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Abstract

Similar to community detection, partitioning the nodes of a network according to1

their structural roles aims to identify fundamental building blocks of a network.2

The found partitions can be used, e.g., to simplify descriptions of the network3

connectivity, to derive reduced order models for dynamical processes unfolding on4

processes, or as ingredients for various graph mining tasks. In this work, we offer5

a fresh look on the problem of role extraction and its differences to community6

detection and present a definition of node roles related to graph-isomorphism tests,7

the Weisfeiler-Leman algorithm and equitable partitions. We study two associated8

optimization problems (cost functions) grounded in ideas from graph isomorphism9

testing, and present theoretical guarantees associated to the solutions of these10

problems. Finally, we validate our approach via a novel “role-infused partition11

benchmark”, a network model from which we can sample networks in which nodes12

are endowed with different roles in a stochastic way.13

1 Introduction14

Networks are a powerful abstraction for a range of complex systems [31, 41]. To comprehend such15

networks we often seek patterns in their connections, e.g., core-periphery structures or densely knit16

communities. A complementary notion to community structure is that of a role partition of the nodes.17

The concept of node roles, or node equivalences, originates in social network analysis [22] and node18

roles are often related to symmetries or connectivity features that can be used to simplify complex19

networks. Contrary to communities, even nodes that are far apart or are part of different connected20

components of a network can have the same role [37].21

Traditional approaches to define node roles, put forward in the context of social network analysis [7]22

consider exact node equivalences, based on structural symmetries within the graph structure. The23

earliest notion is that of structural equivalence [24], which assigns the same role to nodes if they are24

adjacent to the same nodes. Another definition is that of automorphic equivalence [13], which states25

that nodes are equivalent if they belong to the same automorphism orbits. Closely related is the idea26

of regular equivalent nodes [44], defined recursively as nodes that are adjacent to equivalent nodes.27

However, large real-world networks often manifest in such a way that these definitions result in a28

vast number of different roles. What’s more, the above definitions do not define a similarity metric29

between nodes and it is thus not obvious how to compare two nodes that are deemed not equivalent.30

For example, the above definitions all have in common that nodes with different degrees also have31

different roles. With the aim of reducing a network’s complexity, this is detrimental.32

To resolve this problem in a principled way and provide an effective partitioning of large graphs33

into nodes with similar roles, we present a quantitative definition of node roles in this paper. Our34

definition of roles is based on so-called equitable partitions (EPs), which are strongly related to35

the notion of regular equivalence [44]. Crucially, this not only allows us to define an equivalence,36

but we can also quantify the deviation from an exact equivalence numerically. Further, the notion37

of EPs generalizes orbit partitions induced by automorphic equivalence classes in a principled way38
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and thus remain tightly coupled to graph symmetries. Knowledge of EPs in a particular graph can,39

e.g., facilitate the computation of network statistics such as centrality measures [38]. As they are40

associated with certain spectral signatures, EPs are also relevant for the study of dynamical processes41

on networks such as cluster synchronization [32, 39], consensus dynamics [47], and network control42

problems [26]. They have even been shown to effectively imply an upper bound on the expressivity43

of Graph Neural Networks [28, 46].44

Related Literature The survey by Rossi and Ahmed [35] puts forward an application-based45

approach to node role extraction that evaluates the node roles by how well they can be utilized in a46

downstream machine learning task. However, this perspective is task-specific and more applicable to47

node embeddings based on roles rather than the actual extraction of roles.48

Apart from the already mentioned exact node equivalences originating from social network analysis,49

there exist numerous works on role extraction, which focus on finding nodes with similar roles,50

by associating each node with a feature vector that is independent of the precise location of the51

nodes in the graph. These feature vectors can then be clustered to assign nodes to roles. A recent52

overview article [37] puts forward three categories: First, graphlet-based approaches [33, 36, 23]53

use the number of graph homomorphisms of small structures to create node embeddings. This54

retrieves extensive, highly local information such as the number of triangles a node is part of. Second,55

walk-based approaches [2, 10] embed nodes based on certain statistics of random walks starting at56

each node. Finally, matrix-factorization-based approaches [16, 18] find a rank-r approximation of a57

node feature matrix (F ≈ MG). Then, the left side multiplicand M ∈ R|V |×r of this factorization is58

used as a soft assignment of the nodes to r clusters.59

Jin et al. [19] provide a comparison of many such node embedding techniques in terms of their ability60

to capture exact node roles such as structural, automorphic, and regular node equivalence. Detailed61

overviews of (exact) role extraction and its links to related topics such as block modeling are also62

given in [8, 9].63

Contribution Our main constributions are as follows:64

• We provide a principled stochastic notion of node roles, grounded in equitable partitions,65

which enables us to rigorously define node roles in complex networks.66

• We provide a family of cost functions to assess the quality of a putative role partitioning.67

Specifically, using a depth parameter d we can control how much of a node’s neighborhood68

is taken into account when assigning roles.69

• We present algorithms to minimize the corresponding optimization problems and derive70

associated theoretical guarantees.71

• We develop a generative graph model that can be used to systematically test the recovery of72

roles in numerical experiments, and use this novel benchmark model to test our algorithms73

and compare them to well-known role detection algorithms from the literature.74

2 Notation and Preliminaries75

Graphs. A simple graph G = (V,E) consists of a node set V and an edge set E = {uv | u, v ∈ V }.76

