395

396
397
398
399

400
401
402
403
404
405
406

407

408

409
410
411
412
413
414

415
416
417
418
419
420

421
422
423
424
425
426

A Model details

In a standard fully-connected multilayer perceptron (MLP), the input is treated as a whole and input
into the first linear layer. It blends all information into the feature of subsequent layers, making
it difficult to separate the cause and effects. To highlight the difference between our model and
traditional MLP, we plot the detailed model architecture of the COMPASS in Figure. 6.

More specifically, we design an encoder-decoder structure in f, with G as a linear transformation
applied to the intermediate features. First, the encoder operates on each dimension of € indepen-
dently to generate features z. € RI€/*?=. Then the causal graph is multiplied by the features to
generate the inputs for the decoder, i.e., ge = zeTQ € R4=*K where d, is the dimension of the
feature. Similarly, the action sequence a is passed through the encoder and transformation to
produce the feature of the action sequence g, € R%*¥. Finally, g + go is passed through the
decoder to output the prediction d,.

Causal graph G

position

embedding

- ge € Rd,xK
— position

Env _ . . | . embedding
param | - |)) matrix)

— multiplication -

_] . Trajectory

Ja € REXK : : Difference
| - linear -

Actions| : transformation

Figure 6: COMPASS model architecture.

B Experimental Details

B.1 Experimental Configurations for Robot Simulation Setup

A simulator was developed to mimic a simulated air hockey table with dimensions matching the
real-world setup using robosuite [13]. This allowed us to gather rollout trajectories and training
data within the simulated environment. The specific dimensions of the objects within the simulation,
such as the table size, are detailed in Table 3. Additionally, for the sim-to-sim experiment config-
uration, default simulation parameters and the ground-truth simulated real environment parameters
are presented in Table 4.

State and action space. The observation space for the RL agent comprises 6 dimensions. It includes
the initial position of puckl (3D), and the initial position of puck2 (3D). The RL agent’s action space
consists of 4 dimensions: the initial position of the pusher in the x-direction, the initial position of
the pusher in the y-direction, the shooting angle of the pusher, and the pushing velocity of the pusher.
We fixed the initial position of puckl and puck2. Note that the shooting angle is relative to the line
connecting the center of the pusher and puckl.

Reward function. The reward is calculated as —10 X ||/[Zpuck1s Ypuckl, Zpucki)
[Zg0al, Ygoal, Zgoat]||2. To provide additional incentive for reaching the goal, the distance penalty
term is divided by 2. Furthermore, a terminal reward is given if the hockey stays within the success
region at the last time step. It is important to mention that the reward is not accumulated through-
out the horizon. Instead, it only considers the final Euclidean distance between puck2 and the goal
center. For further numerical details and specifications, please refer to Table 5.

12

427

a2s This is a top-down view of the mini |z

420 air hockey table we used to collect

430 real trajectories. The dimensional

431 attributes of each component are T
432 annotated in Figure 7, while green

433

43¢ the designated goal area. We used
435 Kinova Gen 3 robot platform and .
436 ROS [43] to interface with it. We =

437
438

440

441

442

Table 3: Mujoco Simulation Environment Setup

X(m) Y(m) Z(m) Radius(m)
Air hockey table 0.0 0.0 0.8 [0.45, 0.9, 0.035]
Puckl -0.15 0.0 0.8 0.0255
Puck2 -0.075 -0.075 0.8 0.0255
Goal point 0.43 0.0 0.8 0.15
Obstacle bar 0.1 0.0 0.8 [0.025, 0.18, 0.025]

Table 4: Sim-to-Sim Env Parameters

Default Simulation Simulated “Real”

Env param Env Parameters Env Parameters
pusher@actuation @vel _discount 0.75 0.85
pusher@dyna@damping -10.0 -6.0
puckl @dyna@damping -10.0 -6.0
puckl @dyna@friction_sliding 0.05 0.04
puck2 @dyna@damping -10.0 -6.0
puck2 @dyna@friction_sliding 0.05 0.03
front_wall, back_wall, 10.0 60
left_wall, right_wall, obstacle @dyna@damping e e
env@camera@bias_x 0.0 +0.03
env@camera@bias_y 0.0 -0.02

B.2 Experimental Configurations for Real Robot Setup

dashed lines distinctly demarcate

installed a top-down Intel RealSense
D345f RGB camera to track the
position of puckl and puck?2.

C Implementation Details

Figure 7: Top-Down View of Table Air Hockey.

