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ABSTRACT

Wasserstein Gradient Flows (WGF) with respect to specific functionals have been
widely used in the machine learning literature. Recently, neural networks have
been adopted to approximate certain intractable parts of the underlying Wasser-
stein gradient flow and result in efficient inference procedures. In this paper, we
introduce the Neural Sinkhorn Gradient Flow (NSGF) model, which parametrizes
the time-varying velocity field of the Wasserstein gradient flow w.r.t. the Sinkhorn
divergence to the target distribution starting a given source distribution. We uti-
lize the velocity field matching training scheme in NSGF, which only requires
samples from the source and target distribution to compute an empirical velocity
field approximation. Our theoretical analyses show that as the sample size in-
creases to infinity, the mean-field limit of the empirical approximation converges
to the true underlying velocity field. With specific source and target data samples,
our NSGF models can be used in many machine learning tasks such as uncon-
ditional/conditional image generating, style transfer, and audio-text translations.
Numerical experiments with synthetic and real-world benchmark datasets support
our theoretical results and demonstrate the effectiveness of the proposed method.

1 INTRODUTION

The Wasserstein Gradient Flow (WGF) with respect to certain specific functional objective F (de-
noted as F Wasserstein gradient flow) is a powerful tool for solving optimization problems over
the Wasserstein probability space. Since the seminal work of Jordan et al. (1998) which shows that
the Fokker-Plank equation is the Wasserstein gradient flow with respect to the free energy, Wasser-
stein gradient flow w.r.t. different functionals have been widely used in various machine learning
tasks such as Bayesian inference (Liu, 2017; Liu et al., 2019; di Langosco et al., 2021; Zhang et al.,
2021a), reinforcement learning (Zhang et al., 2018; Martin et al., 2020; Agazzi & Lu, 2020; Zhang
et al., 2021b), and mean-field games (Domingo-Enrich et al., 2020; Gao et al., 2022b; Zhang &
Katsoulakis, 2023).

One recent trend in the Wasserstein gradient flow literature is to develop efficient generative model-
ing methods (Gao et al., 2019; 2022a; Ansari et al., 2021; Mokrov et al., 2021; Alvarez-Melis et al.,
2022; Bunne et al., 2022; Fan et al., 2022). In general, these methods mimic the Wasserstein gradi-
ent flow with respect to a specific distribution metric, driving a source distribution towards a target
distribution. Neural networks are typically employed to approximate the computationally challeng-
ing components of the underlying Wasserstein gradient flow such as the time-dependent transport
maps. During the training process of these methods, it is common to require samples from the target
distribution. After the training process, an inference procedure is often employed to generate new
samples from the target distribution This procedure involves iteratively transporting samples from
the source distribution with the assistance of the trained neural network. Based on the chosen metric,
these methods can be categorized into two main types.

Divergences Between Distributions With Exact Same Supports. The first class of widely used
metrics is the f-divergence, such as the Kullback-Leibler divergence and the Jensen-Shannon di-
vergence. These divergences are defined based on the density ratio between two distributions and
are only well-defined when dealing with distributions that have exactly the same support. Within
the scope of f-divergence Wasserstein gradient flow generative models, neural networks are com-
monly utilized to formulate density-ratio estimators, as demonstrated by Gao et al. (2019; 2022a);
Ansari et al. (2021) and Heng et al. (2022). However, as one can only access finite samples from
target distributions in the training process, the support shift between the sample collections from
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the compared distributions may cause significant approximation error in the density-ratio estimators
(Rhodes et al., 2020; Choi et al., 2022). An alternative approach, proposed by Fan et al. (2022),
circumvents these limitations by employing a dual variational formulation of the f-divergence. In
this framework, two networks are employed to approximate the optimal variational function and the
transport maps. These two components are optimized alternately. It’s imperative to highlight that
the non-convex and non-concave characteristics of their min-max objective can render the training
inherently unstable (Arjovsky & Bottou, 2017; Hsieh et al., 2021).

Divergences Between Distributions With Possible Different Supports. Another type of gen-
erative Wasserstein gradient flow model employs divergences that are well-defined for distribu-
tions with possible different supports. This includes free energy fuctionals (Mokrov et al., 2021;
Alvarez-Melis et al., 2022; Bunne et al., 2022), the kernel-based metrics such as the Maximum-
Mean/Sobolev Discrepancy (Mroueh et al., 2019; Mroueh & Rigotti, 2020; Altekrüger et al., 2023)
and sliced-Wasserstein distance (Liutkus et al., 2019; Du et al., 2023). As these divergences can
be efficiently approximated with samples, neural networks are typically used to directly model the
transport maps used in the inference procedure. In Wasserstein gradient flow methods, input convex
neural networks (ICNNs, Amos et al. (2017)) are commonly used to approximate the transport map.
However, recently, several works (Bonet et al., 2021; Korotin et al., 2021) discuss the poor expres-
siveness of ICNNs architecture and show that it would result in poor performance in high-dimension
applications. Besides, the Maximum-Mean/Sobolev discrepancy Wasserstein gradient flow models
are usually hard to train and are easy to trapped in poor local optima in practice (Arbel et al., 2019),
since the kernel-based divergences are highly sensitive to the parameters of the kernel function (Li
et al., 2017; Wang et al., 2018). Liutkus et al. (2019); Du et al. (2023) consider sliced-Wasserstein
WGF to build nonparametric generative Models which do not achieve high generation quality, it is
an interesting work on how to combine sliced-Wasserstein WGF and neural network methods.

Contribution. In this paper, we investigate the Wasserstein gradient flow with respect to the
Sinkhorn divergence, which is categorized under the second type of divergences and does not ne-
cessitate any kernel functions. We introduce the Neural Sinkhorn Gradient Flow (NSGF) model,
which parametrizes the time-varying velocity field of the Sinkhorn Wasserstein gradient flow from
a specified source distribution. The NSGF employs a velocity field matching scheme that demands
only samples from the target distribution to calculate empirical velocity field approximations. Our
theoretical analyses show that as the sample size approaches infinity, the mean-field limit of the em-
pirical approximation converges to the true velocity field of the Sinkhorn Wasserstein gradient flow.
Given distinct source and target data samples, our NSGF can be harnessed across a wide range of
machine learning applications, including unconditional/conditional image generation, style transfer,
and audio-text translation. We empirically validate NSGF on low-dimensional 2D data and bench-
mark images (MNIST, CIFAR-10). Our findings indicate that our models can be trained to yield
commendable results in terms of generation cost and sample quality, surpassing the performance
of the neural Wasserstein gradient flow methods previously tested on CIFAR-10, to the best of our
knowledge.

