8	$rac{(exp(x1)+exp(-x1))}{3}$	U(-3, 3, 100)
1000	Livermore-9	$x_1^9 + x_1^8 + x_1^7 + x_1^6 + x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 100)
1010	Livermore-10	$6 * sin(x_1)cos(x_2)$	U(-3, 3, 100)
1011	Livermore-11	$\frac{x_1^2 x_2^2}{(x_1+x_2)}$	U(-3, 3, 100)
1012	Livermore-12	$\frac{x_5}{\frac{x_1}{3}}$	U(-3, 3, 100)
1013	Livrenne 12	$\frac{x_2}{1}$	U(2,2,100)
1014	Livermore-13	x_1^3	U(-3, 3, 100)
1015	Livermore-14	$x_1 + x_1 + x_1 + \sin(x_1) + \sin(x_2)$ $\frac{1}{E}$	U(-1, 1, 100)
1016	Livermore-15	x_1^2	U(-3, 3, 100)
1017	Livermore-16	x_1^3	U(-3, 3, 100)
1018	Livermore-17	$4sin(x_1)cos(x_2)$	U(-3, 3, 100)
1019	Livermore-18	$\sin(x_1^2) * \cos(x_1) - 5$	U(-3, 3, 100)
1020	Livermore-19	$x_1^3 + x_1^4 + x_1^2 + x_1$	U(-3, 3, 100)
1021	Livermore-20	$e^{(-x_1)}$	U(-3, 3, 100)
1022	Livermore-21	$x_1^{\circ} + x_1^{\prime} + x_1^{\circ} + x_1^{\circ} + x_1^{\circ} + x_1^{\circ} + x_1^{\circ} + x_1^{2} + x_1$	U(-1, 1, 20)
1023	Livermore-22	$e^{(-0.0x1)}$	U(-3, 3, 100)

1024 1025

Table 10: Specific formula form and value range of the three data sets neat, Keijzer, and Livermore.