The neighborhood N(v) = {x | vx ∈ E} of a node v is the set of all nodes connected to v. We allow77

self-loops vv ∈ E and positive edge weights w : E → R+.78

Matrices. For a matrix M , Mi,j is the component in the i-th row and j-th column. We use Mi,_79

to denote the i-th row vector of M and M_,j to denote the j-th column vector. In is the identity80

matrix and 1n the all-ones vector, both of size n respectively. Given a graph G = (V,E), we identify81

the node set V with {1, . . . , n}. An adjacency matrix of a given graph is a matrix A with entries82

Au,v = 0 if uv /∈ E and Au,v = w(uv) otherwise, where we set w(uv) = 1 for unweighted graphs83

for all uv ∈ E. ρ(A) denotes the largest eigenvalue of the matrix A.84

Partitions. A node partition C = (C1, C2, ..., Ck) is a division of the node set V = C1∪̇C2∪̇ · · · ∪̇Ck85

into k disjoint subsets, such that each node is part of exactly one class Ci. For a node v ∈ V , we86

write C(v) to denote the class Ci where v ∈ Ci. We say a partition C ′ is coarser than C (C ′ ⊒ C)87

if C ′(v) ̸= C ′(u) =⇒ C(v) ̸= C(u). For a partition C, there exists a partition indicator matrix88

H ∈ {0, 1}|V |×k with Hi,j = 1 ⇐⇒ i ∈ Cj .89
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2.1 Equitable Partitions.90

An equitable partition (EP) is a partition C = (C1, C2, ..., Ck) such that v, u ∈ Ci implies that91 ∑
x∈N(v)

[C(x) = Cj ] =
∑

x∈N(u)

[C(x) = Cj ] (1)

for all 1 ≤ j ≤ k, where the Iverson bracket [C(x) = Cj ] is 1 if C(x) = Cj and 0 otherwise. The92

coarsest EP (cEP) is the equitable partition with the minimum number of classes k. A standard93

algorithm to compute the cEP is the so-called Weisfeiler-Leman (WL) algorithm [43], which itera-94

tively assigns a color c(v) ∈ N to each node v ∈ V starting from a constant initial coloring. In each95

iteration, an update of the following form is computed:96

ct+1(v) = hash
(
ct(v), {{ct(x)|x ∈ N(v)}}

)
(2)

where hash is an injective hash function, and {{·}} denotes a multiset (in which elements can appear97

more than once). In each iteration, the algorithm splits classes that do not conform with eq. (1). At98

some point T , the partition induced by the coloring no longer changes and the algorithm terminates99

returning the cEP as {(cT )−1(cT (v))|v ∈ V }. While simple, the algorithm is a powerful tool and is100

used as a subroutine in graph isomorphism testing algorithms [3, 27].101

The above definition is useful algorithmically, but only allows to distinguish between exactly equiva-102

lent vs. non-equivalent nodes. To obtain a meaningful quantitative metric to gauge the quality of a103

partition, the following equivalent algebraic characterization of an EP will be instrumental: Given a104

graph G with adjacency matrix A and a partition indicator matrix HcEP of the cEP, it holds that:105

AHcEP = HcEP(H
⊤
cEPHcEP)

−1H⊤
cEPAHcEP =: HcEPA

π. (3)

The matrix AHcEP ∈ Rn×k counts in each row (for each node) the number of neighboring nodes106

within each class (Ci for i = 1, . . . , k), which has to be equal to HcEPA
π — a matrix in which each107

row (node) is assigned one of the k rows of the k × k matrix Aπ. Thus, from any node v within108

in the same class Ci, the sum of edges from v to neighboring nodes of a given class Ck is equal to109

some fixed number — this is precisely the statement of Equation (1). The matrix Aπ containing the110

connectivity statistics between the different classes is the adjacency matrix of the quotient graph,111

which has the following interesting properties. In particular, the adjacency matrix of the original graph112

inherits all eigenvalues from the quotient graph, as can be seen by direct computation. Specifically,113

let (λ, ν) be an eigenpair of Aπ, then AHcEPν = HcEPA
πν = λHcEPν. This makes EPs interesting114

from a dynamical point of view: the dominant (if unique) eigenvector is shared between the graph115

and the quotient graph. Hence, centrality measures such as Eigenvector Centrality or PageRank116

are predetermined if one knows the EP and the quotient graph [38]. For similar reasons, the cEP117

also provides insights into the long-term behavior of other (non)-linear dynamical processes such as118

cluster synchronization [39], consensus dynamics [47], or message passing graph neural networks.119

Recently, there has been some study on relaxing the notion of “exactly” equitable partitions. One120

approach is to compare the equivalence classes generated by eq. (2) by computing the edit distance of121

the trees (so called unravellings) that are encoded by these classes implicitly [17]. Another way is122

to relax the hash function (eq. (2)) to not be injective. This way, “buckets” of coarser equivalence123

classes are created [6]. Finally, using a less algorithmic perspective, one can define the problem of124

approximating EP by specifying a tolerance ϵ of allowed deviation from eq. (1) and consequently125

asking for the minimimum number of clusters that still satisfy this constraint [20]. In this paper, we126

adopt the opposite approach and instead specify a number of clusters k and then ask for the partition127

minimizing a cost function (section 4) i.e. the most equitable partition with k classes. We want to128

stress that while similar, none of these relaxations coincide with our proposed approach.129

