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A MARGINAL CONSISTENCY

Let h : X ! Y be a function defined in the joint environment J , where X := (X1, X2, . . .) is a
variable space. Let S be a set and Sc its complement. Denote XS := {Xi : i 2 S} to be the set
of variables contained in the set S. hS is the function h restricted to the set of variables in XS ,
i.e. hS : XS ! Y , where hS(xS) = EXSc [h(xS , XSc)]. Similarly, for hT : XT ! Y , where
hT (xT ) = EXTc [h(xT , XT c)].

When S \ T 6= ;, let I := S \ T , then hI : XI ! Y , where hI(xI) = EXIc
[h(xI , XIc)]. Since

I ✓ S, Sc
✓ Ic, define AS = Ic \ Sc and similarly BT = Ic \ T c. Then,

hI(xI) = EXIc
[h(xI , XIc)] (15)

= EXAS
[EXSc [h(xS , XSc)]] (16)

= EXBT
[EXTc [h(xT , XT c)]] (17)

= EXAS
[hS(xI , XAS )] = EXBT

[hT (xI , XBT )] (18)

B NAÏVE MODEL

For simplicity, we consider the structural causal model described in § 3.1. The method described
below also applies if we replace variable Xi by any subsets of variables. Assume that the true
generating function � is additively composed of univariate functions of its covariates, i.e. there is no
mixing term between different covariates. Then the additive model is given as:

Y := f1(X1) + f2(X2) + f3(X3) + ✏ (19)
where X1, X2, X3 are jointly independent of each other and ✏ ⇠ N (0,�2). Further, f1, f2, f3 are
some unknown functions.

We consider the following two environments:

• The source environment ES contains variables (X1, X2, Y )

• The target environment Et contains variables (X2, X3, Y )

The goal is to transfer knowledge from environment ES to environment Et in order to learn the
predictor E[Y | X2, X3].

One approach is to build separate neural networks for datasets (X1, Y ) and (X2, Y ). With sufficient
data, the learnt functions will equalsf1, f2 respectively due to independence between Xi. Knowledge
transfer can the be achieved by migrating the learnt function f2 to the target environment and then
using data from the target environment to learn the function f3 over the previously unobserved
variable. This solution does not work if there is an interaction between covariates, since the learnt
function does not solely depend on the unobserved variable.

C PROOFS

We next show proofs for theorems in the main text. We will first state theorem in its single-variate form
and state its multivariate extension. As single-variate proof is easily deducible from its multivariate
extension, we will only show its multivariate proof. To start, we will formulate an equivalent problem
setup for multivariate cases.

C.1 PROBLEM FOMULATION IN MULTIVARIATE VERSION

Consider a simple structural causal model with additive noise (Hoyer et al., 2009):
Y := �(PAY ) + ✏ (20)

where � is some function, Y 2 R and ✏ ⇠ N (0,�2) and Xi 2 PAY are jointly independent causes.
Assume that we do not have access to a joint environment J that contains all variables of interest,
namely (PAY , Y ). Instead, we have:

• A source environment with observed variables (Xs, Y ), and
• A target environment with observed variables Xt and the (unobserved) variable Y .
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Figure 4: Examples of OOV scenarios where marginal consistency condition alone (6) does not
permit the identification of the optimal predictive function in the corresponding target domain.

C.2 THEOREM 1

C.2.1 SINGLE-VARIATE STATEMENT

Theorem 5. Consider the OOV scenarios in Fig. 2, each governed by the SCM described in § 3.1.

Suppose that the variables considered in Fig. 2a and Fig. 2b are real-valued and the variables X1

and X3 in Fig. 2c are binary. We assume that for all i, the marginal density pi(xi) is known, and

denote its support set as Si := {x 2 R | pi(x) > 0}. Suppose that for all i there exist two distinct

points x, x0
2 Si. Then, for any pair fs, ft satisfying marginal consistency (6) and for any R > 0,

there exists another function f 0
t with kft � f 0

tk2 � R that also satisfies marginal consistency.