2 RELATED WORKS

Sinkhorn Divergence in Machine Learning. Originally introduced in the domain of optimal trans-
port, the Sinkhorn divergence emerged as a more computationally tractable alternative to the classi-
cal Wasserstein distance (Cuturi, 2013; Peyré et al., 2017; Feydy et al., 2019). Since its inception,
Sinkhorn divergence has found applications across a range of machine learning tasks, including do-
main adaptation (Courty et al., 2014; Alaya et al., 2019; Komatsu et al., 2021), Sinkhorn barycenter
(Luise et al., 2019; Shen et al., 2020) and color transfer (Blondel et al., 2018; Pai et al., 2021). In-
deed, it has already been extended to single-step generative modeling methods, such as the Sinkhorn
GAN and VAE (Genevay et al., 2018; Deja et al., 2020; Patrini et al., 2020). However, to the best
of our knowledge, it has yet to be employed in developing efficient generative Wasserstein gradient
flow models.

Neural ODE/SDE Based Diffusion Models. Recently, diffusion models, as a class of Neural
ODE/SDE Based generative methods have achieved unprecedented success, which also transforms
a simple density to the target distribution, iteratively (Song & Ermon, 2019; Ho et al., 2020; Song
et al., 2021). Typically, each step of diffusion models only progresses a little by denoising a sim-
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ple Gaussian noise, while each step in WGF models follows the most informative direction (in
a certain sense). Hence, diffusion models usually have a long inference trajectory. In recent re-
search undertakings, there has been a growing interest in exploring more informative steps within
diffusion models. Specifically, flow matching methods (Lipman et al., 2023; Liu et al., 2023; Al-
bergo & Vanden-Eijnden, 2023) establish correspondence between the source and target via optimal
transport, subsequently crafting a probability path by directly linking data points from both ends.
Notably, when the source and target are both Gaussians, their path is actually a Wasserstein gradient
flow. However, this property does not consistently hold for general data probabilities. Moreover,
Tong et al. (2023); Pooladian et al. (2023) consider calculating the minibatch optimal transport map
to guide data points connecting. Besides, Das et al. (2023) consider the shortest forward diffusion
path for the Fisher metric and Shaul et al. (2023) explore the conditional Gaussian probability path
based on the principle of minimizing the Kinetic Energy. Nonetheless, a commonality among many
of these methods is their reliance on Gaussian paths for theoretical substantiation, thereby constrain-
ing the broader applicability of these techniques within real-world generative modeling.

3 PRELIMINARIES

3.1 NOTATIONS

We denote x = (x1, · · · , xd) ∈ Rd and X ⊂ Rd as a vector and a compact ground set in Rd,
respectively. For a given point x ∈ X , ∥x∥p := (

∑
i x

p
i )

1
p denotes the p-norm on euclidean space,

and δx stands for the Dirac (unit mass) distribution at point x ∈ X . P2(X ) denotes the set of
probability measures on X with finite second moment and C(X ) denotes the space of continuous
functions on X . For a given functional F(·) : P2(X ) → R, δF(µt)

δµ (·) : Rd → R denotes its first
variation at µ = µt. Besides, we use∇ and∇·() to denote the gradient and the divergence operator,
respectively.

3.2 WASSERSTEIN DISTANCE AND SINKHORN DIVERGENCE

We first introduce the background of Wasserstein distance. Given two probability measures µ, ν ∈
P2(X ), the p-Wasserstein distanceWp(µ, ν) : P2(X )× P2(X )→ R+ is defined as:

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
X×X

∥x− y∥p dπ(x,y)
) 1

p

, (1)

where Π(µ, ν) denotes the set of all probability couplings π with marginals µ and ν. The Wp

distance aims to find a coupling π so as to minimize the cost function ∥x− y∥p of moving a proba-
bility mass from µ to ν. It has been demonstrated that the p-Wasserstein distance is a valid metric on
P2(X ), and (P2(X ),Wp) is referred to as the Wasserstein probability space (Villani et al., 2009).

Note that directly calculating Wp is computationally expensive, especially for high dimensional
problems (Santambrogio, 2015). Consequently, the entropy-regularized Wasserstein distance (Cu-
turi, 2013) is proposed to approximate equation 1 by regularizing the original problem with an
entropy term:
Definition 1. The entropy-regularized Wasserstein distance is formally defined as:

Wp,ε(µ, ν) = inf
π∈Π(µ,ν)

[(∫
X×X

∥x− y∥p dπ(x,y)
) 1

p

+ εKL(π|µ⊗ ν)

]
, (2)

where ε > 0 is a regularization coefficient, µ⊗ ν denotes the product measure, i.e., µ⊗ ν(x,y) =
µ(x)ν(y), and KL(π|µ⊗ ν) denotes the KL-divergence between π and µ⊗ ν.

Generally, the computational cost ofWp,ε is much lower thanWp, and can be efficiently calculated
with Sinkhorn algorithms (Cuturi, 2013). Without loss of generality, we fix p = 2 and abbreviate
W2,ε := Wε for ease of notion in the whole paper. According to Fenchel-Rockafellar theorem, the
entropy-regularized Wasserstein problemWε equation 2 has an equivalent dual formulation, which
is given as follows Peyré et al. (2017):

Wε(µ, ν) = max
f,g∈C(X )

⟨µ, f⟩+ ⟨ν, g⟩ − ε

〈
µ⊗ ν, exp

(
1

ε
(f ⊕ g − C)

)
− 1

〉
, (3)
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where C is the cost function in 2 and f ⊕ g is the tensor sum: (x, y) ∈ X 2 7→ f(x) + g(y). The
maximizers fµ,ν and gµ,ν of 3 are called theWε-potentials ofWε(µ, ν). The following lemma states
the optimality condition for theWε-potentials:

Lemma 1. (Optimality Cuturi (2013)) TheWε-potentials (fµ,ν , gµ,ν) exist and are unique (µ, ν)−
a.e. up to an additive constant (i.e. ∀K ∈ R, (fµ,ν +K, gµ,ν −K) is optimal). Moreover,

Wε(µ, ν) = ⟨µ, fµ,ν⟩+ ⟨ν, gµ,ν⟩. (4)

We describe such the method in Appendix A for completeness Note that, although computationally
more efficient than theWp distance, theWε distance is not a true metric, as there exists µ ∈ P2(X )
such that Wε(µ, µ) ̸= 0 when ε ̸= 0, which restricts the applicability of Wε. As a result, the
following Sinkhorn divergence Sε(µ, ν) : P2(X )× P2(X )→ R is proposed (Peyré et al., 2017):

Definition 2. Sinkhorn divergence:

Sε(µ, ν) =Wε(µ, ν)−
1

2
(Wε(µ, µ) +Wε(ν, ν)) . (5)

Sε(µ, ν) is nonnegative, bi-convex thus a valid metric on P2(X ) and metricize the convergence
in law. Actually Sε(µ, ν) interpolates the Wasserstein distance (ϵ → 0) and the Maximum Mean
Discrepancy (ϵ→∞) (Feydy et al., 2019).

