
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ATOMWORLD SETUP DETAILS

A.1 SUPPORTED ACTION PROMPTS

Table 5: Examples of actions and the corresponding action prompts for point-based tasks.

Action name Action prompt

move Move the point at index {index} by displacement {displacement}.

move_towards
Move the point at index {from_index} towards the point at index
{to_index} by {distance}.

insert_between
Insert a new point between points at indices {index1} and {index2},
{distance} units away from point {index1}.

rotate_around

Rotate all points by {angle_deg} degrees around the axis {axis}, with
the point at index {center_index} as the center of rotation. The rotation
follows the right-hand rule.

A.2 FULL PROMPT TEMPLATES

Listing 1: A prompt example for a specific task of AtomWorld
You are a CIF operation assistant. You will be given an input CIF content

and an action prompt. Your task is to apply the action described in the

action prompt to the initial CIF content. The coordinates in the action

are in Cartesian format. Return the modified CIF content in cif format

within <cif> and </cif> tags.

Please ensure the output is a valid CIF file, with correct formula, and

atom positions.

Input CIF content:

{The specific CIF file is inserted here}

Action prompt: Insert Lu between atoms at indices 6 and 5 that is 4.03

angstrom from atom 6.

Listing 2: A prompt example for the PointWorld task
You are a spatial reasoning expert. You will be given an initial set of

points and an action prompt describing an operation on these points. The

final modified points after applying the action must be returned inside <

answer> and </answer> tags. The format inside the tags must exactly match

the input points format. All indices are zero-based. Please ensure the

answer inside <answer> and </answer> tags is parseable and strictly

formatted.

Initial points data:

{coordinate_array},

Action prompt:

{action_prompt},

Listing 3: A prompt example for CIF-repair tasks
You are a CIF operation assistant. You will be given a CIF content that

may be corrupted or incomplete. Your task is to examine the CIF content

and fix any issues to ensure it is a valid CIF file. If there are missing

values that cannot be repaired directly, you can use the [

VALUE_TO_BE_INSERTED] as hints to fill in the missing values. Please

ensure the output is a correct CIF file. Return the fixed CIF content

within <cif> and </cif> tags. Input CIF content:

{broken_cif}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Listing 4: A prompt example for a CIF-gen task about perovskite structure
You are a materials science expert. Please generate some simple and

standard structures in the CIF format according to the requirements. You

must strictly follow the CIF format specifications. Since the symmetry-

related information can be complex, please write the CIF file with P1

symmetry. Please ensure the output is a correct CIF file. Return the

fixed CIF content within <cif> and </cif> tags.

Requirements:

Please generate a CIF file for {formula} with a {structure_type}

structure, according to the following information about the convensional

cell:

- Lattice constant a: {lattice_constant_a}

- The {center_atom} atom is at the center of the octahedron formed by

surrounding atoms.

Listing 5: A prompt example for StructProp tasks
You are a material design expert. Your task is to modify a given CIF file

to achieve a desired change in a specific material property. Please

analyze the given CIF file and the target property. Identify the key

structural features and elemental composition that influence the

specified property. Propose a specific modification to the structure.

This modification must be one or a combination of the following:

1. Element Substitution;

2. Lattice Parameter Adjustment;

3. Atomic Coordinate Adjustment.

Please ensure the output is a correct CIF file. Return the modified CIF

content within <cif> and </cif> tags.

Input CIF content:

{The specific CIF file is inserted here}

Your goal: modify the CIF file accordingly to {target_trend} the {

target_property}.

A.3 ILLUSTRATIVE EXAMPLE OF THE FRAMEWORK

max_dist: 0.0053

5

6

LLM

Target Generated

Figure 4: The workflow of a specific insert_between task.

To provide a concrete understanding of our proposed AtomWorld Bench, we present an illustrative
example of its workflow. This case study focuses on a specific task: inserting a Lu atom between the
fifth and the sixth atoms in the specific CIF structure. The prompt used here is listed in Appendix A.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The workflow randomly selects the atom indices and determines the position of the atom to be
inserted based on the selected atoms. Based on the initialized action, the framework gives out a target
structure. The LLM will also generate a structure after processing the prompt, as shown in Figure 4.
In this example, the two structures are nearly identical, with a max_dist of 0.0053 Å, indicating
high accuracy.

A.4 LOGIC ON GENERATING CIF-REPAIR TASK

To systematically evaluate LLM performance on CIF repair, we constructed a set of partially corrupted
CIFs via two types of operations:

1. Removal of essential lines: Certain CIF fields are critical for correct structure parsing. The
essential tags include:

• _cell_length_a, _cell_length_b, _cell_length_c
• _cell_angle_alpha, _cell_angle_beta, _cell_angle_gamma
• _atom_site_type_symbol, _atom_site_label,
_atom_site_symmetry_multiplicity

• _atom_site_fract_x, _atom_site_fract_y, _atom_site_fract_z
• _atom_site_occupancy

2. Replacement of essential tags with misleading variants: Instead of random typos, tags
are systematically replaced with misleading but syntactically valid alternatives. Examples
of mappings include:

• Change the a, b, c into x, y, z; u, v, w or i, j, k.
• Change the x, y, z into a, b, c; u, v, w or i, j, k.
• Change _atom_site string into _atom.
• Change _cell string into _lattice.
• Change _cell_length and _cell_angle strings into _cell.

