
Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

Here we provide implementation details of RoCourseNet and three baseline methods on three
datasets listed in Section 4. The code can be found through this anonymous repository (https:
//github.com/bkghz-orange-blue/counternet_adv).

Feature Engineering. We follow the feature engineering procedure of CounterNet (Guo et al.,
2021). Specifically, for continuous features, we scale all feature values into the [0, 1] range. To
handle the categorical features, we customize model architecture for each dataset. First, we transform
the categorical features into numerical representations via one-hot encoding. In addition, for each
categorical feature, we add a softmax layer after the final output layer in the CF generator, which
ensures that the generated CF examples respect the one-hot encoding format.

Hyperparameters. For all three datasets, we train the model for up to 50 epochs with Adam. We set
dropout rate to 0.3 to prevent overfitting. We use T = 7 and E = 0.1 to report results in Table 1, and
report the impact of attacker steps T and maximum perturbation E to robustness in Figure 3. We use
K = 2 unrolling steps (same as Huang et al. (2020)) with the step size α = 2.5 × δ/T (based on
Madry et al. (2017)) for solving the bi-level problem in Equation 3 (via VDS). In addition, Table 2
reports the hyperparameters chosen for each dataset, and Table 3 speficies the architecture used for
each dataset.

Table 2: Hyperparameters setting for each dataset.

Dataset Learning Rate η Batch Size λ1 λ2 λ3

Loan 0.003 0.03 128 1.0 0.2 0.1
German Credit 0.003 0.03 256 1.0 1.0 0.1
Student 0.01 0.01 128 1.0 0.2 0.1

Table 3: Architecture specification of RoCourseNet for each dataset.

Dataset Encoder Dims Predictor Dims CF Generator Dims

Loan [110,200,10] [10, 10] [10, 10]
German Credit [19, 100,10] [10, 20] [10, 20]
Student [83,50,10] [10, 10] [10, 50]

Software and Hardware Specifications. We use Python (v3.7) with Pytorch (v1.82), Pytorch
Lightning (v1.10), numpy (v1.19.3), pandas (v1.1.1), scikit-learn (v0.23.2) and higher (v0.2.1)
Grefenstette et al. (2019) for the implementations. All our experiments were run on a Debian-10
Linux-based Deep Learning Image on the Google Cloud Platform. The RoCourseNet and baseline
methods are trained (or optimized) on a 16-core Intel machine with 64 GB of RAM.

B ADDITIONAL EXPERIMENTAL ANALYSIS

B.1 PREDICTIVE ACCURACY

We first show that, similar to CounterNet, the training of RoCourseNet does not come at the cost
of degraded predictive accuracy. Table 4 compares RoCourseNet’s predictive accuracy against the
base prediction model used by baselines. This table shows that RoCourseNet achieves competitive
predictive performance – it achieves marginally better accuracy than the base model (∼ 2%). Thus,
we conclude that the joint training of RoCourseNet does not come at a cost of reduced predictive
performance.

B.2 l2-NORM PROJECTION IN ALGORITHM 1

We provide supplementary results on adopting ∆ as the l2-norm ball (i.e., ∆ = {δ ∈ Rn | ||δ||2 ≤ ϵ})
for the maximum perturbation constrains. Figure 5 highlights the results of using the l2-norm ball in

14

https://github.com/bkghz-orange-blue/counternet_adv
https://github.com/bkghz-orange-blue/counternet_adv

Under review as a conference paper at ICLR 2023

Table 4: Predictive accuracy for each dataset.

Dataset Base Model RoCourseNet

Loan 0.886 ± 0.036 0.885 ± 0.035
German Credit 0.714 ± 0.003 0.742 ± 0.014
Student 0.914 ± 0.028 0.906 ± 0.066

attacking and adversarial training. We observe similar patterns in Figure 3. Thus, this result shows
that l∞-norm constrain can be substitute to other feasible region.

1 2 3 5 7 10 13 15 20

Attacker Steps

0.5

0.6

0.7

0.8

0.9

1.0

R
ob

u
st

V
a
li
d

it
y

RoCourseNet

CounterNet

(a) The number of attacker steps
T vs attacker effectiveness (↓)

1 2 3 5 7 10 13 15 20

Attacker Steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ob

u
st

V
al

id
it

y

RoCourseNet

(b) The number of attacker steps
T vs robust validity (↑).

1 2 3 5 7 10 13 15 20

Attacker Steps

6.6

6.8

7.0

7.2

7.4

7.6

7.8

P
ro

x
im

it
y

RoCourseNet

(c) The number of attacker steps
T vs proximity (↓).

Figure 5: The impact of the number of attacker steps T under the l2-norm constrains.