3.3 GRADIENT FLOWS

Consider an optimization problem over P2(X ):

min
µ∈P2(X )

F(µ) := D(µ|µ∗). (6)

where µ∗ is the target distribution, D is the divergence we choose. We consider now the problem of
transporting mass from an initial distribution µ0 to a target distribution µ∗, by finding a continuous
probability path µt starting from µ0 = µ that converges to µ∗ while decreasing F(µt). To solve
this optimization problem, one can consider a descent flow of F(µ) in the Wasserstein space, which
transports any initial distribution µ0 towards the target distribution µ∗. Specifically, the descent flow
of F(µ) is described by the following continuity equation (Ambrosio et al. (2005), Villani et al.
(2009), Santambrogio (2017)):

∂µt(x)

∂t
= −∇ · (µt(x)vt(x)). (7)

where vµt
: X → X is a velocity field that defines the direction of position transportation. To

ensure a descent of F(µt) over time t, the velocity field vµt
should satisfy the following inequality

((Ambrosio et al., 2005)):

dF(µt)

dt
=

∫
⟨∇δF(µt)

δµ
,vt⟩dµt ≤ 0. (8)

A straightforward choice of vt is vt = −∇ δF(µt)
δµ , which is actually the steepest descent direction of

F(µt). When we select this vt, we refer to the aforementioned continuous equation as the Wasser-
stein gradient flow of F . We give the definition of the first variation in the appendix for the sake of
completeness of the article.

4 METHODOLOGY

In this section, we first introduce the Sinkhorn Wasserstein gradient flow and investigate its conver-
gence properties. Then, we develop our Neural Sinkhorn Gradient Flow model, which consists of
a velocity field matching training procedure and a velocity field guided inference procedure. More-
over, we theoretically show that the mean-field limit of the empirical approximation used in the
training procedure converges to the true velocity field of the Sinkhorn Wasserstein gradient flow.
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4.1 SINKHORN WASSERSTEIN GRADIENT FLOW

Based on the definition of the Sinkhorn divergence, we construct our Sinkhorn objective Fε(·) =
Sε(·, µ∗), where µ∗ denotes the target distribution. The following theorem gives the first variation
of the Sinkhorn objective.
Theorem 1. (First variation of the Sinkhorn objective Luise et al. (2019)) Let ε > 0. Let
(fµ,µ∗ , gµ,µ∗) be theWε-potentials ofWε(µ, µ

∗) and (fµ,µ, gµ,µ) be theWε-potentials ofWε(µ, µ).
The first variation of the Sinkhorn objective Fε is

δFε

δµ
= fµ,µ∗ − fµ,µ. (9)

According to Theorem 1, we can construct the Sinkhorn Wasserstein gradient flow by setting the
velocity field vt in the continuity equation equation 7 as vFε

µt
= −∇ δFε(µt)

δµt
= ∇fµt,µt

−∇fµt,µ∗ .

Proposition 1. Consider the Sinkhorn Wasserstein gradient flow described by the following conti-
nuity equation:

∂µt(x)

∂t
= −∇ · (µt(x)(∇fµt,µt

(x)−∇fµt,µ∗(x))). (10)

The following local descending property of Fε holds:

dFε (µt)

dt
= −

∫
∥∇fµt,µt

(x)−∇fµt,µ∗(x)∥2 dµt, (11)

where the r.h.s. equals 0 if and only if µt = µ∗.

4.2 VELOCITY-FIELDS MATCHING

We now present our NSGF method, the core of which lies in training a neural network to approx-
imate the time-varying velocity field vFε

µt
induced by Sinkhorn Wasserstein gradient flow. Given

a target probability density path µt(x) and it’s corresponding velocity field vSε
µt

, which generates
µt(x), we define the velocity field matching objective as follows:

min
θ

Et∼[0,T ],x∼µt

[∥∥vθ(x, t)− vSε
µt

(x)
∥∥2] . (12)

To construct our algorithm, we utilize independently and identically distributed (i.i.d) samples de-
noted as {Yi}ni=1 ∈ Rd , which are drawn from an unknown target distribution µ∗ a common practice
in the field of generative modeling. Given the current set of samples {X̃t

i}ni=1 ∼ µt, our method
calculates the velocity field using theWε-potentials (Lemma 1) fµ̃t,µ̃∗ and fµ̃t,µ̃t

based on samples.
Here, µ̃t and µ̃∗ represent discrete Dirac distributions. Note that these potentials defined on discrete
measures can be calculated efficiently with first-order stochastic gradient descent methods such as
SGD and ADAM (Bottou et al., 2018; Kingma & Ba, 2014). The corresponding finite sample ve-
locity field approximation can be computed as follows:

v̂Fε

µ̃t
(X̃t

i ) = ∇X̃t
i
fµ̃t,µ̃t(X̃

t
i )−∇X̃t

i
fµ̃t,µ̃∗(X̃t

i ). (13)

Subsequently, we derive the particle formulation corresponding to the flow formulation 10.

dX̃t
i = v̂Fϵ

µ̃t

(
X̃t

i

)
dt, i = 1, 2, · · ·n. (14)

In the following proposition, we investigate the mean-field limit of the particle set {X̃t
i}i=1,··· ,M .

Theorem 2. (Mean-field limits.) Suppose the empirical distribution µ̃0 of M particles weakly con-
verges to a distribution µ0 when M → ∞. Then, the path of equation 14 starting from µ̃0 weakly
converges to a solution of the following partial differential equation starting from µ0 when M →∞:

∂µt(x)

∂t
= −∇ · (µt(x)∇

δFε(µt)

δµt
). (15)

which is actually the gradient flow of Sinkhorn divergence Fε in the Wasserstein space.
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The following proposition shows that the goal of the velocity field matching objective equation 12
can be regarded as approximating the steepest local descent direction with neural networks.

Proposition 2. (Steepest local descent direction.) Consider the infinitesimal transport T (x) =
x+ λϕ. The Fréchet derivative under this particular perturbation,

d

dλ
Fε(T#µ)|λ=0 = lim

λ→0

Fε (T#µ)−Fε (µ)

λ

=

∫
X
∇fµ,µ∗(x)ϕ(x)dµ−

∫
X
∇fµ,µ(x)ϕ(x)dµ,

(16)

and the steepest local descent direction is ϕ =
∇fµ,µ∗ (x)−fµ,µ(x)

∥∇fµ,µ∗ (x)−fµ,µ(x)∥ .

The velocity field matching training procedure is outlined in Algorithm 1. Considering the balance
between expensive training costs and training quality, we opted to first build a trajectory pool of
Sinkhorn gradient flow and then sample from it to construct the velocity field matching algorithm.
Our method draws inspiration from experience replsay, a common technique in reinforcement learn-
ing, adapting it to enhance our model’s effectiveness (Mnih et al., 2013; Silver et al., 2016). Once
we calculate the time-varying velocity field v̂s

µt
(X̃t

i ), we can parameterize the velocity field using a
straightforward regression method.