2.2 The Stochastic Block Model130

The Stochastic Block Model (SBM) [1] is a generative network model which assumes that the node131

set is partitioned into blocks. The probability of an edge between a node i and a node j is then only132

dependent on the blocks B(i) and B(j). Given the block labels the expected adjacency matrix of a133

network sampled from the SBM fulfills:134

E[A] = HBΩH
⊤
B (4)
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where HB is the indicator matrix of the blocks and ΩB(i),B(j) = Pr((i, j) ∈ E(G)) is the probability135

with which an edge between the blocks B(i) and B(j) occurs. For simplicity, we allow self-loops in136

the network. The SBM is used especially often in the context of community detection, in the form137

of the planted partition model. In this restriction of the SBM, there is only an inside probability p138

and an outside probability q and Ωi,j = p if i = j and Ωi,j = q if i ̸= j. Usually, one also restricts139

p > q, to obtain a homophilic community structure i.e., nodes of the same class are more likely to140

connect. However, p < q (heterophilic communities) are also sometimes considered.141

3 Communities vs. Roles142

In this section, we more rigorously define “communities” and “roles” and their difference. To this end,143

we first consider certain extreme cases and then see how we can relax them stochastically. Throughout144

the paper, we use the term communities synonymously with what is often referred to as homophilic145

communities, i.e., a community is a set of nodes that is more densely connected within the set than to146

the outside. In this sense, one may think of a perfect community partition into k communities if the147

network consists of k cliques. In contrast, we base our view of the term “role” on the cEP: If C is the148

cEP, then C(v) is v’s perfect role. In this sense, the perfect role partition into k roles is present when149

the network has an exact EP with k classes. This can be seen in the appendix.150

In real-world networks, such a perfect manifestation of communities and roles is rare. In fact, even if151

there was a real network with a perfect community (or role) structure, due to a noisy data collection152

process this structure would typically not be preserved. Hence, to make these concepts more useful153

in practice we need to relax them. For communities, the planted partition model relaxes this perfect154

notion of communities of disconnected cliques to a stochastic setting: The expected adjacency matrix155

exhibits perfect (weighted) cliques — even though each sampled adjacency matrix may not have such156

a clear structure. To obtain a principled stochastic notion of a node role, we argue that a planted role157

model should, by extension, have an exact cEP in expectation:158

Definition 3.1. Two nodes u, v ∈ V have the same stochastic role if they are in the same class in the159

cEP of E[A].160

The above definition is very general. To obtain a practical generative model from which we can161

sample networks with a planted role structure, we concentrate on the following sufficient condition.162

We define a probability distribution over adjacency matrices such that for a given a role partition163

C, for x, y ∈ Ci and classes Cj there exists a permutation σ : Cj → Cj such that Pr(Ax,z = 1) =164

Pr(Ay,σ(z) = 1) ∀z ∈ Cj . That is: two nodes have the same role if the stochastic generative165

process that links them to other nodes that have a certain role is the same up to symmetry. Note that166

if we restrict σ to the identity, we recover the SBM. Therefore, we will consider the SBM as our167

stochastic generative process in the following.168

RIP model In line with our above discussion we propose the role-infused partition (RIP) model,169

to create a well defined benchmark for role discovery, which allows to contrast role and community170

structure. The RIP model is fully described by the parameters p ∈ R, c, k, n ∈ N,Ωrole ∈ Rk×k as171

follows: We sample from an SBM with parameters Ω, HB (see fig. 1) where172

Ωi,j =

{
Ωrolei mod c,j mod c

if ⌊ i
c⌋ = ⌊ j

c⌋
p otherwise

(5)

where HB corresponds to c · k blocks of size n. There are effectively c distinct communities,173

analogous to the planted partition model. The probability of nodes that are not in the same cluster to174

be adjacent is p. There are c distinct communities - analogous to the planted partition model. The175

probability of being adjacent for nodes that are not in the same community is p. In each community,176

there are the same k distinct roles with their respective probabilities to attach to one another as defined177

by Ωrole. Each role has n instances in each community.178

Notice that the RIP model has both a planted community structure with c communities and a planted179

role structure, since E[A] has an exact cEP with k classes (definition 3.1). We stress that the central180

purpose of our model is to delineate the role recovery from community detection, i.e., community181

detection is not the endeavor of this paper. Rather, the planted communities within the RIP model182

are meant precisely as an alternative structure that can be found in the data and serve as a control183

mechanism to determine what structure an algorithm finds. To showcase this, consider Figure 1 which184
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Figure 1: Example of the RIP model . It depicts
(a) the expected adjacency matrix and the correct
according to (b) SBM inference, (c) community
detection, (d) role detection.

Input: Graph adjacency A ∈ {0, 1}n×n,
number of classes k

Output: Node assignment H ∈ {0, 1}n×k

1 A = normalize(A)

2 Initialize H = 1
k
1n1

T
k

3 for number of steps do
4 X = AH
5 H = cluster(X)

6 Return H
Algorithm 1: Approximate Weisfeiler
Lehman Algorithm.

shows an example of the RIP model for c = 2, k = 3, n = 10, p = 0.1. It shows a graph that has 2185

communities each of which can be subdivided into the same 3 roles. In standard SBM inference, one186

would like to obtain 6 blocks - each combination of community and role within being assigned its187

own block. In community detection with the objective to obtain 2 communities, the target clustering188

would be to merge the first 3 and the second 3 into one cluster respectively. However, the target189

clustering for this paper — aiming for 3 roles — is the one on the far right, combining from each190

community the nodes that have stochastically the same neighborhood structure.191

4 Extracting Roles by Approximating the cEP192

In this section, we define a family of cost functions (eq. 6, 7) that frame role extraction as an193

optimization problem. That is, we try to answer the question: Given a desired number k of roles194

classes, what is the partition that is most like an EP? As discussed above, searching for an exact195

equitable partition with a small number of classes is often not possible: It returns the singleton196

partition on almost all random graphs [4]. Already small asymmetries, or inaccuracies and noise in197

data collection can lead to a trivial cEP made up of singleton classes. As such, the cEP is not a robust198

nor a particularly useful choice for noisy or even just slightly asymmetric data. Our remedy to the199

problem is to search for coarser partitions that are closest to being equitable.200