1029			
1030			
1031			
1032			
1033			
1034			
1035			
1036	Name	Expression	Dataset
1037		$= (x_1 - 1)^2$	Duniot
1038	Vladislavleva-1	$\frac{(e^{-(x^2-1)})}{(1.2+(x^2-2.5)^2))}$	U(-1, 1, 20)
1039	Vladislavleva-2	$e^{-x_1}x_1^3\cos(x_1)\sin(x_1)(\cos(x_1)\sin(x_1)^2-1)$	U(-1, 1, 20)
1040	Vladislavleva-3	$e^{-x_1}x_1^3\cos(x_1)\sin(x_1)(\cos(x_1)\sin(x_1)^2-1)(x_2-5)$	U(-1, 1, 20)
1041	Vladislavleva-4	$\frac{10}{5+(x_1-3)^2+(x_2-3)^2+(x_3-3)^2+(x_4-3)^2+(x_5-3)^2}$	U(0, 2, 20)
1042	Vladislavleva-5	$30(x_1-1)\frac{x_3-1}{(x_1-10)}x_2^2$	U(-1, 1, 100)
1043	Vladislavleva-6	$6sin(x_1)cos(x_2)$	E(1, 50, 50)
1044	Vladislavleva-7	$2 - 2.1\cos(9.8x)\sin(1.3x_2)$	$E(-50, 50, 10^5)$
1045	Vladislavleva-8	$\frac{e^{-(x-1)^2}}{1+2+(x-2)^{5}}$	U(0.3, 4, 100)
1046		$1.2+(x_2-2.3)$	U(1 1 20)
1047	Test-2	$3.14x_1$	U(-1, 1, 20)
1048	Const-Test-T	$5x_{\overline{1}}$	U(-1, 1, 20)
1049	Grammar VAE-1	$1/3 + x1 + sin(x_1))$	U(-1, 1, 20)
1050	Sine	$sin(x_1) + sin(x_1 + x_1))$	U(-1, 1, 20)
1051	Nonic	$x_1^* + x_1^* + x_1^*$	U(-1, 1, 100)
1052	Pagie-1	$\frac{1}{1+x_1^{-4}+\frac{1}{1+x_2^{-4}}}$	E(1, 50, 50)
1053	Meier-3	$\frac{x_1^2 x_2^2}{(x_1 + x_2)}$	$E(-50, 50, 10^5)$
1054	Meier-4	$\frac{x_1}{\frac{x_1}{3}}$	U(0.3, 4, 100)
1055	Poly-10	x_{2}^{2}	F(-1, 1, 1, 100)
1056	1019-10	$x_1x_2 + x_3x_4 + x_5x_6 + x_1x_7x_9 + x_3x_6x_{10}$	L(1, 1, 100)
1057	Constant-1	$3.39 * x_1^3 + 2.12 * x_1^2 + 1.78 * x_1$	U(-4, 4, 100)
1058	Constant-2	$sin(x_1^2) * cos(x_1) - 0.75$	U(-4, 4, 100)
1059	Constant-3	$sin(1.5 * x_1) * cos(0.5 * x_2)$	U(0.1, 4, 100)
1060	Constant-4	$2.7 * x_1^{-2}$	U(0.3, 4, 100)
1061	Constant-5	$sqrt(1.23 * x_1)$	U(0.1, 4, 100)
1062	Constant-6	$x_1^{0.420}$	U(0.0, 4, 100)
1063	Constant-7	$2*sin(1.3*x_1)*cos(x_2)$	U(-4, 4, 100)
1064	Constant-8	$log(x_1 + 1.4) + log(x_1, 2 + 1.3)$	U(-4, 4, 100)
1065	R1	$\frac{(x_1+1)^3}{x_1^2-x_2+1)}$	U(-5, 5, 100)
1066	R2	$\frac{(x_1^2 - 3 + x_1^2 + 1)}{(x_1^2 - 3 + x_1^2 + 1)}$	U(-4, 4, 100)
1067		$x_1^2 + 1) \\ x_1^6 + x_2^5)$	
1068	R3	$x_1^4 + x_1^2 + x_$	U(-4, 4, 100)

Table 11: Specific formula form and value range of the three data sets Vladislavleva and others.

APPENDIX: CHATSR TESTS ON AIFEYNMAN DATASET. D

In our study, we conducted an evaluation of our novel symbol regression algorithm, termed ChatSR, leveraging the AI Feynman dataset, which comprises a diverse array of problems spanning various subfields of physics and mathematics, including mechanics, thermodynamics, and electromagnetism. Originally, the dataset contained 100,000 data points; however, for a more rigorous assessment of ChatSR's efficacy, our analysis was deliberately confined to a subset of 100 data points. Through the application of ChatSR for symbol regression on these selected data points, we meticulously calculated the R^2 values to compare the algorithm's predictions against the true solutions.

The empirical results from our investigation unequivocally affirm that ChatSR possesses an excep-tional ability to discern the underlying mathematical expressions from a constrained sample size. Notably, the R^2 values achieved were above 0.99 for a predominant portion of the equations, under-scoring the algorithm's remarkable accuracy in fitting these expressions. These findings decisively position ChatSR as a potent tool for addressing complex problems within the domains of physics and mathematics. The broader implications of our study suggest that ChatSR holds considerable promise for a wide range of applications across different fields. Detailed experimental results are presented in Table 12 and Table 13.

