
A Proof of Theorem 1

First, we prepare some lemmas.
Lemma 2. Let h : Rdz×d → Rdz×n be a linear map defined by h (Φ) := ΦG. When the rank ofG is
n, there exists an orthogonal linear map τ : Rdz×d → Rdz×d such that τ (Φ) = [Φ̃(1), Φ̃(2)] satisfies

ker h̃ = span
[
0dz×n, Φ̃

(2)
]
, where h̃ := h ◦ τ−1, Φ̃(1) :=

[
φ̃1, . . . , φ̃n

]
, Φ̃(2) :=

[
φ̃n+1, . . . φ̃d

]
and φ̃i ∈ Rdz for i = 1, . . . , d.

Proof. The singular value decomposition ofG is represented by TGT̃> =

[
Λ

0(d−n×n)

]
, where

Λ is a n× n diagonal matrix Λ = diag (λ1, . . . , λn), and T and T̃ are orthogonal matrices. Since
the rank ofG is n, λ1, . . . , λn are non-zero. When we set τ (Φ) := ΦT>, we obtain

h̃
(
Φ̃
)

:= h
(
τ−1

(
Φ̃
))

= Φ̃TG = Φ̃
(
TGT̃>

)
T̃

= Φ̃

[
Λ

0(d−n×n)

]
T̃ . (21)

From the above equation, ker h̃ = span
[
0d′×n, Φ̃

(2)
]

holds.

Lemma 3. For Φ̃ ∈ Rdz×d, let Φ satisfy:

Φ̃ =
[
Φ̃(1), Φ̃(2)

]
= τ (Φ) .

A map h̃(1) : Rdz×n → Rdz×n defined by h̃(1)
(
Φ̃(1)

)
:= h̃

([
Φ̃(1),0

])
satisfies ΦG =

h̃(1)
(
Φ̃(1)

)
and is linear isomorphic.

Proof. From the definition, we have

ΦG = τ−1
(
Φ̃
)
G = Φ̃TG

= Φ̃
(
TGT̃>

)
T̃

=
[
Φ̃(1), Φ̃(2)

] [
Λ

0(d−n×n)

]
T̃

=
[
Φ̃(1),0

] [
Λ

0(d−n×n)

]
T̃

= τ−1
([

Φ̃(1),0
])
G

= h ◦ τ−1
([

Φ̃(1),0
])

= h̃
([

Φ̃(1),0
])

= h̃(1)
(
Φ̃(1)

)
.

By the definition, h̃(1) is linear. Here, h̃(1) is injective, since ker h̃ = span
[
0d′×n, Φ̃

(2)
]
, and hence,

dim
(

Im h̃(1)
)
≥ dz × n. Since Im h̃(1) ⊂ Rdz×n, h̃(1) is surjective.

Lemma 4. For V : RD 3 φ 7→ V (Φ) = U
(
X, fz|x (X; Φ)

)
:=
∑n
i=1 U

(
x(i), fz|x

(
x(i); Φ

))
∈

R, Φ̃ =
[
Φ̃(1), Φ̃(2)

]
:= τ (Φ), Ṽ := V ◦ τ−1 and Ṽ (1)

(
Φ̃(1)

)
:= Ṽ

([
Φ̃(1),0dz×(d−n)

])
, Eq.

(12) is equivalent to

dΦ̃(1) = −∇Φ̃(1) Ṽ
(1)
(
Φ̃(1)

)
dt+

√
2dB, (22)

dΦ̃(2) =
√

2dB. (23)

14

Proof. By direct calculation, we obtain

Ṽ
([

Φ̃(1), Φ̃(2)
])

(24)

= V ◦ τ−1
([

Φ̃(1), Φ̃(2)
])

= U
(
X, fz|x

(
X; τ−1

([
Φ̃(1), Φ̃(2)

])))
= U

(
X, h

(
τ−1

([
Φ̃(1), Φ̃(2)

])))
= U

(
X, h ◦ τ−1

([
Φ̃(1),0

])
+ h ◦ τ−1

([
0, Φ̃(2)

]))
= U

(
X, h

(
τ−1

([
Φ̃(1),0

])))
= U

(
X, fz|x

(
X; τ−1

([
Φ̃(1),0

])))
= V ◦ τ−1

([
Φ̃(1),0

])
= Ṽ

([
Φ̃(1),0

])
. (25)

Then, the following equivalence holds:

dΦ = −∇ΦV (Φ) dt+
√

2dB,

⇔ dτ−1 (Φ) = −τ>
(
∇Φ̃Ṽ

(
Φ̃
))

dt+
√

2dB

⇔ dΦ̃ = −τ ◦ τ>
(
∇Φ̃Ṽ

(
Φ̃
))

dt+
√

2dτ (B)

= −∇Φ̃Ṽ
(
Φ̃
)
dt+

√
2dB,

(26)

where we used τ ◦ τ> = id because τ is orthogonal. From Eq. (25), the dynamics in Eq. (26) is
equivalent to Eq. (22) and Eq. (23).