Remark 1. In the discrete case,Wε-potentials 1 can be computed by a standard method in Genevay
et al. (2016). In practice, we use the efficient implementation of the Sinkhorn algorithm with GPU
acceleration from the GeomLoss package (Feydy et al., 2019).

Algorithm 1: Velocity field matching training
Input : number of time steps T , batch size n, gradient flow step size η > 0, empirical or samplable

distribution µ0 and µ∗, neural network parameters θ, optimizer step size γ > 0
/* Build trajectory pool */
while Building do

/* Sample batches of size n i.i.d. from the datasets */

X̃0
i ∼ µ0, Ỹi ∼ µ∗, i = 1, 2, · · ·n.

for t = 0, 1, · · ·T do
calculatefµ̃t,µ̃t

(
X̃t

i

)
, fµ̃t,µ̃∗

(
X̃t

i

)
using the GeomLoss package .

v̂Fϵ
µt

(
X̃t

i

)
= ∇fµ̃t,µ̃t

(
X̃t

i

)
−∇fµ̃t,µ̃∗

(
X̃t

i

)
.

X̃t+1
i = X̃t

i + ηv̂Fϵ
t

(
X̃t

i

)
.

store all
(
X̃t

i , v̂
Fϵ
t

(
X̃t

i

))
pair into the pool, i = 1, 2, · · ·n, t = 0, 1, · · ·T .

/* velocity field matching */
while Not convergence do

from trajectory pool sample pair
(
X̃t

i , v̂
Fϵ
t

(
X̃t

i

))
.

L(θ) =
∥∥∥vθ(X̃t

i , t)− v̂Fε
µt

(
X̃t

i

)∥∥∥2,
θ ← θ − γ∇θL (θ) .

Output: θ parameterize the time-varying velocity field

Once obtained a feasible velocity field approximation vθ, one can generate new samples by iter-
atively employing the explicit Euler discretization of the Equation 14 to drive the samples to the
target. More details can be found in appendix D.Note that various other numerical schemes, such
as the implicit Euler method (Platen & Bruti-Liberati, 2010) and higher-order Runge-Kutta methods
(Butcher, 1964), can be employed. In this study, we opt for the first-order explicit Euler discretiza-
tion method (Süli & Mayers, 2003) due to its simplicity and ease of implementation. We leave the
exploration of higher-order algorithms for future research.
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Algorithm 2-Wasserstein distance (10 steps) 2-Wasserstein distance (100 steps)
8gaussians 8gaussians-moons moons scurve checkerboard 8gaussians 8gaussians-moons moons scurve checkerboard

NSGF(ours) 0.285 0.144 0.077 0.117 0.252 0.278 0.144 0.067 0.110 0.147
JKO-Flow 0.290 0.177 0.085 0.135 0.269 0.274 0.167 0.085 0.123 0.160

EPT 0.295 0.180 0.082 0.138 0.277 0.289 0.176 0.080 0.118 0.163
OT-CFM 0.289 0.173 0.088 0.149 0.253 0.269 0.165 0.078 0.127 0.159

1-RF 0.427 0.294 0.107 0.169 0.396 0.415 0.293 0.099 0.136 0.166
2-RF 0.428 0.311 0.125 0.171 0.421 0.430 0.311 0.121 0.136 0.170
3-RF 0.421 0.298 0.110 0.170 0.413 0.414 0.297 0.103 0.140 0.170

SI 0.435 0.324 0.134 0.187 0.427 0.411 0.294 0.096 0.139 0.166
FM 0.423 0.292 0.111 0.171 0.417 0.415 0.290 0.097 0.135 0.165

Table 1: Comparison of neural gradient-flow-based methods and neural ODE-based diffusion mod-
els over five data sets. We provide the generated result in 10/100 Euler steps for Neural ODE Models,
EPT, and our methods. The principle of steps in JKO-flow means backward Eulerian method steps
(JKO steps).

5 EXPERIMENTS

We conducted an empirical investigation of the Neural Sinkhorn Gradient Flow (NSGF) method
across a range of experiments. Initially, we demonstrate how NSGF guides the evolution and conver-
gence of particles from the initial distribution toward the target distribution in 2D distribution experi-
ments. Subsequently, we shift our focus to benchmarking on high-dimensional datasets, specifically
the MNIST dataset (LeCun et al. (1998)) and the CIFAR-10 dataset (Krizhevsky et al. (2009)). Our
method’s adaptability to high-dimensional spaces is exemplified through experiments conducted on
these datasets.

5.1 2D SIMULATE DATA

We assess the performance of various generative modeling models in low dimensions. Specifically,
we conduct a comparative analysis between our method, NSGF, and several neural ODE-based dif-
fusion models, including Flow Matching (FM; Lipman et al. (2023)), Rectified Flow (1,2,3-RF; Liu
et al. (2023)), Optimal Transport Condition Flow Matching (OT-CFM; Tong et al. (2023); Pooladian
et al. (2023)), Stochastic Interpolant (SI; Albergo & Vanden-Eijnden (2023)), and neural gradient-
flow-based models such as JKO-Flow (Fan et al., 2022) and EPT (Gao et al., 2022a). Our evaluation
involves learning 2D distributions adapted from Grathwohl et al. (2018), which include multiple
modes.

Table 1 provides a comprehensive overview of our 2D experimental results, clearly illustrating the
generalization capabilities of NSGF. Even when employing fewer steps. It is evident that neural
gradient-flow-based models consistently outperform neural ODE-based diffusion models, particu-
larly in low-step settings. This observation suggests that neural gradient-flow-based models generate
more informative paths, enabling effective generation with a reduced number of steps. Furthermore,
our results showcase the best performances among neural gradient-flow-based models, indicating
that we have successfully introduced a lower error in approximating Wasserstein gradient flows.
More complete details of the experiment can be found in the appendix E In the absence of specific
additional assertions, we adopted Euler steps as the inference steps.

We present additional comparisons between neural ODE-based diffusion models and neural
gradient-flow-based models, represented by NSGF and EPT, in Figure 1, 2, which illustrates the
flow at different steps from 0 to T . Our observations reveal that the velocity field induced by NSGF
exhibits notably high-speed values right from the outset. This is attributed to the fact that NSGF
follows the steepest descent direction within the probability space. In contrast, neural ODE-based
diffusion models, particularly those based on stochastic interpolation, do not follow the steepest de-
scent path in 2D experiments. Even with the proposed rectified flow method by Liu et al. (2023) to
straighten the path, these methods still necessitate more steps to reach the desired outcome.

5.2 IMAGE BENCHMARK DATA

In this section, we illustrate the scalability of our algorithm to the high-dimensional setting by ap-
plying our methods on real image datasets where only samples from the target distribution are ac-
cessible.

