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A Pretraining Dataset1

A.1 Videos2

We start with the videos that are used for surgical vision-language pretraining in [18]. In total, there3

are 1, 326 surgical lecture videos. These videos are transcribed by AWS [2] and Whisper [11] audio4

speech recognition (ASR) to obtain the corresponding narration texts. Furthermore, we curate the5

videos’ metadata from the online platforms to obtain the extra keystep and abstract texts. In the phase-6

and video-level pretraining, we need parent- and child-level text correspondences, e.g., keystep and7

its corresponding narration texts, to perform procedure understanding. Therefore, we filter out the8

videos that do not have parent-child correspondences. In total, we have 1, 007 and 920 videos for9

phase- and video-level pretraining, respectively.10

A.2 Misspelling Error11

As the narration texts are generated from the audio using the ASR system, they usually contain many12

misspelling errors and fragment sentences. Therefore, we apply multiple preprocessing steps to clean13

the narration texts.14

We first built the vocabulary based on the textbook, surgical category labels, and definition words.15

Specifically, we refer to the academic papers, which define the surgical phases, to curate a list of16

definition words and build a vocabulary that contains the words of interest. We also parse and merge17

the words from the textbook. In total, we obtain a vocabulary of the size of 51, 640 words. Then, we18

use the built vocabulary along with the spell-checking algorithm 1 to correct the misspelling errors in19

narration texts. The algorithm utilizes Levenshtein Distance to identify words within 2 edit distances20

from the original. It then cross-references these permutations (insertions, deletions, replacements,21

and transpositions) with a word frequency list, prioritizing words with higher occurrence frequencies22

as potential correct results.23

B Evaluation Setup24

We provide a detailed description of the downstream tasks and their settings that we apply in the25

experiment.26

Surgical Phase Recognition. Surgical phase recognition is a proxy task to test the model’s27

surgical scene understanding ability. It aims to classify the frame of surgical video into predefined28

classes (phases), requiring the model to understand the instrument and anatomy’s presence and their29

interactions by extracting visual patterns from the surgical scene image. In this work, we ignore30

temporal modeling in surgical phase recognition as we focus on multi-modal representation learning.31

1https://github.com/barrust/pyspellchecker/
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Table 1: Manually designed prompts for the class names to recognize the surgical phase in Cholec80 dataset.
We decompose high-level phase definitions into a few basic concepts to form the text prompts.

Phase Labels Prompts

Preparation In preparation phase I insert trocars to patient abdomen cavity

CalotTriangleDissection
In calot triangle dissection phase I use grasper to hold
gallbladder and use hook to expose the hepatic triangle area
and cystic duct and cystic artery

ClippingCutting In clip and cut phase I use clipper to clip the cystic duct and
artery then use scissor to cut them

GallbladderDissection In dissection phase I use the hook to dissect the connective tissue
between gallbladder and liver

GallbladderPacking In packaging phase I put the gallbladder into the specimen bag

CleaningCoagulation In clean and coagulation phase I use suction and irrigation to
clear the surgical field and coagulate bleeding vessels

GallbladderRetraction In retraction phase I grasp the specimen bag and remove
it from trocar

We consider phase recognition as a frame-wise image classification problem. In the surgical phase32

recognition task, we evaluate the model’s performance based on the publicly available datasets,33

including Cholec80 [15], AutoLaparo [16] and MultiBypass [7].34

• Zero-shot Evaluation. As the surgical phase labels are high-level definitions that can be35

decomposed into a few basic concepts, we manually construct the contextual prompts for36

phase labels, as shown in Tab. 1, Tab. 2 and Tab. 3. Our constructed prompts for the class37

names are built with the help of clinician’s comments, considering the involved surgical38

instruments, anatomies, and events involved in a given surgical phase.39

• Linear-probing Evaluation. For linear-probing evaluation on the surgical phase recogni-40

tion downstream datasets, we keep the visual encoder frozen and train a linear classifier on41

the extracted features. We do not apply any image augmentation during the training. The42

learning rate is scaled linearly based on the actual batch size. The model is optimized using43