In the following, we prove Theorem 1 using the above lemmas.

Because the latent variables Z := h̃(1)
(
Φ̃(1)

)
are independent of Φ̃(2), the stationary distribution

q (Z |X) is given by
(
h̃(1)

)
#

(
p
(1)
∗

)
(Z), which is the pushforward measure of the probability

distribution p(1)
(
Φ̃
)

by h̃(1). Then, we have

q (Z |X)

=
(
h̃(1)

)
#

(
p
(1)
∗

)
(Z)

= p(1)
((

h̃(1)
)−1

(Z)

) ∣∣∣∣∣det
d(h̃(1))−1

dZ

∣∣∣∣∣
= p(1)

((
h̃(1)

)−1
(Z)

) ∣∣∣∣∣det
dh̃(1)

dΦ̃(1)

∣∣∣∣∣
−1

= p(1)
((

h̃(1)
)−1

(Z)

)
×
∣∣∣deth̃(1)

∣∣∣−1
∝ exp

(
−Ṽ

((
h̃(1)

)−1
(Z)

))
= exp

(
−V

(
τ−1

([(
h̃(1)

)−1
(Z) ,0

])))
= exp

(
−U

(
X, τ−1

([(
h̃(1)

)−1
(Z) ,0

])
G

))
= exp (−U (X,Z)) ,

15

GT VI
(diag.)

VI
(full)

ALD
(hist.)

ALD
(sample)

Figure 5: Neural likelihood experiments.

where we used that dh̃(1)

dΦ̃(1)
= h̃(1) because of the linearity of h̃(1) and is constant with respect to

Z. The last equation is derived as follows. From Lemma 3, ΦG = h̃(1)
(
Φ̃(1)

)
holds when

Φ̃ =
[
Φ̃(1), Φ̃(2)

]
= τ (Φ). Thus, when Φ = τ−1

([
Φ̃(1),0

])
, we obtain h̃(1)

(
Φ̃(1)

)
= ΦG =

τ−1
([

Φ̃(1),0
])
G. In particular, for Φ̃(1) =

(
h̃(1)

)−1
(Z), we have

Z = h̃(1)
((

h̃(1)
)−1

(Z)

)
= τ−1

([(
h̃(1)

)−1
(Z) ,0

])
G.

B Experimental Settings

B.1 Neural likelihood example

We perform an experiment with a complex posterior, wherein the likelihood is defined with a randomly
initialized neural network fθ. Particularly, we parameterize fθ by four fully-connected layers of
128 units with ReLU activation and two dimensional outputs like p (x | z) = N

(
fθ (z) , σ2

xI
)
. We

initialize the weight and bias parameters with N (0, 0.2I) and N (0, 0.1I), respectively. In addition,
we set the observation variance σx to 0.25. We used the same neural network architecture for the
encoder fφ. Other settings are same as the conjugate Gaussian experiment described in Section 5.1.

The results are shown in Figure 5. The left three columns show the density visualizations of the ground
truth or approximation posteriors of VI methods; the right two columns show the visualizations of
2D histograms and samples obtained using ALD. For VI method, we use two different models. One
uses diagonal Gaussians, i.e., N

(
µ (x;φ) ,diag

(
σ2 (x;φ)

))
, for the variational distribution, and

the oher uses Gaussians with full covariance N (µ (x;φ) ,Σ (x;φ)). From the density visualization
of GT, the true posterior is multimodal and skewed; this leads to the failure of the Gaussian VI
methods notwithstanding considering covariance. In contrast, the samples of ALD accurately capture
such a complex distribution, because ALD does not need to assume any tractable distributions for
approximating the true posteriors. The samples of ALD capture well the multimodal and skewed
posterior, while Gaussian VI methods fail it even when considering covariance.