C.2.2 MULTIVARIATE STATEMENT

Theorem 5. Consider the OOV scenarios illustrated in Fig. 4, each governed by the structural

causal model described in appendix C.1. Suppose that the variables considered in Fig. 4a and

Fig. 4b are real-valued and the variables Xs\o and Xt\o in Fig. 4c are binary. We assume that

for all i 2 {s\o, o, t\o}, the marginal density pi(xi) is known, and denote its support set as

Si := {x 2 Rn
| pi(x) > 0}. Suppose that for all i there exist two distinct points x,x0

2 Si.

Then, for any pair fs, ft satisfying marginal consistency (6) and for any R > 0, there exists another

function f 0
t with kft � f 0

tk2 � R that also satisfies marginal consistency.

C.2.3 PROOF

Proof. Proof by construction. Consider the scenario illustrated in Fig. 4b. Find two distinct values in
the support set of pt\o(xt\o), x0

t\o and x00
t\o. For some appropriate ✏ > 0, consider their neighbour-

hoods as N1 = [x0
t\o � ✏,x0

t\o + ✏] and N2 = [x00
t\o � ✏,x00

t\o + ✏] and N1 \N2 = ;. Suppose we
learnt the optimal predictive function in the source environment fs, it can be written as:

fs(xs\o,xo) =

Z

⌦
�(xs\o,xo,xt\o)pt\o(xt\o)d(xt\o) (21)

=

Z

(⌦\N1)\N2

�(xs\o,xo,xt\o)pt\o(xt\o)d(xt\o)

| {z }
Remainder(xs\o,xo)

(22)

+

Z

N1

�(xs\o,xo,xt\o)pt\o(xt\o)d(xt\o)

| {z }
g(xs\o,xo)

+

Z

N2

�(xs\o,xo,xt\o)pt\o(xt\o)d(xt\o)

| {z }
h(xs\o,xo)

(23)

Denote the integral in the region excluding the specified neighbourhoods as Remainder(xs\o,xo),
the integral over N1 as g(xs\o,xo), and that over N2 as h(xs\o,xo). Given any function
c(xs\o,xo), it is easy to find a function d(xs\o,xo) such that fs(xs\o,xo)�Remainder(xs\o,xo) =
c(xs\o,xo)g(xs\o,xo) + d(xs\o,xo)h(xs\o,xo). This means whenever we find a function � that
satisfies Equation 21, it is always possible to slightly perturb � such that �0 can also satisfy marginal
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consistency. For example, construct a �0 which is a result of proposed � scaled by c elementwise
over the neighbourhood N1 and scaled by d elementwise over the neighbourhood N2. Moreover, the
deviation of �0 with � can be arbitrarily different:

||�� �0
||2 � const1||c� 1||2 + const2||d� 1||2 (24)

which the lower bound can be arbitrarily large by the choice of c(x1, x2).

Consider the scenario illustrated in Fig. 4a. Given the information obtained from the source environ-
ment ps\o(xs\o), po(xo), fs(xs\o,xo), by argument above, we know it is always possible to perturb
learnt � appropriately to get �0 that satisfies the desired marginal consistency conditions. We will
show it will also be impossible to identify the optimal predictive function ft in the target environment.
By the argument above, we can choose the function c(xs\o,xo) freely. Then there always exists
a function c such that sgn(c(xs\o,xo)) = sgn(�(xs\o,xo,x0

t\o)) and |c(xs\o,xo)| � L, 8xs\o,xo,
where L > 1. Consider a point x0

t\o in the neighbourhood N1. Then under a learnt � and perturbed
�0, its corresponding optimal predictive function ft and f 0

t can be written as:

ft(xo,x
0
t\o) =

Z

⌦
�(xs\o,xo,x

0
t\o)ps\o(xs\o)d(xs\o) (25)

f 0
t(xo,x

0
t\o) =

Z

⌦
c(xs\o,xo)�(xs\o,xo,x

0
t\o)| {z }

�0 and 6=�

ps\o(xs\o)d(xs\o) (26)