We reproduced the baseline implementation EXI-Net [26], NPDR [15] and Tune-Net [24] based on
the papers and released code base. We utilized software packages such as PyTorch [44], sbi [45],
StableBaseline3 [46], and OpenCV [47]. We report the hyperparameters used for all algorithms,

443
444

Table 5: Simulation Environment Setup

Simulation Parameters

Action space

Observation space
Terminal reward
Simulation horizon
Simulation timestep

low: [-0.24, 0.065, -0.157, 0.3]
high: [-0.21, 0.085, 0.157, 0.5]
low: [-inf] — high:[inf]
2.25
50 time steps
0.05 s

13

445
446

447
448

Table 6: Soft Actor-Critic Hyperparameters

Parameters Name Values
learning_rate 3e-4
gradient_steps 32
batch_size 32
train_freq 8
ent_coef 0.005
net_arch [32, 32]
policy “MlpPolicy”
env_number 64
buffer_size 1,000,000
learning_starts 100
tau 0.005
gamma 0.99
action_noise None
stats_window_size 100

including the proposed COMPASS method, in Table 7, 8, 9, and 10, which provide a comprehensive
list of the parameters we utilized to reproduce the results.

Soft Actor-Critic hyperparameters. We use SAC implementation in StableBaseline3 [46] to train
the RL agents. The training hyperparameter is shown in Table 6.

Table 7: COMPASS hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch

(if False, keep using the model trained in the first iteration) - -

Number of rollouts in each iteration 640 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate
Algorithm-Specific Hyperparameters

Network encoder dimension 32 emb_dim

Network hidden dimension [256, 256] hidden_dim

Causal dimension 32 causal_dim

Sparsity weight of the loss function 0.003 sparse_weight

Sparsity weight discount 0.5 sw_discount

Loss function MSE + Sparsity loss_function

Optimizer Adam optimizer

14

Table 8: EXI-Net hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round
Retrain in each iteration

(if False, keep using the model trained in the first iteration) True retrain_from_scratch
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action
Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_function
Optimizer Adam optimizer

Table 9: NPDR hyperparameters

Description value variable_name

Shared Hyperparameters

Number of iterations 10 n_round

Retrain in each iteration True retrain_from_scratch
(if False, keep using the model trained in the first iteration) -
Number of rollouts in each iteration 640 n_samples_per_round
Number of command actions in each iteration 10 n_cmd_action

Algorithm-Specific Hyperparameters

Prior distribution type Uniform prior

Inference model type maf inf_model
Embedding net type LSTM embedding_struct
Embedding downsampling factor 2 downsampling_factor
Posterior hidden features 100 hidden_features
Posterior number of transforms 10 num_transforms
Normalize posterior False normalize_posterior
Density estimator training epochs 50 num_epochs

Density estimator training rate 3e-4 learning_rate

Early stop epochs once posterior converge 20 stop_after_epochs
Use combined loss for posterior training True use_combined_loss
Discard prior samples False discard_prior_samples
Sampling method MCMC sample_with

MCMC thinning factor 2 thin

Table 10: Tune-Net hyperparameters

Description value variable_name
Shared Hyperparameters

Number of iterations 1 n_round

Retrain in each iteration False retrain_from_scratch

(if False, keep using the model trained in the first iteration) - -

Number of rollouts in each iteration 6400 n_samples_per_round

Number of command actions in each iteration 10 n_cmd_action

Number of epochs 4000 n_epochs

Batch size 64 batch_size

Learning rate 0.001 learning_rate

Algorithm-Specific Hyperparameters
(2, 304) (dim_pair, dim_state)

Network input dimension
(Pair of Trajectory and Action dimension)
Network output dimension

(Tunable env param dimension) 64 dim._zeta
Env param update iteration 10 K

Network hidden dimension [256,256] hidden_dim
Loss function MSE loss_fn
Optimizer Adam optimizer

15

	Introduction
	Related Work
	Methodology
	Problem formulation: Markov Decision Processes and sim-to-real gap
	Learning causality between environment parameters and trajectory differences
	Closing the sim-to-real gap via differentiable causal discovery

	Experimental Results
	Experimental setups
	Sim-to-sim trajectory alignment with known target environment parameters
	Sim-to-real with policy optimization in the loop

	Discussion and Conclusion
	Model details
	Experimental Details
	Experimental Configurations for Robot Simulation Setup
	Experimental Configurations for Real Robot Setup

	Implementation Details