Considering the algebraic definition of cEP (eq. 1), intuitively one would like to minimize the201

difference between the left- and the right-hand side (throughout the paper, we use the ℓ2 norm by202

default and the ℓ1 norm where specified):203

ΓEP(A,H) = ||AH −HD−1H⊤AH|| (6)

Here D = diag(1H) is the diagonal matrix with the sizes of the classes on its diagonal. We note that204

HD−1H⊤ = H(H⊤H)−1H⊤ = HH† is the projection onto the column space of H . However,205

eq. (6) disregards an interesting aspect that the exact cEP has. By its definition, the cEP is invariant206

under multiplication with A. That is,207

AtHcEP = HcEP(A
π)t for all t ∈ N

This is especially interesting from a dynamical systems point of view since dynamics cannot leave208

the cEP subspace once they are inside it. Indeed, even complex dynamical systems such as Graph209

Neural Networks suffer from this restriction [46, 28]. To address this, we put forward the following210

family of cost functions.211

Γd-EP(A,H) =

d∑
t=1

1

ρ(A)t
ΓEP(A

t, H) (7)

The factor of 1
ρ(A)i is to rescale the impacts of each matrix power and not disproportionally enhance212

larger matrix powers. This family of cost functions measures how far the linear dynamical system213

t 7→ AtH diverges from a corresponding equitable dynamical system after d steps. Equivalently,214

it takes the d-hop neighborhood of each node into account when assigning roles. The larger d, the215

deeper it looks into the surroundings of a node. Note that all functions of this family have in common216

that if HcEP indicates the exact cEP, then Γd-EP(A,HcEP) = 0 for any choice of d.217

In the following, we consider the two specific cost functions with extremal values of d for our218

theoretical results and our experiments: For d = 1, Γ1-EP is a measure of the variance of each node’s219
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adjacencies from the mean adjacencies in each class (and equivalent to eq. (6)). As such, it only220

measures the differences in the direct adjacencies and disregards the longer-range connections. We221

call this the short-term cost function. The other extreme we consider is Γ∞-EP, where d → ∞. This222

function takes into account the position of a node within the whole graph. It takes into the long-range223

connectivity patterns around each node. We call this function the long-term cost.224

In the following sections, we aim to optimize these objective functions to obtain a clustering of the225

nodes according to their roles. However, when optimizing this family of functions, in general, there226

exist examples where the optimal assignment is not isomorphism equivariant (See Appendix). As227

isomorphic nodes have exactly the same global neighborhood structure, arguably, they should be228

assigned the same role. To remedy this, we restrict ourselves to partitions compatible with the cEP229

when searching for the minimizer of these cost functions.230

4.1 Optimizing the Long-term Cost Function231

In this section, we consider optimizing the long-term objective eq. (7). This is closely intertwined232

with the dominant eigenvector of A, as the following theorem shows:233

Theorem 4.1: Let H be the set of indicator matrices H ∈ {0, 1}n×k s.t. H1k = 1n. Let A ∈ Rn×n234

be an adjacency matrix. Assume the dominant eigenvector to the eigenvalue ρ(A) of A is unique.235

Using the ℓ1 norm in eq. (6), the optimizer236

OPT = arg min
H∈H

lim
d→∞

Γd-EP(A,H)

can be computed in O(a + nk + n log(n)), where a is the time needed to compute the dominant237

eigenvector of A.238

The proof of the theorem directly yields a simple algorithm that efficiently computes the optimal239

assignment for the long-term cost function. Simply compute the dominant eigenvector v and then240

cluster it using 1-dimensional k-means. We call this EV-based clustering.241

4.2 Optimizing the Short-term Cost Function242

In contrast to the previous section, the short-term cost function is more challenging. In fact,243

Theorem 4.2: Optimizing the short-term cost is NP-hard.244

In this section, we thus look into optimizing the short-term cost function by recovering the stochastic245

roles in the RIP model . Given s samples A(s) of the same RIP model , asymptotically, the sample246

mean 1
s

∑s
i=1 A

(i) → E[A] converges to the expectation as s → ∞. Thus, recovering the ground247

truth partition is consistent with minimizing the short-term cost in expectation.248

To extract the stochastic roles, we consider an approach similar to the WL algorithm which computes249

the exact cEP. We call this the approximate WL algorithm (Algorithm 1). A variant of this without the250

clustering step was proposed in [21]. Starting with one class encompassing all nodes, the algorithm251

iteratively computes an embedding vector x = (x1, ..., xk) for each node v ∈ V according to the252

adjacencies of the classes:253

xi =
∑

u∈N(v)

[C(t)(u) = C
(t)
i ]

The produced embeddings are then clustered to obtain the partition into k classes H of the next254

iteration. The clustering routine can be chosen freely. This is the big difference to the WL algorithm,255

which computes the number of classes on-the-fly — without an upper bound to the number of classes.256

The main theoretical result of this section uses average linkage for clustering:257

Theorem 4.3: Let A be sampled from the RIP model with parameters p ∈ R, c ∈ N, 3 ≤258

k ∈ N, n ∈ N,Ωrole ∈ Rk×k. Let H(0)
role, ...,H

(T ′)
role be the indicator matrices of each iteration259

when performing the exact WL algorithm on E[A]. Let δ = min0≤t′≤T ′ mini ̸=j ||(ΩH(t′)
role )i,_ −260