Generative modeling for MNIST We evaluate NSGF on MNIST to show our generating ability.
Figure 3 shows samples and their trajectories starting from Gaussian noise to target distribution and
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(a) NSGF (b) EPT (c) FM (d) SI

Figure 1: Visualization results for 2D generated paths. We show different methods that drive the
particle from the prior distribution (black) to the target distribution (blue). The color change of the
flow shows the different number of steps (from blue to red means from 0 to T ).

N
SG

F

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

E
PT

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

FM

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

SI

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Figure 2: 2-Wasserstein Distance of the generated process utilizing neural ODE-based diffusion
models and NSGF. The FM/SI methods reduce noise roughly linearly, while NSGF quickly recovers
the target structure and progressively optimizes the details in subsequent steps which cause more
meaningful interpolation between initial and target distributions.

demonstrates NSGF can approximate Sinkhorn gradient flow in image space empirically. We also
provide sample quality using the standard Fréchet Inception Distance (FID) (Heusel et al., 2017)
comparing with nonparametric gradient-flow-based methods SWGF (Sliced Wasserstein gradient
flow, Liutkus et al. (2019)) and normalizing flows method SIG (Sliced iterative normalizing flows,
Dai & Seljak (2020)) on appendix 3.

Figure 3: Trajectories and uncurated samples of our methods on MNIST

Generative modeling for CIFAR-10 We report sample quality using the standard Fréchet Inception
Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016) and compute

8
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Algorithm CIFAR 10
IS(↑) FID(↓) NFE(↓)

NSGF(ours) 7.56 21.6 100
EPT(Gao et al., 2022a) / 46.63 10k

JKO-Flow(Fan et al., 2022) 7.48 23.7 >150
DGGF(Heng et al., 2022) / 28.12 110

OT-CFM(Tong et al., 2023) / 11.139 100
FM(Lipman et al., 2023) / 6.35 142

1-RF(Liu et al., 2023) 9.60 2.58 127
2-RF(Liu et al., 2023) 9.24 3.36 110
3-RF(Liu et al., 2023) 9.01 3.96 104

SI(Albergo & Vanden-Eijnden, 2023) / 10.27 /

Table 2: Comparison of Neural Wasserstein gradient flow methods and Neural ODE-based diffusion
models over CIFAR-10

cost using the number of function evaluations (NFE). These are all standard metrics throughout the
literature.

Table 2 presents the results, including the Fréchet Inception Distance (FID), Inception Score (IS),
and the number of function evaluations (NFE), comparing the empirical distribution generated by
each algorithm with the target distribution. While our current implementation may not yet rival state-
of-the-art methods, it demonstrates promising outcomes, particularly in terms of generating quality
(FID), outperforming neural gradient-flow-based models (EPT, Gao et al. (2022a); JKO-Flow, Fan
et al. (2022); DGGF,(LSIF-X 2) Heng et al. (2022)) with fewer steps. It’s essential to emphasize that
this work represents an initial exploration of this particular model category and has not undergone
optimization using common training techniques found in recent diffusion-based approaches. Such
techniques include the use of exponential moving averages, truncations, learning rate warm-ups, and
similar strategies. Furthermore, it’s worth noting that training neural gradient-flow-based models
like NSGF in high-dimensional spaces can be challenging. Balancing the optimization of per-step
information with the limitations of the neural network’s expressive power presents an intriguing
research avenue that warrants further investigation. Figure 4 shows the trajectories of rectified flow
(Liu et al., 2023) and NSGF. We still observe that NSGF quickly recovers the target structure and
progressively optimizes the details in subsequent steps compared to the rectified flow.

Figure 4: Trajectories comparison between the rectified flow and the NSGF model in CIFAR-10
task. The top two rows show the trajectories of rectified flow and the bottom two rows show the
trajectories of the NSGF model. We can see NSGF model quickly recovers the target structure and
progressively optimizes the details in subsequent steps

6 CONCLUSION

This paper delves into the realm of Wasserstein gradient flow w.r.t. the Sinkhorn divergence as an
alternative to kernel methods. Our main investigation revolves around the Neural Sinkhorn Gra-
dient Flow (NSGF) model, which introduces a parameterized velocity field that evolves over time
in the Sinkhorn gradient flow. One noteworthy aspect of the NSGF is its efficient velocity field
matching, which relies solely on samples from the target distribution for empirical approximations.
The combination of rigorous theoretical foundations and empirical observations demonstrates that
our approximations of the velocity field converge toward their true counterparts as the sample sizes
grow. Through extensive empirical experiments on well-known datasets like MNIST and CIFAR-10,
we provide further evidence supporting our theoretical claims and showcasing the NSGF’s poten-
tial to surpass existing benchmarks for neural Wasserstein gradient flow. In conclusion, it becomes
evident that the NSGF opens up new possibilities in the field of optimal transport, establishing a
benchmark that will guide future research endeavors in this domain.
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Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal trans-
port. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14, pp. 274–
289. Springer, 2014.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Biwei Dai and Uros Seljak. Sliced iterative normalizing flows. arXiv preprint arXiv:2007.00674,
2020.

10

https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=dpOYN7o8Jm
https://openreview.net/forum?id=Zbc-ue9p_rE


Under review as a conference paper at ICLR 2024

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
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2015.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin
of Mathematical Sciences, 7:87–154, 2017.

Neta Shaul, Ricky TQ Chen, Maximilian Nickel, Matthew Le, and Yaron Lipman. On kinetic opti-
mal probability paths for generative models. In International Conference on Machine Learning,
pp. 30883–30907. PMLR, 2023.

Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, and Hamed Hassani. Sinkhorn barycenter via
functional gradient descent. Advances in Neural Information Processing Systems, 33:986–996,
2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

13



Under review as a conference paper at ICLR 2024

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.
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A COMPUTATION OFWε-POTENTIALS

TheWε-potentials is the cornerstone to conduct NSGF. Hence, a key component of our method is to
efficiently compute this quantity. Genevay et al. (2016) provided an efficient method when both µ
and ν are discrete measures so that we can calculateWε-potential in terms of samples. In particular,
when µ is discrete, f can be simply represented by a finite-dimensional vector since only its values
on supp(µ) matter.

Remark 2. To more clearly explain the relationship between the calculation ofWε-protentials and
the composition of our algorithm, we provide the following explanation: In practice, we actually
calculate the Wε-potentials for the empirical distribution of discrete minibatches and construct
Sinkhorn WGF based on this. Therefore, in fact, the µ and ν in the subsequent text refer to (X̃t

i )
n
i=1

and (Ỹ t
i )

n
i=1 in the Algorithm 1.

We first introduce another property of the entropy-regularized optimal transport problem.