16

B.2 Image Generation

For the image generation experiments, we use a standard Gaussian disrtibution N (z; 0, I) for the
latent prior. The latent dimensionality is set to 8 for MNIST, 16 for SVHN, and 32 for CIFAR-10 and
CelebA. The raw images, which take the values in {0, 1, . . . , 255}, are scaled into the range from −1
to 1 via preprocessing. Because the values of the preprocessed images are not continuous in a precise
sense due to the quantization, it is not desirable to use continuous distributions, e.g., Gaussians, for
the likelihood function p (x | z;θ). Therefore, we define the likelihood using a discretized logistic
distribution [Salimans et al., 2017] as follows:

p (x | z;θ) =

dx∏
i

∫ bi

ai

Logistic (x̃i;µi, s) dx̃i,

=

dx∏
i

(
σ

(
bi − µi
s

)
− σ

(
ai − µi
s

))
,

ai =

{
−∞ x = −1

xi − 1
255 otherwise

,

bi =

{
∞ x = 1

xi + 1
255 otherwise

,

(27)

where µ := fx|z (z;θ), fx|z : Rdz → Rdx . Logistic (·;µ, s) is the density function of a logistic
distribution with the location parameter µ and the scale parameter s, and σ is the logistic sigmoid
function. We use a neural network with four fully-connected layers for the decoder function fx|z.
The number of hidden units are set to 1,024, and ReLU is used for the activation function. Before
each activation, we apply the layer normalization [Ba et al., 2016] to stabilize training. The scale
parameter s is also optimized in the training. Because it has a constraint of s > 0, we parameterize
s = ζ (b)

−1/2, where ζ is the softplus function, and treat b as a learnable parameter instead. When
the model has sufficiently high expressive power, b may diverge to infinity [Rezende and Viola,
2018], so we add a regularization term of (b+ 2ζ (−b)) /m to the loss function, where m is the
number of training examples. This regularization corresponds to assuming a standard logistic
distribution Logistic (b; 0, 1) for the prior distribution of b. We optimize the models using stochastic
gradient ascent with the learning rate of 1 × 10−4 and the batch size of 100. We run two steps
of ALD iterations, i.e., T = 2 in Algorithm 2, and the step size η is set to 1 × 10−4. We use the
same experimental settings for the baseline models. We run the training iterations for 50 epochs
for MNIST, SVHN, CIFAR-10 and 20 epochs for CelebA. The implementation is available at
https://github.com/iShohei220/LAE.

B.3 Datasets

All the dataset we use in the experiment is public for non-commercial research purposes. MNIST
[LeCun et al., 1998], SVHN [Netzer et al., 2011], CIFAR-10 [Krizhevsky et al., 2009], CelebA
[Liu et al., 2015] are available at http://yann.lecun.com/exdb/mnist/, http://ufldl.
stanford.edu/housenumbers, https://www.cs.toronto.edu/~kriz/cifar.html, http:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html, and https://github.com/tkarras/
progressive_growing_of_gans, respectively. The images of CelebA are resized to 32 × 32
in the experiment. We use the default settings of data splits for all datasets.

B.4 Computational Resources

We run all the experiments on AI Bridging Cloud Infrastructure (ABCI), which is a large-scale com-
puting infrastructure provided by National Institute of Advanced Industrial Science and Technology
(AIST). The experiments are performed on Computing Nodes (V) of ABCI, each of which has four
NVIDIA V100 GPU accelerators, two Intel Xeon Gold 6148, one NVMe SSD, 384GiB memory, two
InfiniBand EDR ports (100Gbps each). Please see https://abci.ai for more details.

17

https://github.com/iShohei220/LAE
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers
http://ufldl.stanford.edu/housenumbers
https://www.cs.toronto.edu/~kriz/cifar.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans
https://abci.ai

Table 2: Effects of the number of MCMC iterations of Hoffman [2017]. We report the mean and
standard deviation of the negative evidence lower bound per data dimension in three different seeds.
Lower is better.

MNIST SVHN CIFAR-10 CelebA

Hoffman [2017] (T = 0) 1.189± 0.002 4.442± 0.003 4.820± 0.005 4.671± 0.001
Hoffman [2017] (T = 2) 1.189± 0.002 4.440± 0.007 4.831± 0.005 4.662± 0.011
Hoffman [2017] (T = 10) 1.188± 0.001 4.437± 0.009 4.832± 0.006 4.664± 0.004
LAE (T = 2) 1.177 ± 0.001 4.412 ± 0.002 4.773 ± 0.003 4.636 ± 0.003

C Additional Experiments

In the main result in Section 5, we fix the number of MCMC iterations (i.e., T) for the model of
Hoffman [2017]. In this additional experiment, we further investigate the effect of T by changing it
from 0 to 10. Note that when T = 0, the model is identical to the normal VAE. The result is shown
in Table 2. It can be seen that the effect is relatively small, and our LAE (with T = 2) shows better
performance than all cases.

18