(ΩH
(t′)
role )j,_||. Using average linkage in algorithm 1 in the clustering step and assuming the former261
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Figure 2: Role recovery on graphs sampled from the RIP model . (a-c) On the x-axis, we vary
the number of samples s that are averaged to obtain the input A. The graphs used are randomly
sampled from the planted partition model. On the y-axis, we report the long-term cost c20−EP (a),
the short-term cost (b) and the overlap of the clusterings with the ground-truth (c) over 100 runs
along with their standard deviation. In (d), the average role assignment (rows reordered to maximize
overlap) is shown for the number of samples s = 1.

correctly infers k, if262

n > −9W−1((q − 1)δ2/9k2)

2δ2
(8)

where W is the Lambert W function, then with probability at least q: Algorithm 1 finds the correct263

role assignment using average linkage for clustering.264

The proof hinges on the fact that the number of links from each node to the nodes of any class265

concentrates around the expectation. Given a sufficient concentration, the correct partitioning can266

then be determined by the clustering step. Notice, that even though we allow for the SBM to have267

more blocks than there are roles, the number of roles (and the number of nodes therein) is the268

delimiting factor here - not the overall number of nodes. Notice also that theorem 4.3 refers to269

exactly recovering the partition from only one sample. Typically, concentration results refer to a270

concentration of multiple samples from the same model. Such a result can be derived as a direct271

consequence of Theorem 4.3 and can be found in the appendix. The bound given in the theorem is272

somewhat crude in the sense that it scales very poorly as δ decreases. This is to be expected as the273

theorem claims exact recovery for all nodes with high probability.274

Fractional Assignments In a regime, where the conditions of Theorem 4.3 do not hold, it may275

be beneficial to relax the problem. A hard assignment in intermediate iterations, while possible, has276

shown to be empirically unstable (see experiments). Wrongly assigned nodes heavily impact the next277

iteration of the algorithm. As a remedy, a soft assignment - while not entirely different - has proven278

more robust. We remain concerned with finding the minimizer H of eq. (6) However, we no longer279

constrain Hi,j ∈ {0, 1}, but relax this to 0 ≤ Hi,j ≤ 1. H must still be row-stochastic - i.e. H1 = 1.280

That is, a node may now be fractionally assigned to multiple classes designating how strongly it281

belongs to each class. This remedies the above problems, as algorithms such as Fuzzy c-means or282

Bayesian Gaussian Mixture Models are able to infer the number of clusters at runtime and must also283

not make a hard choice about which cluster a node belongs to. This also allows for Gradient Descent284

approaches like e.g. GNNs. We investigate these thoughts empirically in the experiments section.285

5 Numerical Experiments286

For the following experiments, we use two variants of the approximate WL algorithm (1), one where287

the clustering is done using average linkage and one where fuzzy c-means is used. We benchmark the288

EV-based clustering (4.1) and the 2 variants of the approximate WL algorithm as well as node classes289

obtained from the role2vec [2] and the node2vec [15] node embeddings (called R2V and N2V in the290

figures). We retrieve an assignment from the two baseline benchmark embeddings by k-means. Both291

node embedding techniques use autoencoders with skip-gram to compress information obtained by292

random walks. While node2vec is a somewhat universal node embedding technique also taking into293

account the community structure of a network, role2vec is focussed on embedding a node due to its294

role. Both embeddings are state-of-the-art node embedding techniques used for many downstream295

tasks. Further, we compare the above algorithms to the GIN [46] which is trained to minimize the296

short-term cost individually on each graph. The GIN uses features of size 32 that are uniformly297
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Figure 3: Recovery of centralities on a real-world network. On the x-axis, the number of classes
2 ≤ k ≤ 20 that the algorithms are tasked to find is shown. On the y-axis, the mean short-term
cost cEP, the average deviation from the cluster mean is then shown from left to right for PageRank,
Eigenvector centrality, Closeness and Betweenness over 10 trials on the protein dataset.

initialized and is trained for 1000 epochs. To enable a fair comparison, we convert the fractional298

assignments into hard assignments by taking the class with the highest probability for each node.299

Experimental data and code will be made available here.300

Experiment 1: Planted Role Recovery. For this experiment, we sampled adjacency matrices A(i)301

from the RIP model as described in section 3 with c = k = 5, n = 10, p = 0.05,Ωrole ∈ Rk×k. Each302

component of Ωrole is sampled uniformly at random i.i.d from the interval [0, 1]. We then sample303

s samples from this RIP model and perform the algorithms on the sample mean. The mean and304

standard deviation of long-term and short-term costs and the mean recovery accuracy of the ground305

truth and its variance are reported in Figure 2 over 100 trials for each value of s. The overlap score of306

the assignment C with the ground truth role assignment Cgt is computed as:307

overlap(C,Cgt) = max
σ∈permutations({1,...,k})

k∑
i=1

|Cσ(i) ∩ Cgt
i |

|Ci|

Figure 2 (d) shows the mean role assignments output by each algorithm. Since the columns of308

the output indicator matrix H of the algorithms are not ordered in any specific way, we use the309

maximizing permutation σ to align the columns before computing the average.310

Discussion. In Figure 2 (a), one can clearly see that the EV-based clustering outperforms all other311

algorithms measured by long-term cost, validating Theorem 4.1. While both approximate WL312

algorithms perform similarly in the cost function, the fuzzy variant has a slight edge in recovery313

accuracy. We can see that the tendencies for the short-term cost and the accuracy are directly adverse.314