C DISCUSSION ABOUT GENERALIZED FRAMEWORKS TO ROCOURSENET

This section discusses extending the training of RoCourseNet (see Algorithm 1 & 2) into a broader
framework. The training framework of RoCourseNet are not tied to the CounterNet architecture, and
we can substitute predictor and CF generator components to other parametric models. Crucially, we
can extend the RoCourseNet training into a general framework, which contains two components:
(i) a predictor f(·; θ), which makes an accurate prediction for a given input instance x, (ii) and a
CF generator g(·; θg), which generates its corresponding CF explanations. This general framework
does not require a shared structure similar to the RoCourseNet architecture. We can choose separate
models for the predictor f(·; θ) and CF generator g(·; θg). In addition, we can train this framework
exactly as we train RoCourseNet via Algorithm 2, which optimizes for predictor f(·; θ) and robust
CF generator g(·; θg).
Experimental Settings. We demonstrate the feasibility of training this general framework (denoted
as Robust CF Framework in Table 5). For fair comparison, we use the same hyperparameters in
training RoCourseNet (See Appendix A) to optimize this general framework. In addition, we use the
same architecture specifications of RoCourseNet, as the predictor of this framework combines the
encoder network and predictor network in RoCourseNet, and the CF generator network combines the
encoder network and CF generator in RoCourseNet.

Empirical Results. Table 5 compares this general robust CF framework with RoCourseNet and
Roar-LIME. This table highlights two important findings: (i) First, our proposed tri-level robust
training (in Algorithm 2) can be extended to a general framework to optimize a robust CF generator.
In particular, this robust CF framework outperforms Roar-LIME in terms of proximity and validity,
and achieves the same level of robust validity as Roar-LIME. (ii) Additionally, we highlight the
importance of RoCourseNet design (by leveraging the design of CounterNet (Guo et al., 2021)).
This architecture design enables to generate well-aligned CF explanations by passing the predictor
model’s decision boundary (i.e., px) to the CF generator. From Table 5, we observe that RoCourseNet
outperforms this Robust CF Framework in terms of the validity and robust validity, which underscores
the importance of RoCourseNet’s architecture designs.

15

Under review as a conference paper at ICLR 2023

Table 5: Evaluating robustness under model shift using a general framework.

Methods Metrics
Proximity Validity Rob-Validity

Robust CF Framework 7.150 ± 1.078 0.949 ± 0.022 0.906 ± 0.119
Roar-LIME 7.648 ± 2.248 0.937 ± 0.046 0.908 ± 0.107
RoCourseNet 7.183 ± 0.406 0.994 ± 0.002 0.930 ± 0.152

D DISCUSSION ABOUT MULTI-CLASS CLASSIFICATION

Existing CF explanation literature focuses on evaluating methods under the binary classification
settings (Mothilal et al., 2020; Mahajan et al., 2019; Upadhyay et al., 2021; Guo et al., 2021).
However, these CF explanation methods can be adapted to the multi-class classification settings.
Given an input instance x ∈ Rd, the RoCourseNet generates (i) a prediction ŷx ∈ Rk for input
instance x, and (ii) a CF example xcf as an explanation for input instance x. The prediction ŷx ∈ Rk

is encoded as one-hot format as ŷx ∈ {0, 1}k, where
∑k

i ŷ
(i)
x = 1, k denotes the number of classes.

In addition, we assume a desired outcome y′ for every input instances x. As such, we can adapt Eq. 4
for binary settings to the multi-class settings as follows:

argmin
θ,θg

1

N

∑
(xi,yi)∈D

[
λ1 · L

(
f(xi; θ), yi

)
︸ ︷︷ ︸
Prediction Loss (L1)

+λ3 · L
(
xi, x

cf
i

)
︸ ︷︷ ︸

Proximity Loss (L3)

]

+ max
δ,∀δi∈∆

1

N

∑
(xi,yi)∈D

[
λ2 · L

(
f
(
xcf
i ; θ

′
opt(δ)

)
, y′

)
︸ ︷︷ ︸

Robust Validity Loss (L2)

]

s.t θ′opt(δ) = argminθ′
1

N

∑
(xi,yi)∈D

[
L
(
f(xi + δi; θ

′), yi

)]
, xcf

i = g(xi; θg).

(5)

To optimize for Eq. 5, we can follow the same procedure outlined in Algorithm 2. For each sampled
batch, we first optimize for the predictive accuracy θ′ = θ −∇θ(λ1 · L1). Next, we use the VDS
algorithm to optimize for the inner max-min bi-level problem (in Algorithm 1). Finally, we optimize
for the CF explanations by updating the model’s weight as θ′′g = θ′′g −∇θ′

g
(λ2 · L2 + λ3 · L3).

16