SGD optimizer with the learning rate as 0.001 and weight decay parameter as 0.0005. We44

train the model for 40 epochs. We fit the model on the training and validation sets and report45

the performance on the separate test set. For the few-shot linear-probing evaluation, we46

adopt an N-way K-shot approach with a slight modification to accommodate the nature of47

surgical videos, which contain frames from different classes. Specifically, we select 10%48

of the video from the training set. This ensures that data leakage is prevented and that the49

number of samples per class remains similar.50

Cross-modal Retrieval. Cross-modal retrieval includes text-based video retrieval and video-based51

text retrieval. Here, we conduct the cross-modal retrieval at three hierarchical levels. We collect 53752

clip-narration (clip-level) video-text pairs, 746 phase-keystep (phase-level) video-text pairs, and 8653

video-abstract (video-level) video-text pairs from hold-out testing videos of SVL [18]. There are54

more phase-keystep than clip-narration video-text pairs because some testing videos do not have55

cleaned narrations and we filter them out. For video embedding generation, we sample multiple56

frames from the video and average pool their image embeddings. We temporally sample 10 frames57

for clip-/phase-/video-level videos. We conduct the zero-shot evaluation for the cross-modal retrieval58

task.59

C Architecture & Initialization60

As mentioned before, the current surgical vision-language pretraining dataset lacks the scale necessary61

to pretrain a robust vision-language model from scratch, therefore a good choice of architecture and62

initialization is important. In this section, we conduct the experiment and study the effect of different63

model architectures and initializations, justifying our choice of using ResNet50 architecture with64

ImageNet initialization as our starting point before the video-language pretraining.65
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Table 2: Manually designed prompts for the class names to recognize the surgical phase in AutoLaparo dataset.

Phase Labels Prompts

Preparation I use grasper to grasp and explore the field
Dividing Ligament and Peritoneum I divide ligament and peritoneum
Dividing Uterine Vessels and Ligament I divide uterine vessels and ligament
Transecting the Vagina I use the dissecting hook to transect the vagina
Specimen Removal I remove the specimen bag and uterus
Suturing I suture the tissue
Washing Washing

Table 3: Manually designed prompts for the class names to recognize the surgical phase in gastric bypass
dataset. We use the same prompts for both StrasBypass70 and BernBypass70. We exclude the “other” class as
its definition is ambiguous.

Phase Labels Prompts

Preparation In preparation phase I insert trocars to the abdominal cavity
and expose of the operating field

Gastric pouch creation I cut the fat tissue and open retrogastric window at stomach
Omentum division I grasp and lift the omentum and divide it

Gastrojejunal anastomosis

I see the proximal jejunum and determine the length of
the biliary limb. I open the distal jejunum and create the
gastrojejunostomy using a stapler. I reinforcement of the
gastrojejunostomy with an additional suture.

Anastomosis test I place the retractor and move the gastric tube and detect
any leakage of the gastrojejunostomy

Jejunal separation I open the mesentery to facilitate the introduction of the
stapler and transect the jejunum proximal

Petersen space closure I expose between the alimentary limb and the transverse
colon and close it with sutures

Jejunojejunal anastomosis I expose between the alimentary limb and the transverse
colon and close it with sutures

Mesenteric defect closure I expose the mesenteric defect and then close it by stitches

Cleaning and coagulation In clean and coagulation phase I use suction and irrigation
to clear the surgical field and coagulate bleeding vessels

Disassembling I remove the instruments, retractor, ports, and camera

Backbone Init. Zero-shot Linear-probing (10-shot) Linear-probing (full-shot)

Cholec80 Autolaparo Cholec80 Autolaparo Cholec80 Autolaparo

ResNet50

Random 29.4 / 10.4 15.3 / 10.9 42.4 / 22.1 33.4 / 20.2 44.6 / 25.3 30.7 / 19.3
ImageNet 34.7 / 24.4 21.3 / 16.6 55.0 / 39.9 48.5 / 32.0 63.5 / 50.3 54.3 / 41.8

CLIP 33.8 / 19.6 18.9 / 16.2 58.9 / 42.3 45.3 / 35.3 64.9 / 55.0 53.1 / 42.1

ViT-B/16

Random 20.2 / 11.5 9.1 / 8.3 38.4 / 20.9 32.1 / 19.7 48.2 / 25.9 38.4 / 25.5
ImageNet 42.8 / 25.1 20.5 / 15.5 57.4 / 40.5 47.8 / 31.9 60.6 / 48.9 56.3 / 44.5

Dino 35.1 / 19.1 13.9 / 9.2 54.7 / 39.2 47.4 / 31.1 64.9 / 51.2 54.0 / 42.4

Table 4: The experiments show that the initialization largely influences the performance of surgical
video-language pretraining.