The Approximate WL algorithms have the lowest cost and also the highest accuracy in recovery. The315

trend continues until both X2vec algorithms are similarly bad in both measures. The GIN performs316

better than the X2vec algorithms both in terms of cost and accuracy. However, it mainly finds 2317

clusters. This may be because of the (close to) uniform degree distribution in these graphs. On the318

contrary, the X2vec algorithms detect the communities instead of the roles. This is surprising for319

role2vec since it aims to detect roles.320

Experiment 2: Inferring the Number of Roles and Centrality. A prominent problem in practice321

that has been scarcely addressed in this paper so far is that the number of roles may not be known.322

Some algorithms — like fuzzy c-means or GIN — can infer the number of clusters while performing323

the clustering. In this experiment, we consider the protein dataset [5] and run the suite of algorithms324

for varying 2 ≤ k ≤ 20. The mean short-term cost of the assignments and its standard deviation325

is reported in Figure 3. Additionally for the PageRank, Eigenvector, Closeness and Betweeness326

Centrality, the l1 deviations of each node from the mean cluster value are reported.327

Discussion. In Figure 3, all algorithms show a similar trend. The cost decreases as the number328

of clusters increases. The elbow method yields k = 4, 6 depending on the algorithm. The GIN329

performs much better than in the previous experiment. This may be due to the fact that there are330

some high-degree nodes in the dataset, that are easy to classify correctly. The converse is true for331

the fuzzy variant of approximate WL that implicitly assumes that all clusters should have about the332

same size. The EV algorithm clusters the nodes well in terms of Eigenvector centrality which is to be333

expected. However, the clustering produced by the GIN also clusters the network well in terms of334

PageRank and Betweenness centrality.335
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Table 1: Few shot graph embedding performance Mean accuracy in % over 10 runs of the EV
embedding, Graph2Vec and the GIN. For each run we randomly sample 10 data points for training
and evaluate with the rest. As a comparison, the GIN+ is trained on 90% of the data points.

EV G2Vec GIN GIN+

AIDS 95.0± 5.2 79.9± 4.4 80.0± 14.1 97.8± 1.4
ENZYMES 21.3± 1.7 20.3± 1.5 21.0± 1.7 60.3± 0.7
PROTEINS 66.5± 6.4 60.3± 3.5 59.6± 7.6 75.4± 1.3

NCI1 58.5± 4.0 53.9± 1.5 50.0± 1.4 82.0± 0.3
MUTAG 81.5± 7.7 66.9± 5.6 77.5± 11.1 94.3± 0.5

Experiment 3: Graph Embedding. In this section, we diverge a little from the optimization-based336

perspective of the paper up to this point and showcase the effectiveness of the information content of337

the extracted roles in a few-shot learning downstream task. This links our approach to the application-338

based role evaluation approach of [35]. We employ an embedding based on the minimizer of the339

long-term cost function (eq. (7), Algorithm 4.1). The embedding is defined as follows: Let A be340

the adjacency matrix of the graph that is to be embedded. Let C = {C1, ..., Ck} be the optimal341

clustering found by the 1d-kmeans algorithm on the dominant eigenvector v of A. The embedding is342

then made up of the cluster sizes together with the cluster centers.343

EVemb = (|C1|, ..., |Ck|,
1

|C1|
∑
i∈C1

vi, ...,
1

|Ck|
∑
i∈Ck

vi)

The value for k was found by a grid search over k ∈ {2, ..., 20}. We benchmark this against the344

commonly used graph embedding Graph2Vec [30] and the GIN. We use graph classification tasks345

from the field of bioinformatics ranging from 188 graphs with an average of 18 nodes to 4110 graphs346

with an average of 30 nodes. The datasets are taken from [29] and were first used (in order of347

table 1) in [34, 40, 12, 42, 11]. In each task, we use only 10 data points to train a 2-layer MLP on the348

embeddings and a 4-layer GIN. Each hidden MLP and GIN layer has 100 nodes. The Graph2Vec349

embedding is set to size 16, whereas the GIN receives as embedding the attributes of the nodes of the350

respective task. The GIN is thus informed. We also report the accuracy of a GIN that is trained on351

90% of the respective data sets. The results over 10 independent runs are reported in table 1.352

Discussion. Experiment 3 has the EV embedding as the overall winner of few-shot algorithms. Our353

claim here is not that the EV embedding is a particularly powerful few-shot learning approach, but354

that the embedding carries a lot of structural information. Not only that but it is robust in the sense355

that few instances are enough to train a formidable classifier. However, it pales in comparison with356

the “fully trained” GIN, which is better on every dataset.357

6 Conclusion358

We proposed an optimization-based framework for role extraction aiming to optimize two cost359

functions. Each measures how well a certain characteristic of the cEP is upheld. We proposed360

an algorithm for finding the optimal clustering for the long-term cost function and related the361

optimization of the other cost function to the retrieval of stochastic roles from the RIP model .362

Limitations The proposed cost functions are sensitive to the degree of the nodes. In scale-free363

networks, for example, it can happen that few extremely high-degree nodes are put into singleton364

clusters and the many remaining low-degree nodes are placed into one large cluster. The issue is365

somewhat reminiscent of choosing a minimal min-cut when performing community detection, which366

may result in a single node being cut off from the main graph. A remedy akin to using a normalized367

cut may thus be a helpful extension to our optimization-based approach. Future work may thus368

consider correcting for the degree, and a further strengthening of our theoretic results.369
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Supplementary Material476

A Example of Communities vs. Roles477

Figure 4: Toy example showing two networks and their role/community structure. The left has two
exact roles but how many communities it has is not clear. The right has 3 perfect communities, but
only a single role.