1134	Feynman	Equation	R^2
1135	I.6.20a	$f = e^{-\theta^2/2} / \sqrt{2\pi}$	0.9989
1136	1620	$f = e^{-\frac{\theta^2}{2\sigma^2}} / \sqrt{2\pi\sigma^2}$	0 9973
1137	1.0.20	$\int \frac{-(\theta - \theta_1)^2}{(\theta - \theta_1)^2} / \sqrt{2\pi}$	0.0421
1138	1.0.20D	$f = e \frac{2\sigma^2}{\sqrt{2\pi\sigma^2}} \frac{\sqrt{2\pi\sigma^2}}{\sqrt{2\pi\sigma^2}}$	0.9421
1139	1.8.14	$ a = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ F = \frac{Gm_1m_2}{Gm_1m_2} $	0.9415
1140	1.7.10 I 10 7	$ \Gamma = \frac{1}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \\ Gm_1 m_2 $	0.9855
1141	I.10.7 I 11 10	$\Gamma = \frac{1}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ $A = x_1 y_1 + x_2 y_2 + x_2 y_3$	0.9724
1142	I.12.1	$F = \mu N_n$	0.9891
1143	I.12.2	$F = \frac{q_1 q_2}{4\pi\epsilon r^2}$	0.9999
1144	I.12.4	$E_f = \frac{4\pi \epsilon_{q_1}}{4\pi \epsilon r^2}$	0.9939
1145	I.12.5	$F = q_2 E_f$ $F = Q(E + Busin \theta)$	0.9999
11/7	I.12.11 I 13.4	$F = \mathcal{Q}(E_f + Dv \sin \theta)$ $K - \frac{1}{2}m(v^2 + u^2 + w^2)$	0.9985
11/2	I.13.4 I.13.12		0.9859
11/0	I.14.3	U = mqz	1.0
1150	L14.4	$U = \frac{k_{spring}x^2}{k_s + k_s + k$	0.9926
1151	I.15.3x	$x_1 = \frac{2}{\sqrt{x-ut}}$	0.9828
1152	T 15 O	$\sqrt{\frac{1-u^2/c^2}{t-ux/c^2}}$	0.0722
1153	1.15.3t	$t_1 = \frac{t_1}{\sqrt{1 - u^2/c^2}}$	0.9732
1154	I.15.10	$p = \frac{m_0 v}{\sqrt{1 - v^2/c^2}}$	0.9810
1155	I.16.6	$v_1 = \frac{u+v}{1+uv/c^2}$	0.9984
1156	I.18.4	$r = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2}$	0.9818
1157	I.18.12	$\tau = rF\sin\theta^2$	0.9928
1158	I.18.16	$L = mrv\sin\theta$	0.9993
1159	1.24.6 1.25.13	$E = \frac{1}{4}m(\omega^2 + \omega_0)x^2$ $V = \frac{q}{4}$	0.9981
1160	I.25.15 I.26.2	$v_e = \overline{c}$ $\theta_1 = \arcsin(n\sin\theta_2)$	0.9992
1161	I.27.6	$f_f = \frac{1}{1 + n}$	0.9914
1162	I.29.4	$k = \frac{\omega}{d_1} + \frac{1}{d_2}$	1.0
1163	I.29.16	$x = \sqrt[c]{x_1^2 + x_2^2 - 2x_1x_2\cos(\theta_1 - \theta_2)}$	0.9827
1164	I.30.3	$I_{*} = I_{*0} \frac{\sin^{2}(n\theta/2)}{1 + 2}$	0.9937
1165	L30.5	$\theta = \arcsin(\frac{\lambda}{2})$	0.9917
1166	1.32.5	$P = \frac{q^2 a^2}{q^2 a^2}$	0.9933
1167	I.32.17	$P = (\frac{1}{2} \epsilon c E_f^2) (8\pi r^2/3) (\omega^4/(\omega^2 - \omega_0^2)^2)$	0.991
1168	I.34.8	$\omega = \frac{qv_B}{r}$	0.9999
1169	I.34.10	$\omega = \frac{P_{\omega_0}}{1 - v/c}$	0.9913
1170	I.34.14	$\omega = \frac{1 + v/c}{\sqrt{1 - 2 + c^2}} \omega_0$	0.9918
1171	I.34.27	$E = \hbar\omega^{\sqrt{1 - v^2/c^2}}$	0.9972
1172	I.37.4	$I_* = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	0.9827
1173	I.38.12	$r = \frac{4\pi\epsilon\hbar^2}{ma^2}$	0.9983
1174	I.39.10	$E = \frac{3}{2}p_F V$	0.9965
1170	I.39.11	$E = \frac{1}{\gamma - 1} p_F V$	0.9792
1177	I.39.22	$P_F = \frac{nk_b T}{V_{max}}$	0.9935
1178	I.40.1	$n = n_0 e^{-\frac{mgx}{k_b T}}$	0.9799
1179	I.41.16	$L_{rad} = \frac{\hbar\omega^3}{\underline{\hbar\omega}}$	0.9983
1180	1 42 16	$\frac{\pi^2 c^2 (e^{k_b T} - 1)}{\mu_{drift} q V_e}$	0.009.1
1181	1.45.16 I 43 31	$v = \frac{d}{dr}$ $D = u_{r}k_{r}T$	0.9981
1182	I.43.43	$\kappa = \frac{1}{k_b v} \frac{k_b v}{k_b t}$	0.9347
1183	I.44.4	$E = \frac{\gamma^{-1}}{nk_bT} \frac{A}{\ln(\frac{V_2}{V_2})}$	0.9024
1184	1 47 23	$c = \sqrt{\frac{\gamma pr}{\gamma pr}}$	0.9724
1185	1.77.23	$c = \sqrt{\frac{\rho}{\rho}}$	0.9724
1186	1.48.20	$E = \frac{mc}{\sqrt{1 - v^2/c^2}}$	0.8902
1187	I.50.26	$x = x_1^{\cdot} [\cos(\omega t) + \alpha \cos(\omega t)^2]$	0.9999