• ResNet50. For ImageNet initialization, we use public IMAGENET1K_V1 weights from66

torchvision. Random initialization means that we random initialize the visual encoder before67

the hierarchical vision-language pretraining. These models’ textual encoders are initialized68

from BioClinicalBert [6]. For CLIP initialization, we initialize the visual and textual encoder69

from OpenAI’s weight [10].70
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• ViT-B/16. For ImageNet initialization, we use weights from the official Google JAX imple-71

mentation, which is pretrained on ImageNet21k [12] and then finetune on ImageNet1k [13].72

We use the public pretrained weights from [3] for Dino initialization.73

In our work, we choose ResNet50 over Vision Transformer (ViT-B/16) due to its superior perfor-74

mance and lower parameter amounts in the context of video-language pretraining for surgical data.75

Our experiments demonstrated that ResNet50, particularly when initialized with CLIP weights,76

outperformed ViT-B/16 across various tasks, including zero-shot and linear-probing evaluations on77

Cholec80 and Autolaparo datasets. Despite the advanced capabilities of vision transformers, their78

performance heavily depends on large-scale pretraining datasets, which might not always be available79

or optimal for specialized domains like surgical scenes. Conversely, convolutional neural networks80

like ResNet50 have shown robust generalization abilities, even when pretrained on natural images,81

making them more suitable for our specific application. Additionally, the initialization sensitivity82

observed in ViT-B/16 further justified our preference for ResNet50, ensuring a more reliable and83

effective starting point for our hierarchical vision-language pretraining.84

D Dynamic Time Warping85

After achieving the cost matrix C and Ĉ, we perform dynamic time warping (DTW) [14] to find86

the minimum cost path to align the frames of video segment V = {v1, ...vT } to the text sequence87

B = {b1, ...bN} and reversed text sequence {bN , ...b1}, respectively, as shown in Algorithm. 1. We88

follow [17] to process the DTW function into differentiable, enabling the gradient back-propagation.89

The differentiable loss function is the same as [5].90

A significant advantage of using DTW is that it does not require additional temporal modules,91

such as recurrent neural networks or attention mechanisms, to model temporal relationships. This92

simplification allows us to focus on learning better representations by directly aligning video frames93

and text sequences based on their semantics.94

Algorithm 1 DTW to align sequences using cost matrix
1: procedure ALIGNSEQUENCES(C, V,B)
2: Let T be the length of sequence V and N be the length of sequence B.
3: Set i to T and j to N .
4: Initialize distance to 0.
5: while i > 0 and j > 0 do
6: distance = distance + C[i][j]
7: if i > 1 and j > 1 and C[i− 1][j − 1] ≤ C[i− 1][j] and C[i− 1][j − 1] ≤ C[i][j − 1]

then
8: i← i− 1
9: j ← j − 1

10: else if i > 1 and C[i− 1][j] ≤ C[i][j − 1] then
11: i← i− 1
12: else
13: j ← j − 1
14: end if
15: end while
16: return distance.
17: end procedure

E Modality Gap95

Modality gap is a geometric phenomenon observed in the embedding space of multi-modal models [9].96

This gap illustrates that pretrained multi-modal (vision-language) models create a joint embedding97

space where different modalities, such as images and text, are kept at a significant distance from98

each other. During contrastive optimization, this separation created at initialization is maintained to99

the extent that irrelevant image embeddings can be closer to each other than to their corresponding100

relevant text embeddings. This spatial disparity in the embedding space hinders the model’s ability101
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Figure 1: Modality gap visualization in different hierarchical levels. It shows that our model closes
the modality gap incurred from the initialization after the hierarchical pretraining.