A.5 DFT COMPUTATION DETAILS

All density functional theory (DFT) calculations, including band gap and bulk modulus evaluations,
were performed using the Vienna Ab initio Simulation Package (VASP) with the projector-augmented
wave (PAW) method (Kresse & Hafner, 1993; Kresse & Furthmüller, 1996a;b; Kresse & Joubert,
1999) and the PBEsol exchange–correlation functional(Perdew et al., 2008). High-throughput
workflows for both properties were automated using the atomate2 package (Ganose et al., 2025).
Unless otherwise specified, calculation parameters followed the default settings in atomate2. Example
calculation scripts are provided in the github repository.

For the band gap calculations, a k-point mesh with a grid density of 100 Å→3 was employed, and
electronic self-consistency was converged to 10→5 eV. The band gap was extracted from the uniform
k-point calculation stage. For the bulk modulus calculations, a plane-wave energy cutoff of 600 eV
and a k-point grid density of 400 Å→3 were used. Total energy and ionic relaxations were converged
to 10→6 eV and 0.01 eV/Å, respectively, to balance computational cost and accuracy. In the initial
relaxation stage, Gaussian smearing with ω = 0.05 eV was applied, while in the deformation stage the
tetrahedron method was adopted for Brillouin zone integration.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B FULL EVALUATION RESULTS

B.1 EVALUATIONS OF TOOL AUGMENTED LLM FOR ATOMWORLD

Figure 5: The flowchart for the code generation-based approach for the AtomWorld benchmark tests.

System Design As shown in Figure 5, we adopt a code generation-based approach to accomplish
structural operations. This process is divided into two steps: first, we perform RAG-based retrieval
over the pymatgen library to obtain relevant APIs; second, we conduct code generation to complete
the user-specified action.

Knowledge Graph Retrieval (RAG) The first step of our pipeline is to retrieve relevant pymatgen
APIs using RAG. We leverage the code-graph-rag project(Liu et al., 2024) to extract structured
information from the codebase and build a knowledge graph in Memgraph, where nodes represent
code entities such as modules, classes, methods, and fields, and edges capture relationships like
inheritance and usage. The retrieval process is orchestrated by a primary LLM, implemented using
Deepseek-chat, which performs task decomposition, reasoning, and tool invocation. Specifically,
the translator LLM, also implemented with Deepseek-chat, is used as a tool by the primary LLM
to convert natural language queries into graph queries. The output of this process is a JSON file
containing relevant pymatgen APIs, which is later used to guide code generation.

Code Generation Code generation is performed using Deepseek-chat, conditioned on the input CIF
file, the user action prompt, and the APIs retrieved from the RAG stage. The system strictly follows
the retrieved API signatures to ensure correctness and prevent hallucination. The generated Python
code is then executed together with the input CIF file to produce the modified crystal structure.

Table 6: Comparison of model performances between Deepseek-chat with and without tools.

With tools Without tools

Action Succ. rate (%) mean max_dist (Å) Succ. rate mean max_dist

remove 100.0 0.0000 84.0 0.0000
insert_between 83.0 0.0076 45.6 0.2004
rotate_around 18.0 0.1648 6.8 0.2561

As evident from Table 6, incorporating retrieval-augmented generation (RAG) and structure manipu-
lation tools significantly improves the model’s performance across the tested actions. The remove
action, which is relatively straightforward, achieves a perfect success rate of 100%. However, more
complex actions, such as insert_between and rotate_around, still present challenges. The
success rate for insert_between is 83%, with some errors remaining, while rotate_around
demonstrates a relatively low success rate of 18%.

These findings highlight a key insight: while the integration of RAG tools and coding ability facilitates
substantial improvements in model performance, further refinements are crucial to fully address
the real-world requirements of structural modification tasks. Specifically, additional task-specific
fine-tuning or reinforcement learning is necessary to enhance the model’s robustness, particularly for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

more complex structural operations. Future work will focus on these aspects to ensure more reliable
and scalable applications.

B.2 THE MAX_DIST VIOLIN PLOTS

deepseek chat gemini 2.5 pro llama3-70b

0.0

0.2

0.4

0.6

0.8

m
ax

_d
is

t (
Å)

 add change delete below insert between move
 move towards remove atom rotate around swap super cell

qwen3 32b gpt o3 gpt o4-mini

0.0

0.2

0.4

0.6

0.8

m
ax

_d
is

t (
Å)

qwen3 14b qwen3 8b qwen3 4b

0.0

0.2

0.4

0.6

0.8

m
ax

_d
is

t (
Å)

Figure 6: The violin plots of max_dist of evaluation results. The hollow squares indicate the mean
values, and the hollow circles indicate the medians.

17

	Introduction
	Playground Design: AtomWorld
	AtomWorld Generator
	AtomWorld for LLM Training
	Complementary Benchmarks

	Experimental Setup
	Models and Parameter Ranges
	Evaluation protocol
	Datasets
	Metrics

	Results
	AtomWorld
	PointWorld and CIF Literacy Tests
	StructProp

	Discussion
	Related Work
	Conclusion
	AtomWorld Setup Details
	Supported action prompts
	Full Prompt Templates
	Illustrative example of the framework
	Logic on generating CIF-Repair task
	DFT computation details

	Full Evaluation Results
	Evaluations of tool augmented LLM for AtomWorld
	The max_dist violin plots