Lemma 2. Define the Sinkhorn mapping: A : C(X )×M+
1 (X )→ C(X )

A(f, µ)(y) = −ε log
∫
X
exp((f(x)− c(x,y))/ε)dµ(x). (17)

The pair (fµ,ν , gµ,ν) are theWε-potentials of the entropy-regularized optimal transport problem 2
if they satisfy:

fµ,ν = A(gµ,ν , ν), µ− a.e. and gµ,ν = A(fµ,ν , µ), ν − a.e., (18)

or equivalently∫
X
h(x,y)dν(y) = 1, µ− a.e. ,

∫
X
h(x,y)dµ(x) = 1, ν − a.e. , (19)

where h(x,y) := exp 1
γ (f(x) + g(x)− c(x,y))

To be more precise, by plugging in the optimality condition on gµ,ν in 1, the dual problem 2 be-
comes:

OTε(µ, ν) = max
f∈C
⟨f, µ⟩+ ⟨A(f, µ), ν⟩ (20)

Viewing the discrete measure µ as a weight vector wµ on supp(µ), we have:

OTε(µ, ν) = max
f∈Rd

{
F (f) := f⊤wµ + Ey∼ν [A(f , µ)(y)]

}
, (21)

that is, we get a standard concave stochastic optimization problem, where the randomness of the
problem comes from ν (Genevay et al., 2016). Hence, the problem can be solved using stochas-
tic gradient descent (SGD). In our methods, we can treat the computation of Wε-potentials as a
Blackbox. In practice, we use the efficient implementation of the Sinkhorn algorithm with GPU
acceleration from the GeomLoss package (Feydy et al., 2019).

B THEORY OF SINKHORN WASSERSTEIN GRADIENT FLOW

Definition 3. (First variation of Functionals over Probability). Given a functional F : P(X ) →
R+, we shell perturb measure µ with a perturbation χ so that µ + tχ belongs to P(X ) for small t
(
∫
dχ = 0). We treat F(µ), as a functional over probability in its second argument and compute its

first variation as follows:

d

dt
F (µ+ tχ)

∣∣∣∣
t=0

= lim
t→0

F (µ+ tχ)−F (µ)

t
:=

∫
δF
δµ

(µ) dχ. (22)
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B.1 PROOF OF THEOREM 1

Proof. According to definition 3, given Fε(·) = Sε(·, µ∗) and t in a neighborhood of 0, we define
µt = µ+ tδµ

lim
t→0

1

t
(Fε(µt)−Fε(µ)) = lim

t→0

1

t
(Wε(µt, µ

∗)−Wε(µ, µ
∗))︸ ︷︷ ︸

∆first part
t

− lim
t→0

1

2t
(Wε(µt, µt)−Wε(µ, µ))︸ ︷︷ ︸

∆second part
t

We first analysis ∆first part
t := limt→0

1
t (Wε(µt, µ

∗)−Wε(µ, µ
∗)). First, let us remark that (f, g) is

the a suboptimal pair of dual potentialsWε,µ∗(µ) for short. Recall 3,

Wε ≥ ⟨µt, f⟩+ ⟨µ∗, g⟩ − ε

〈
µt ⊗ µ∗, exp

(
1

ε
(f ⊕ g − C)

)
− 1

〉
,

and thus, since

Wε ≥ ⟨µ, f⟩+ ⟨µ∗, g⟩ − ε

〈
µ⊗ µ∗, exp

(
1

ε
(f ⊕ g − C)

)
− 1

〉
,

one has

∆first part
t ≥ ⟨δµ, f⟩ − ε

〈
δµ⊗ µ∗, exp

(
1

ε
(f ⊕ g − C)

)〉
+ o(1)

≥ ⟨δµ, f − ε⟩+ o(1)

Conversely, let us denote by (ft, gt) the optimal pair of potentials forWε(µt, µ
∗) satisfying gt(xo) =

0 for some arbitrary anchor point xo ∈ X . As (ft, gt) are suboptimal potentials forWε(µ, µ
∗) we

get that

Wε ≥ ⟨µ, ft⟩+ ⟨µ∗, gt⟩ − ε

〈
µt ⊗ µ∗, exp

(
1

ε
(f ⊕ g − C)

)
− 1

〉
,

and thus, since

Wε ≥ ⟨µt, ft⟩+ ⟨µ∗, gt⟩ − ε

〈
µt ⊗ µ∗, exp

(
1

ε
(ft ⊕ g − C)

)
− 1

〉
,

one has

∆first part
t ≥ ⟨δµ, ft⟩ − ε

〈
δµ⊗ µ∗

t , exp

(
1

ε
(ft ⊕ g − C)

)〉
+ o(1)

≥ ⟨δµ, ft − ε⟩+ o(1)

Now, let us remark that as t goes to 0, µ+ tδµ ⇀ µ. ft and gt converge uniformly towards f and g
according to Proposition 13 Feydy et al. (2019). we get

∆first part
t = ⟨δµ, f⟩

Simular to analysis ∆first part
t := limt→0

1
t (Wε(µt, µ

∗)−Wε(µ, µ
∗)) we define ∆second part

t :=

limt→0
1
2t (Wε(µt, µt)−Wε(µ, µ)), we have:

∆second part
t = ⟨δµ, f ′⟩

to be more clearly, we denote f = fµ,µ∗ and f ′ = fµ,µ thus,

lim
t→0

1

t
(Fε(µt)−Fε(µ)) = ⟨δµ, fµ,µ∗ − fµ,µ⟩.

So the first variation of Fε is:
δFε

δµ
= fµ,µ∗ − fµ,µ.

16



Under review as a conference paper at ICLR 2024

B.2 PROOF OF PROPOSITION 2

Following the lines of our proof in Theorem 1, we give the following proof.
Lemma 3. (Fréchet derivative of entropy-regularized Wasserstein distance) Let ε > 0. We shall fix
in the following a measure µ∗ and let (fµ,µ∗ , gµ,µ∗) be theWε potentials ofWε(µ, µ

∗) according
to lemma 1. Consider the infinitesimal transport T (x) = x + λϕ. We have the Fréchet derivative
under this particular perturbation:

d

dλ
Wε(T#µ, µ

∗)|λ=0 = lim
λ→0

Wε (T#µ, µ
∗)−Wε (µ, µ

∗)

λ

=

∫
X
∇fµ,µ∗(x)ϕ(x)dµ(x).