to effectively align and understand the relationships between visual and textual data, leading to102

suboptimal performance in tasks requiring integrated multi-modal comprehension. The existence103

of the modality gap is particularly detrimental when adapting pretrained vision-language models to104

cross-modal generation tasks, such as image captioning. As highlighted by several studies [8, 4],105

narrowing modality gap correlates with improved performance in cross-modal tasks.106

As shown in Fig. 1, we visualize the embeddings of videos and their corresponding text descriptions107

at three hierarchical levels: clip-narration, phase-keystep, and video-abstract. Our proposed model108

demonstrates a significant reduction in the modality gap compared to the SurgVLP model. This align-109

ment across different hierarchical levels ensures a more comprehensive and cohesive understanding110

of the multi-modal data, leading to superior performance in tasks like image captioning and other111

vision-language applications.112

F Surgical Phase Recognition Results113

We demonstrate the zero-shot surgical phase recognition to reflect the surgical scene understanding114

ability of our pretrained model. Our model can identify surgical phases of different types of surgical115

procedures without any finetuning. Both success and failure examples are shown.116

Surgical Term Understanding. In Fig. 2, we show that the pretrained model excels at identifying117

the “washing” phase in surgical procedures, demonstrating its capability to accurately recognize118

high-level surgical activities. This proficiency enhances surgical assistance systems, improving119

real-time analysis and decision-making in operating rooms.120

Instrument Identification. In Fig. 3, we demonstrate how the visual embedding is significantly121

influenced by the presence of surgical instruments. Specifically, in the first row, the semantic meaning122

of the image changes from "calot triangle dissection" to "clip and cut" due to the appearance of a123

hook, even though the other anatomical features remain similar.124
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Figure 2: Qualitative surgical phase recognition results on hysterectomy. The y-axis is the class
names. The x-axis is the probability of each class. The bottom right image shows that the pretrained
model understands the blood fluid.

Figure 3: Qualitative surgical phase recognition results on cholecystectomy. The y-axis is the class
names. The x-axis is the probability of each class. We find that the pretrained model is triggered by
the instrument occurrence, such as hook in the second row.
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G Limitations125

As the pretraining process at clip-level requires additional supervision signals, i.e., visual self-126

supervision, the memory and computation overhead increase compared to the vanilla HecVL pretrain-127

ing. Also, during the phase- and video-level pretraining, the process of dynamic time warping can be128

time-consuming because it is based on dynamic programming, slowing down the pretraining iteration129

when handling longer-term surgical videos. Additionally, the knowledge augmentation on keystep130

and abstract texts need to be modified to fit the other video-language pretraining datasets [1, 19] as131

their hierarchical paired texts are annotated manually. Instead, our knowledge augmentation is more132

suitable for videos in the wild from online platforms. To address these limitations, future work could133

focus on developing a general textual augmentation strategy using the LLM’s internal knowledge,134

adapting to the instructional videos that miss keystep and abstract text descriptions. Furthermore,135

techniques for decentralizing the video-language pretraining could be explored, aiming to pretrain136

with multi-centric vision-language samples while preserving privacy using the federated learning137

strategy. This could address the scaling problem in surgical vision-language pretraining and improve138

the generalizationability across the centers.139

H Knowledge Augmentation140

Build Surgical Knowledge Base. In Fig. 4, we show that the internal surgical knowledge of large141

language models can be elicited to build the external knowledge base.142

Build Surgical Knowledge Base. In Fig. 5, Fig. 6 and Fig. 7, we show that the knowledge of large143

language model can be used to enrich the semantics of the hierarchical texts, i.e., narrations, keysteps,144

and abstracts. Notably, it can explain high-level keystep words into descriptive sentences, enhancing145

textual diversity and preventing overfitting.146

7



Figure 4: Example of surgical step knowledge base based on the large language models.
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Figure 5: Knowledge augmentation on the narration texts.

Figure 6: Knowledge augmentation on the keystep texts.
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Figure 7: Knowledge augmentation on the abstract texts.
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