B Example of Isomorphic Nodes that receive a different role478

Figure 5: Example graphs showing undesirable properties of the optimizer of eq. (6). Nodes 1 and 2
are in the same cEP class; they are even isomorphic. However, the minimizer of eq. (6) puts them
into different classes. The partition minimizing eq. (6) as given by the right yields a score of 0.707,
whereas the best partition that respects the cEP yields 0.816.

C Proof of theorem 4.1479

Theorem 4.1: Let H be the set of indicator matrices H ∈ {0, 1}n×k s.t. H1k = 1n. Let A ∈ Rn×n480

be an adjacency matrix. Assume the dominant eigenvector to the eigenvalue ρ(A) of A is unique.481

Using the ℓ1 norm in eq. (6), the optimizer482

OPT = arg min
H∈H

lim
d→∞

Γd-EP(A,H)

can be computed in O(a + nk + n log(n)), where a is the time needed to compute the dominant483

eigenvector of A.484

Proof. Consider the long-term cost function (eq. 6,7):485

cd-EP(A,H) =

d∑
t

1

ρ(A)t
||AtH −HD−1H⊤AtH||

=

d∑
t

||(In −HD−1H⊤)
1

ρ(A)t
AtH||

lim d→∞
= ||(In −HD−1H⊤)wv⊤H||

We arrive at a formulation akin to the k-means cost function. However, wv⊤H is in general not486

independent of the clustering, as would be the case in the usual formulation of k-means. This can be487
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used advantageously by rewriting the above matrix equation element-wise:488

=

n∑
i

k∑
j

|wi(v
⊤H_,j)−

1

|C(wi)|
∑

l∈C(wi)

wl(v
⊤H_,j)|

=

n∑
i

k∑
j

|(wi −
1

|C(wi)|
∑

l∈C(wi)

wl)(v
⊤H_,j)|

It is possible to completely draw out the constant factor of
∑

j v
⊤H_,j =

∑
i vi since the row sums489

of H are 1 and the components vi ≥ 0 are non-negative.490

=

n∑
i

k∑
j

(v⊤H_,j)|(wi −
1

|C(wi)|
∑

l∈C(wi)

wl)|

=const
n∑
i

|(wi −
1

|C(wi)|
∑

l∈C(wi)

wl)|

We end up at a formulation equivalent to clustering w into k clusters using k-means. We can491

now notice that w is only 1-dimensional and as such the k-means objective can be optimized in492

O(n log(n) + nk) [45, 14].493

D Proof of theorem 4.2494

Theorem 4.2: Optimizing the short-term cost is NP-hard.495

Proof. We reduce from the PLANAR-K-MEANS problem, which is shown to be NP-hard in [25]. In496

PLANAR-K-MEANS, we are given a set {(x1, y1), ..., (xn, yn)} of n points in the plane and a number497

k and a cost c. The problem is to find a partition of the points into k clusters such that the cost of the498

partition is at most c, where the cost of a partition is the sum of the squared distances of each point499

to the center of its cluster. We now formulate the decision variant of optimizing the short-term cost500

which we show is NP-hard.501

Definition D.1 (K-AEP). Let G = (V,E) be a graph, k ∈ N and c ∈ R. K-AEP is then the problem502

of deciding whether there exists a partition of the nodes in V into k clusters such that the short-term503

cost Γ1−EP (eq. (7)) using the squared L2 norm is at most c.504

Let W (X,Y ) be the sum of the weights of all edges between X,Y ⊆ V . Additionally, for a given505

partition indicator matrix H , let Ci be the set of nodes v s.t. Hv,i = 1. For the following proof,506

the equivalent definition of the short-term cost function (eq. 6) using the squared L2 norm is more507

convenient:508

ΓEP(A,H) =
∑
i

∑
j

∑
v∈Ci

(W ({v}, Cj)−
1

|Ci|
W (Ci, Cj))

2

We now show that K-AEP is NP-hard by reduction from PLANAR-K-MEANS.509

Construction. Given {(x1, y1), ..., (xn, yn)} of n points in the plane and a number k′ and a cost c′510

construct the following graph: We shift the given points by −mini∈[n] xi in their x-coordinate and by511

−mini∈[n] yi in their y-coordinate. This makes them non-negative, but does not change the problem.512

Let D = 1 +
∑n

i=1 x
2
i + y2i . Notice that D is an upper bound on the cost of the k-means partition.513

To start, let V = {a, b}. Add self-loops of weight 3D to a and of weight 6D to b. For each point514

(xi, yi), add a node mi to V and add edges mia of weight xi and mib of weight yi to E.515

G = (V,E), k = k′ + 2, c = c′ are now the inputs to K-AEP.516

Correctness. We now prove that the PLANAR-K-MEANS instance has a solution if and only if517

K-AEP has a solution. Assume that PLANAR-K-MEANS has a solution S′ = (S′
1, ..., S

′
k′) that has518
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cost c∗ ≤ c′. Then the solution we construct for K-AEP is S = (S1, ..., Sk′ , {a}, {b}), where519

mi ∈ Sj ⇐⇒ (xi, yi) ∈ S′
j . The cost of this solution is:520

c+ =

k∑
i=1

k∑
j=1

∑
v∈Si

(W ({v}, Sj)−
1

|Si|
W (Si, Sj))

2

Since a and b are in singleton clusters, their outgoing edges do not differ from the cluster average and521

so incur no cost. The remaining edges either go from V \{a, b} to a or from V \{a, b} to b. So, the522

sum reduces to:523

c+ =
∑
i

∑
v∈Si

(
(w(v, a)− 1

|Si|
W (Si, {a}))2 + (w(v, b)− 1

|Si|
W (Si, {b}))2

)

