Equivariant Flow Matching for Molecular Conformer Generation

Majdi Hassan*, Nikhil Shenoy*, Jungyoon Lee*, Hannes Stark, Stephan Thaler, Dominique Beaini

Motivation: Efficiently and accurately generate equilibrium conformations responsible for several biological, chemical and physical properties.

Contributions

- 1. ET-Flow obtains state-of-the-art precision results for conformer prediction and ensemble property prediction.
- 2. Counter to the prevailing status quo in the literature, we show that equivariance proves beneficial.
- 3. ET-Flow demonstrates competitive performance while using orders of magnitude fewer sampling steps than GeoDiff and significantly fewer parameters than MCF

Static, linear interpolant to bridge the particles sampled from the base (ρ_0) and target (ρ_1) densities, $x_0 \sim \rho_0$ and $x_1 \sim \rho_1$ respectively.

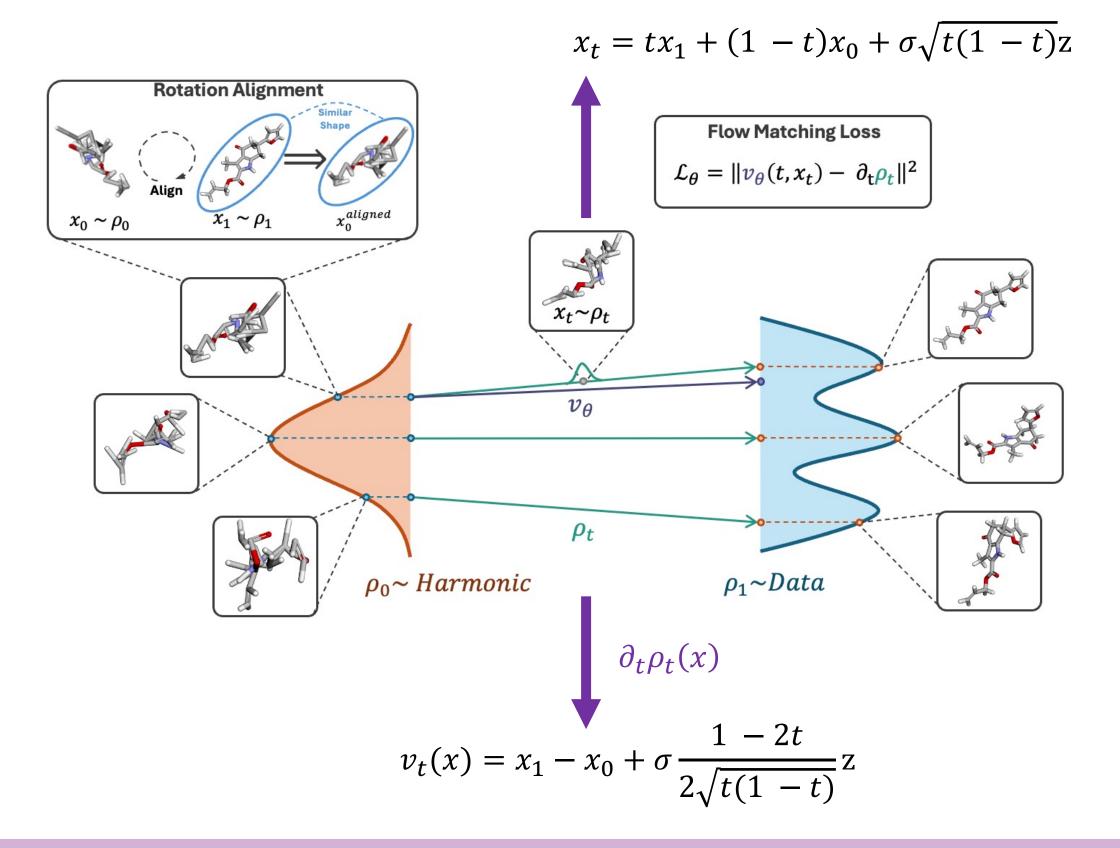
$$I_t(x_0, x_1) = \alpha x_1 + \beta x_0$$

Background

Add stochasticity by sampling from a gaussian centered at the interpolant.

$$\rho_t(x) = \mathcal{N}(x | I_t(\mathbf{x}_0, \mathbf{x}_1), \sigma_t^2 \mathbf{I})$$

Flow matching (FM) learns the vector field $v_{t(x)} = \partial_t \rho_t(x)$.


$$v_t(\mathbf{x}) = \dot{\alpha}_t \mathbf{x}_1 + \dot{\beta}_t \mathbf{x}_0 + \dot{\sigma}_t \mathbf{z} \qquad \mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$$

Method

Overview

Architecture: TorchMD-Equivariant Transformer (8.3M)

Chirality Correction

• Post-hoc orientation correction when Oriented Volume (OV) does not match RDKit chiral tags.