(23)

Proof. let f = fµ,µ∗ and g = gµ,µ∗ be the Wε-potentials 1 to Wε(µ, µ
∗) for short. By 3 and the

optimality of (f, g), we have follows:
Wε(µ, µ

∗) = ⟨f, µ⟩+ ⟨g, µ∗⟩.
However, (f, g) are not necessarily the optimal dual variables forWε(T#µ, µ

∗), recall the lemma 2:
Wε(T#µ, µ

∗) ≥ ⟨f, T#µ⟩+ ⟨g, µ∗⟩ − ε⟨h− 1, T#µ⊗ µ∗⟩,
where

∫
X h(x,y)dµ∗(y) = 1 and hence ⟨h− 1, T#µ⊗ µ∗⟩ = 0. Thus:

Wε(T#µ, µ
∗)−Wε(µ, µ

∗) ≥ ⟨f, T#µ− µ⟩.
Use the change-of-variables formula of the push-forward measure to obtain:

1

λ
⟨f, T#µ− µ⟩ = 1

λ

∫
X
((f ◦ T )(x)− f(x))dµ(x) =

∫
X
∇f(x+ λ′ϕ(x))ϕ(x)dµ(x),

where λ′ ∈ [0, λ] is from the mean value theorem. Here we assume ∇f is Lipschitz continuous
follow Proposition 12 in Feydy et al. (2019) and Lemma A.4 form Shen et al. (2020). We have:

lim
λ→0

1

λ
⟨f, T#µ− µ⟩ =

∫
X
∇f(x)ϕ(x)dµ(x).

Hence:
lim
λ→0

1

λ
(Wε(T#µ, µ

∗)−Wε(µ, µ
∗)) ≥

∫
X
∇f(x)ϕ(x)dµ(x).

Similarly, let f ′ and g′ be theWε potentials toWε(T#µ, µ
∗), we have:

Wε(µ, µ
∗) ≥ ⟨f ′, µ⟩+ ⟨g, µ∗⟩ − ε⟨h− 1, µ⊗ µ∗⟩,

where
∫
X h(x,y)dµ∗(y) = 1 and hence ⟨h− 1, µ⊗ µ∗⟩ = 0. Thus:

Wε(T#µ, µ
∗)−Wε(µ, µ

∗) ≤ ⟨f ′, T#µ− µ⟩.
Same as above, use the change-of-variables formula and the mean value theorem:

1

λ
⟨f ′, T#µ− µ∗⟩ =

∫
X
∇f ′(x+ λ′ϕ(x))ϕ(x)dµ(x),

Thus:

lim
λ→0

1

λ
(Wε(T#µ, µ

∗)−Wε(µ, µ
∗)) ≤

∫
X

lim
λ→0
∇f ′(x+ λ′ϕ(x))ϕ(x)dµ(x).

Assume that ∇f ′ is Lipschitz continuous and f ′ → f as λ → 0. Consequently we have
limλ→0∇f ′(x+ λ′ϕ(x)) and hence:

lim
λ→0

1

λ
(Wε(T#µ, µ

∗)−Wε(µ, µ
∗)) =

∫
X
∇f(x)ϕ(x)dµ(x).

According to lemma 3, we have:
d

dλ
Fε(T#µ)

∣∣∣∣
λ=0

=

∫
X
∇fµ,µ∗(x)ϕ(x)dµ(x)− 1

2
·
∫
X
2∇fµ,µ(x)ϕ(x)dµ(x)

=

∫
X
∇fµ,µ∗(x)ϕ(x)dµ−

∫
X
∇fµ,µ(x)ϕ(x)dµ.

17



Under review as a conference paper at ICLR 2024

B.3 PROOF OF THEOREM 2

Proof. First, we define Ψ(µ) =
∫
hdµ where h : Rd → R is an arbitrary bounded and continuous

function and δΨ(µ)
δµ (x) denotes the first variation of functional Ψ at µ satisfying:∫

δΨ(µ)

δµ
(x)ξ(x)dx = lim

ϵ→0

Ψ(µ+ ϵξ)−Ψ(µ)

ϵ

for all signed measure
∫
ξ(x)dx = 0. We also have the following:

δΨ(µ)

δµ
(·) =

δ
∫
hdµ

δµ
(·) = h(·)

Assume µt is a flow satisfies the following:
∂tΨ[µt] = (LΨ)[µt],

where,

LΨ[µt] = −
∫
⟨∇δFε(µt)

δµ
(x),∇x

δΨ(µt)

δµ
(x)⟩µt(x)dx (24)

Notably, µt is a solution of equation 2.

Next, let µ̃M
t be the distribution produced by the equation 14 at time t. Under mild assumption of

µ̃M
0 ⇀ µ0, we want to show that the mean-field limit of µ̃M

t as M → ∞ is µt by showing that
limM→∞ Ψ(µM

t ) = Ψ(µt) (Folland, 1999).

For the measure valued flow µ̃M
t equation 14, the infinitesimal generator of Ψ w.r.t. µ̃M

t is defined
as follows:

(LΨ)[µ̃M
t ] := lim

ϵ→0+

Ψ(µ̃M
t+ϵ)−Ψ(µ̃M

t )

ϵ
,

According to the definition of first variation, it can be calculated that

(LΨ)[µ̃M
t ] = lim

ϵ→0+

Ψ[
∑M

i=1
1
M δxi

t+ϵ
]−Ψ(

∑M
i=1

1
M δxi

t
)

ϵ

=

∫
δΨ(µ̃M

t )

δµ
(x)

M∑
i=1

1

M
∂tρ(x

i
t)dx

Then we adopt the Induction over the Continuum to prove limn→∞ Ψ(µ̃M
t ) = Ψ(µt) for all t > 0.

Here t ∈ R+ satisfy the requirement of well ordering and the existence of a greatest lower bound
for non-empty subsets, so Induction over the Continuum is reasonable (Kalantari, 2007).

1. As for t = 0, our assumption of µ̃M
0 ⇀ µ0 suffice.

2. For the case of t = t∗, we first hypothesis that for t < t∗, µ̃M
t ⇀ µt as M →∞. Then for t < t∗

we have:

lim
M→∞

(LΨ)[µ̃M
t ] = lim

M→∞

∫
δΨ(µ̃M

t )

δµ
(x)

M∑
i=1

1

M
∂tρ(x

i
t)dx

=− lim
M→∞

∫
⟨∇δFε(µt)

δµ
(x),∇x

δΨ(µ̃M
t )

δµ
(x)⟩µ̃M

t (x)dx

=−
∫
⟨∇δFε(µt)

δµ
(x),∇x

δΨ(µt)

δµ
(x)⟩µt(x)dx.

Because limM→∞ Ψ(µ̃M
0 ) = Ψ(µ0) at t = 0 and limM→∞(∂tΨ)[µ̃M

t ] = (∂tΨ)[µt] for all t < t∗,
we have limM→∞ Ψ(µ̃M

t∗ ) = Ψ(µt∗).