Since µx(Si) :=
1

|Si|W (Si, {a}) is the average weight of the edges from Si to a, and these edges524

have weight according to the x coordinate of the point they were constructed from, µx(Si) is equal to525

the mean x coordinate within the cluster S′
i. This concludes the proof of this direction, as:526

c+=
∑

S′
i∈S′

∑
(xl,yl)∈S′

i

(xl − µx(S
′
i))

2 + (yl − µy(S
′
i))

2 = c∗ ≤ c′

For the other direction, assume we are given a solution S = (S1, ..., Sk+2) to K-AEP with cost527

c+ ≤ c. We distinguish two cases:528

Case 1: ∃i ∈ N s.t. Si ⊋ {a} or Si ⊋ {b}. Assume that Si ⊋ {a}, if also b ∈ Si then the cost is at529

least the difference of the two self-loops:530

c+ ≥
∑
v∈Si

(
W ({v}, Si)−

1

|Si|
W (Si, Si)

)2

≥
(
1

2
max
u,v∈Si

W ({v}, Si)−W ({u}, Si)

)2

≥
(
1

2
(w(b, b)−W ({a}, Si))

)2

≥
(
1

2
(6D − 4D)

)2

= D2 ≥ D

If instead, some mj ∈ Si, then the cost is at least the difference of the self-loop to a and the edge531

from mj to a:532

c+ ≥
∑
v∈Si

(
W ({v}, Si)−

1

|Si|
W (Si, Si)

)2

≥
(
1

2
(w(a, a)−W ({mj}, Si))

)2

≥
(
1

2
(3D −D)

)2

= D2 ≥ D

Thus c+ ≥ D is so large that any clustering of the points has at most cost c ≥ D thus a solution to533

the PLANAR-K-MEANS instance exists. The case where Si ⊋ {b} is analogous.534

Case 2: Case 1 doesn’t hold. In this case, we have S = (S1, ..., Sk, {a}, {b}) which yields a535

clustering S′ = (S′
1, ..., S

′
k) for the PLANAR-K-MEANS, where mi ∈ Sj ⇐⇒ (xi, yi) ∈ S′

j . This536

instance has cost c+ = c∗ ≤ c.537

E Proof of theorem 4.3538

Theorem 4.3: Let A be sampled from the RIP model with parameters p ∈ R, c ∈ N, 3 ≤539

k ∈ N, n ∈ N,Ωrole ∈ Rk×k. Let H(0)
role, ...,H

(T ′)
role be the indicator matrices of each iteration540
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when performing the exact WL algorithm on E[A]. Let δ = min0≤t′≤T ′ mini ̸=j ||(ΩH(t′)
role )i,_ −541

(ΩH
(t′)
role )j,_||. Using average linkage in algorithm 1 in the clustering step and assuming the former542

correctly infers k, if543

n > −9W−1((q − 1)δ2/9k2)

2δ2
(8)

where W is the Lambert W function, then with probability at least q: Algorithm 1 finds the correct544

role assignment using average linkage for clustering.545

Proof. Consider the adjacency matrix AB of a simple binomial random graph of size n - i.e. a single
block of the SBM. Let δ∗ < δ

3 . Using the Chernoff bound for binomial random variables, we have
that the degree of a single node i is within the ball of size δ∗ with probability:

Pr (|(AB1)i − (E[(AB1)i]| ≥ δ∗ · n) ≤ 2e−2n(δ∗)2

The probability that all nodes fall in close proximity to the expectation, is then simply:

Pr (∥AB1− E[AB1]∥∞ ≥ δ∗ · n) ≤
(
1− 2e−2n(δ∗)2

)n

Finally, in the SBM setting, we have k2 such blocks and the probability that none of the nodes are far
away from the expectation in any of these blocks is:

Pr


∥∥∥AHH

(T )
role−E[AHH

(T )
role ]

∥∥∥
n

≥δ∗

≤
(
1−2e−2n(δ∗)2

)nk2

We can upper bound this by its first-order Taylor approximation:546 (
1− 2e−2n(δ∗)2

)nk2

≤ p ≤ 1− 2nk2e−2n(δ∗)2

⇔ (p− 1)(δ∗)2

k2
≤ −2n(δ∗)2e−2n(δ∗)2

⇔ W−1

(
(p− 1)(δ∗)2

k2

)
≥ −2n(δ∗)2

⇔ −9W−1((p− 1)δ2/9k2)

2δ2
≤ n

Thus with probability at least p, the maximum deviation from the expected mean is δ∗, which is why
we simply assume this to be the case going forward, i.e.:

1

n
max
i,j

(∣∣∣∣(AHH
(T )
role−E[AHH

(T )
role ]

)
i,j

∣∣∣∣) <
δ

3

Consider the L1 distance of nodes inside the same cluster: This is at most k δ
3 . For nodes that belong547

to different clusters, this will be at least k(δ − 2δ∗) > k δ
3 . Therefore, the average linkage will548

combine all nodes belonging to the same role before it links nodes that belong to different roles.549

Corollary E.1. Let A(1), ..., A(s) be independent samples of the RIP model with the same role550

assignment (Ωrole must not necessarily be the same). Assuming the prerequisites of theorem 4.3 for551

A = 1
s

∑s
i=1 A

(i) - except eq. 8. If552

s > −9W−1((q − 1)δ2/9k2)

2nδ2

Then with probability at least q: Algorithm 1 finds the correct role assignment using average linkage553

for clustering.554
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