Table 12: Tested Feynman Equations, part 1.

1188			
1189	Feynman	Equation	R^2
1190	II.2.42	$\mathbf{P} = \frac{\kappa (T_2 - T_1)A}{d}$	0.8824
1191	II.3.24	$F_E = \frac{P^a}{4\pi r^2}$	0.9820
1192	II.4.23	$V_e = \frac{q}{4\pi\epsilon r}$	0.9888
1193	II.6.11	$V_e = \frac{1}{4\pi\epsilon} \frac{p_d \cos\theta}{r^2}$	0.9837
1194	II.6.15a	$E_f = \frac{3}{4\pi\epsilon} \frac{p_d z}{r^5} \sqrt{x^2 + y^2}$	0.9235
1105	II.6.15b	$E_f = \frac{3}{4\pi\epsilon} \frac{\dot{p}_d}{r^3} \cos\theta \sin\theta$	0.9928
1196	II.8.7	$E = \frac{3}{5} \frac{q^2}{4\pi\epsilon d}$	0.9827
1107	II.8.31	$E_{den} = \frac{\epsilon E_f^2}{\epsilon E_f}$	0.9999
1108	II.10.9	$E_f = \frac{\sigma_{den}}{1} \frac{1}{1+\alpha}$	0.9933
1100	II.11.3	$x = \frac{qE_f}{qE_f}$	0.9918
1200	II 11 7	$m(\omega_0^2 - \omega^2)$ $m(\omega_0^2 - \omega^2)$	0.8027
1200	11.11./	$n = n_0(1 + \frac{k_b T}{k_b T})$	0.8927
1201	II.11.20	$P_* = \frac{n_\rho p_d L_f}{3k_b T}$	0.8355
1202	II.11.27	$P_* = \frac{n\alpha}{1 - n\alpha/3} \epsilon E_f$	0.9925
1203	II.11.28	$\theta = 1 + \frac{n\alpha}{1 - (n\alpha/3)}$	0.9992
1204	II.13.17	$B = \frac{1}{4\pi\epsilon c_o^2} \frac{2I}{r}$	0.9993
1205	II.13.23	$\rho_c = \frac{\rho_{c_0}}{\sqrt{1 - v^2/c^2}}$	0.9902
1200	II.13.34	$j = \frac{\sqrt{\rho_{c_0} v}}{\sqrt{\rho_{c_0} v}}$	0.9827
1207	II 15 4	$\int \frac{\sqrt{1-v^2/c^2}}{E - \mu_M B \cos \theta}$	0 9997
1206	II.15.1 II.15.5	$E = -p_d E_f \cos \theta$	0.9973
1209	II.21.32	$V_e = \frac{1}{4\pi\epsilon r(1-v/c)}$	0.9910
1210	П 24 17	$k = \sqrt{\frac{\omega^2}{\omega^2} - \frac{\pi^2}{\omega^2}}$	0.0837
1211	II.27.16	$\begin{bmatrix} \kappa - \sqrt{c^2} & d^2 \\ F & -c^2 F^2 \end{bmatrix}$	0.9037
1212	П.27.10 П 27.18	$F_E = \epsilon C L_f$ $F_{\pm} = \epsilon F^2$	0.9933