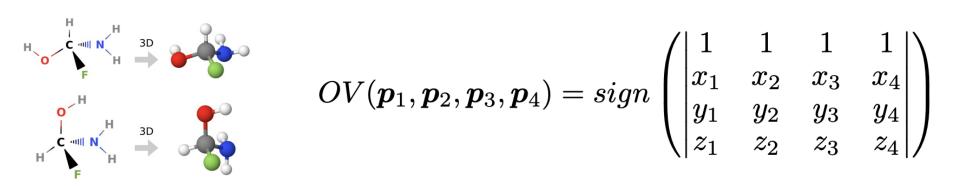
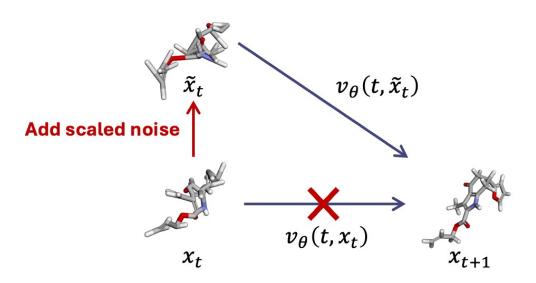



Figure from Ganea et al 2021

Stochastic Sampling

 Introduce stochasticity into inference by adding noise at each time step between (*t*=0.8~1.0) and evaluating the vector field from the state

Results

RMSD Metrics

	Recall				Precision			
	Coverage ↑		AN	$AMR \downarrow Co$		Coverage ↑		∕IR↓
	mean	median	mean	median	mean	median	mean	median
GeoDiff	42.10	37.80	0.835	0.809	24.90	14.50	1.136	1.090
GeoMol	44.60	41.40	0.875	0.834	43.00	36.40	0.928	0.841
Torsional Diff.	72.70	80.00	0.582	0.565	55.20	56.90	0.778	0.729
MCF - S (13M)	79.4	87.5	0.512	0.492	57.4	57.6	0.761	0.715
MCF - B (62M)	84.0	91.5	0.427	0.402	64.0	66.2	0.667	0.605
MCF - L (242M)	84.7	92.2	0.390	0.247	66.8	71.3	0.618	0.530
ET-Flow (8.3M)	79.53	84.57	0.452	0.419	74.38	81.04	0.541	0.470
ET-Flow - SS (8.3M)	79.62	84.63	0.439	0.406	75.19	81.66	0.517	0.442

AMR.

median

0.193

0.147

0.044

0.035

Precision

Coverage

median

100.00

100.00

mean

38.20

87.60

92.70

93.7

91.00

AMR J

mean

1.524

0.116

mediar

0.510

0.195

0.055

0.047

Recall

mean

0.425

0.225

0.178

0.103

0.083

Coverage

median

100.00

100.00

100.00

mean

92.80

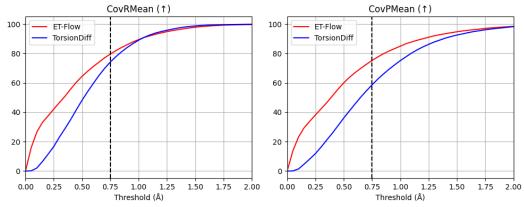
95.0

CGCF

GeoDiff

GeoMol

MCF


Torsional Diff.

ET-Flow (ours) **94.99**

Energy Metrics

	E	μ	$\Delta\epsilon$	E_{\min}
OMEGA	0.68	0.66	0.68	0.69
GeoDiff	0.31	0.35	0.89	0.39
GeoMol	0.42	0.34	0.59	0.40
Torsional Diff.	0.22	0.35	0.54	0.13
MCF	$0.68{\pm}0.06$	$0.28{\pm}~0.05$	$0.63 {\pm} 0.05$	$0.04{\pm}0.00$
ET-Flow	0.18±0.01	0.18±0.01	0.35±0.06	0.02±0.00

Coverage vs Threshold

Ablations

		Re	call			Precision			
	Coverage ↑		AN	∕IR↓	Coverage ↑		AMR \downarrow		
	mean	median	mean	median	mean	median	mean	median	
ET-Flow	75.37	82.35	0.557	0.529	58.90	60.87	0.742	0.690	
ET-Flow $(O(3))$	72.74	79.21	0.576	0.556	54.84	54.11	0.794	0.739	
ET-Flow (w/o Alignment)	68.67	74.71	0.622	0.611	47.09	44.25	0.870	0.832	
ET-Flow (Gaussian Prior)	66.53	73.01	0.640	0.625	44.41	40.88	0.903	0.864	

	Recall				Precision			
	Coverage ↑		AMR \downarrow		Coverage ↑		AMR \downarrow	
	mean median		mean	median	mean	median	mean	median
ET-Flow (5 Steps)	77.84	82.21	0.476	0.443	74.03	80.8	0.55	0.474
ET-Flow (10 Steps)	79.05	84.00	0.451	0.415	74.64	81.38	0.533	0.457
ET-Flow (20 Steps)	79.29	84.04	0.449	0.413	74.89	81.32	0.531	0.454
ET-Flow (50 Steps)	79.53	84.57	0.452	0.419	74.38	81.04	0.541	0.470

• Incorporating equivariance still proves useful in generative modeling.

- ET-Flow has great flexibility in incorporating more useful priors.
- FM improves inference efficiency generating accurate samples with as few as 5 steps.

Future Work

- Incorporate SO(3) equivariance to avoid additional chirality correction step.
- Scaling parameters to boost recall metrics.

QM9

DRUGS