Combining (1) and (2), we can reach to the conclusion that limM→∞ Ψ(µM
t ) = Ψ(µt) for all t.

which indicates that µ̃M
t ⇀ µt if µ̃M

0 ⇀ µ0. Since µt solves the partial differential equation 10, we
conclude that the path of equation 14 starting from µ̃M

0 weakly converges to a solution of the partial
differential equation equation 10 starting from µ0 as M →∞.
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B.4 DESCENDING PROPERTY

Proposition 3. Consider the Sinkhorn gradient flow 10, the differentiation of Fε(µt) with respect
to the time t satisfies:

dFε(µt)

dt
=−

∫ ∥∥∥∥∇(
δFε(µt)

δµt

)∥∥∥∥2 dµt ≤ 0 (25)

Proof. By substituting Ψ(·) = Fε(·) in equation 24, we directly reach to the above equality.

C MINIBATCH OPTIMAL TRANSPORT

For large datasets, the computation and storage of the optimal transport plan can be challenging due
to OT’s cubic time and quadratic memory complexities relative to the number of samples (Cuturi,
2013; Genevay et al., 2016; Peyré et al., 2017). The minibatch approximation offers a viable solution
for enhancing calculation efficiency. Theoretical analysis of using the minibatch approximation for
transportation plans is provided by Fatras et al. (2019; 2021b). Although minibatch OT introduces
some errors compared to the exact OT solution, its efficiency in computing approximate OT is clear,
and it has seen successful applications in domains like domain adaptation (Damodaran et al., 2018;
Fatras et al., 2021a) and generative modeling (Genevay et al., 2018).

More recently, (Pooladian et al., 2023; Tong et al., 2023) introduced OT-CFM and empirically
demonstrated that using minibatch approximation of optimal transport in flow matching methods
(Liu et al., 2023; Lipman et al., 2023) can straighten the flow’s trajectory and yield more consistent
samples. OT-CFM specifically focuses on minibatch initial and target samples, continuing to use
random linear interpolation paths. In contrast, NSGF leverages minibatch Wε-potentials to con-
struct Sinkhorn gradient flows in minibatches. Our method also involves performing velocity field
matching on the flow’s discretized form, marking a separate and innovative direction in the field.

D INFERENCE ALGORITHM

Algorithm 2: Inference via velocity field
Input : number of time steps T , inference step size η, time-varying velocity field vθ, prior samples

X̃0
i ∼ µ̃0

for t = 0, 1, · · ·T do
X̃t+1

i = X̃t
i + ηvθ

(
X̃t

i , t
)
, i = 1, 2, · · ·n.

Output: X̃T
i as the results.

E EXPERIMRNTS

E.1 2D SIMULATE DATA

For the 2D experiments, we closely follow Tong et al. (2023) and the released code at https:
//github.com/atong01/conditional-flow-matching (code released under MIT license), and use the
same synthetic datasets and the 2-Wasserstein distance between the test set and samples simulated
using NSGF as the evaluation metric. We use 1024 samples in the test set since we find the We
use a simple MLP with 3 hidden layers and 256 hidden units to parameterize the velocity matching
networks. We use batch size 256 and 10/100 steps with a uniform schedule at sampling time. For
both Nerual gradient-flow-based models and Nerual ODE-based Models, we train for 20000 steps
in total. Note that FM cannot be used for the 8gaussians-moons task since it requires a Gaussian
source, but we still conducted experiments with the algorithm and found competitive experimental
results. We believe that this is because FM is essentially very close to 1-RF in its algorithmic de-
sign, and that the Gaussian source condition can be meaningfully relaxed in practice, as confirmed
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Algorithm MNIST
FID(↓)

NSGF(ours) 3.24
VGrow(Outerloop)(Gao et al., 2019) 3.32

SWGF(Liutkus et al., 2019) 225.1
SIG(Dai & Seljak, 2020) 4.5

Table 3: Comparison of Neural Wasserstein gradient flow methods over MNIST

in Tong et al. (2023). The experiments are run using one 3090 GPU and take approximately less
than 60 minutes (for both training and testing).

For the neural gradient-flow-based models, we solely implemented the EPT without the outer loop,
as the outer loop can be likened to a GAN-like distillation approach (Goodfellow et al., 2014).
Notably, the original EPT (Gao et al., 2022a) recommends iterating for 20, 000 rounds with an
exceedingly small step size; however, to ensure a fair comparison, we employed the same number
of steps as the other methods while adapting the step size accordingly. It’s worth mentioning that for
the JKO-Flow, we used the recommended parameter setting of 10 steps, as suggested in Fan et al.
(2022), but we also provide results for 100 steps for comparative purposes. All the results for Neural
Gradient flow-based models were trained and sampled following the standard procedures outlined
in their respective papers.

E.2 IMAGE BENCHMARK DATA

For the MNIST/CIFAR-10 experiments, we summarize the setup here, where the exact parameter
choices can be seen in the source code. For the calculation of Wε-potentials, we use the Geom-
Loss package (Feydy et al., 2019) with blur = 0.05, 0.1 or 1, scaling = 0.85 or 0.95 depends on
learning rate of Sinkhorn gradient flow. We also find that training the NSGF model in MNIST
can use blur = 1, scaling ≤ 0.85 but still get good performance. To minimize the computa-
tional cost, we choose blur = 1, scaling = 0.75. We also find using an incremental lr scheme
will improve training performance. More detailed experiments we will leave for future work.
We used the AdamW optimizer with weight decay = 10−4. We used the UNet architecture from
https://github.com/zoubohao/DenoisingDiffusionProbabilityModel-ddpm- we find that this UNet ar-
chitecture is slightly different from the architecture used in Ho et al. (2020). The training parame-
ters are listed as flows: batch size = 128, learning rate = 10−5, For sampling, we use 50-step Euler
integration for MNIST and 100-step Euler integration for CIFAR10. For the MNIST/CIFAR-10
experiments, a considerable amount of storage space is required when establishing the trajectory
pool during the first phase of the algorithm. For instance, with CIFAR-10, setting the batch size to
128 and saving all minibatch Sinkhorn gradient flow trajectories while traversing the entire dataset
requires about 115GB of storage space. In situations where storage space is limited, we suggest
dynamically adding and removing trajectories in the trajectory pool to meet the training require-
ments. Identifying a more effective trade-off between training time and storage space utilization is
a direction for future improvement.

E.3 SUPPLEMENTARY EXPERIMENTAL RESULTS
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(a) NSGF (b) CFM (c) OT-CFM

(d) 1-RF (e) 2-RF (f) SI

Figure 5: Visualization results for 2D generated paths. We show different methods that drive the
particle from the prior distribution (black) to the target distribution (blue). The color change of the
flow shows the different number of steps (from blue to red means from 0 to T ). We can see NSGF
using fewer steps than OT-CFM

Figure 6: Uncurated samples of our methods on MNIST (Without data augmentation)
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Figure 7: Samples of our methods on building trajectory CIFAR10

Figure 8: Uncurated samples of our NSGF methods on CIFAR10
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Figure 9: Uncurated samples on CIFAR10 and L2-nearest neighbors from the training set (left:
Samples, right: real)
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