1213	II.27.18 II.34.2a	$I = \frac{qv}{qv}$	0.9980
1214	II.34.2	$ \begin{array}{c} - & 2\pi r_{qvr} \\ \mu_M = \frac{qvr}{2} \end{array} $	0.9903
1215	II.34.11	$\omega = \frac{g_{q}q\dot{B}}{2m}$	0.9937
1216	II.34.29a	$\mu_M = \frac{2m_q h}{4\pi m}$	0.9938
1217	II.34.29b	$E = \frac{g_{-}\mu_{M}BJ_{z}}{\hbar}$	0.9037
1218	II.35.18	$n = \frac{n_0}{\exp(\mu_m B/(k_b T)) + \exp(-\mu_m B/(k_b T))}$	0.9738
1219	II.35.21	$M = n_{\rho} \mu_M \tanh(\frac{\mu_M B}{k_b T})$	0.8537
1220	II.36.38	$f = \frac{\mu_m B}{k_{\rm b} T} + \frac{\mu_m \alpha M}{\epsilon c^2 k_{\rm b} T}$	0.9928
1221	II.37.1	$E = \mu_M (1 + \chi) B$	0.9999
1222	II.38.3	$F = \frac{YAx}{d}$	0.9985
1223	II.38.14	$\mu_S = \frac{Y}{2(1+\sigma)}$	0.9988
1224	III.4.32	$n = \frac{1}{\frac{\hbar\omega}{m}}$	0.9903
1225	III.4.33	$E = \frac{e^{\kappa_b I} - 1}{\hbar \omega}$	0.9984
1226	111.1100	$\frac{2}{e^{\frac{\hbar\omega}{k_bT}}} - 1$	0.,,,0.
1227	III.7.38	$\omega = \frac{2\mu_M B}{\hbar}$	0.9973
1228	III.8.54	$p_{\gamma} = \sin\left(\frac{Et}{\hbar}\right)^2$	0.9973
1229	III.9.52	$p_{\gamma} = \frac{p_d E_f t}{\hbar} \frac{\sin((\omega - \omega_0)t/2)^2}{((\omega - \omega_0)t/2)^2}$	0.8036
1230	III.10.19	$E = \mu_M \sqrt{B_x^2 + B_y^2 + B_z^2}$	0.9935
1231	III.12.43	$L = n\hbar$	0.9999
1232	III.13.18	$v = \frac{2Ed^2k}{\hbar}$	0.9935
1233	III.14.14	$I = I_0 \left(e^{\frac{q \cdot e}{k_b T}} - 1 \right)$	0.9927
1234	III.15.12	$E = 2U(1 - \cos(kd))$	0.9993
1235	III.15.14	$m = \frac{\hbar^2}{2Ed^2}$	0.9927
1236	III.15.27	$k = \frac{2\pi\alpha}{nd}$	0.9999
1237	111.17.37	$f = \beta (1 + \alpha \cos \theta)$	0.9938
1238	III.19.51	$E = \frac{-mq^2}{2(4\pi\epsilon)^2 \hbar^2} \frac{1}{n^2}$	0.9974
1239	III.21.20	$j = \frac{-\rho_{c0} q A_{vec}}{m}$	0.8668
1240			

Table 13: Tested Feynman Equations, part 2.