This implies ft(xo,x0
t\o) 6= f 0

t(xo,x0
t\o) for all values in the neighbourhood N1. This means though

ft and f 0
t are both marginally consistent with fs (since � and �0 are both consistent with fs), but they

are different functions. Moreover their difference can be arbitrarily large:

||ft � f 0
t ||2 �

Z Z

N1

(ft(xo,x
0
t\o)� f 0

t(xo,x
0
t\o))

2pt\o(xt\o)dxt\opo(xo)dxo (27)

If analyse the inner term that squared, we have:

(ft(xo,x
0
t\o)� f 0

t(xo,x
0
t\o))

2 = (

Z

⌦
(c� 1)�(xs\o,xo,xt\o)ps\o(xs\o)dxs\o)

2

� (|L|� 1)2(

Z

⌦
�ps\o(xs\o)dxs\o)

2

The last inequality holds by construction of c. Thus substituting it into Eq. 27, we have ||ft � f 0
t ||2 �

const ⇤ (|L|� 1)2, where the lower bound of the constructed function c can be arbitrarily large.

Consider the scenario illustrated in Fig. 4c. Here we restrict to cases when Xs\o and Xt\o contains
singleton binary variables. For ease of notation, denote Xs\o as X1, Xt\o as X3 and Xo as X2.
Set �i := P (Xi = 0). Then given source environments where one observes variables (X1,X2, Y )
and the other observes variables (X2, X3, Y ). The potential generating function must satisfy below
system of equations:

fs(0,x2) = �3�(0,x2, 0) + (1� �3)�(0,x2, 1) (28)
fs(1,x2) = �3�(1,x2, 0) + (1� �3)�(1,x2, 1) (29)
ft(x2, 0) = �1�(0,x2, 0) + (1� �1)�(1,x2, 0) (30)
ft(x2, 1) = �1�(0,x2, 1) + (1� �1)�(1,x2, 1) (31)

Perturb �(0,x2, 0) by c(0,x2, 0), then in order to still satisfy the above system of equations, the
coefficients need to be correspondingly adjusted as:

c(0,x2, 1) =
fs(0,x2)� �3c(0,x2, 0)�(0,x2, 0)

(1� �3)�(0,x2, 1)
(32)

c(1,x2, 1) =
ft(x2, 1)�

�1ft(0,x2)��1�3c(0,x2,0)�(0,x2,0)
(1��3)

(1� �1)�(1,x2, 1)
(33)

c(1,x2, 0) =
fs(1,x2)�

(1��3)ft(x2,1)��1fs(0,x2)+�1�3c(0,x2,0)�(0,x2,0)
1��1

�3�(1,x2, 0)
(34)
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Figure 5: An example of the scenarios considered in Theorem 2

Note we have the adjusted coefficients are consistent with each other:

(1� �1)c(1,x2, 0)�(1,x2, 0) =
1

�3

⇥
(1� �1)fs(1,x2)� (1� �3)ft(x2, 1) (35)

+ �1fs(0,x2)� �1�3c(0,x2, 0)�(0,x2, 0)
⇤

(36)
= ft(x2, 0)� �1c(0,x2, 0)�(0,x2, 0) (37)

Thus it is possible to find a new �0 such that it still satisfies the system of equations. More over �0

deviates from � arbitrarily large by the choice of c(0,x2, 0):

||�� �0
||2 � ||�(0,x2, 0)� c(0,x2, 0)�(0,x2, 0)||2 � ||c� 1||2 ⇤ const (38)

C.3 THEOREM 2

C.3.1 SINGLE-VARIATE STATEMENT

Theorem 6. Consider a target variable Y and its direct cause PAY . Suppose that we observe:

• source environment contains variables (Z, Y ); training a discriminative model on this

environment yields a function fs(z) = E[Y | Z],

• target environment contains variable PAY

Suppose Y := �(PAY ) + ✏Y , Z = g(PAY ) + ✏Z where g is known and invertible with �, g�1

uniformly continuous. Then in the limit of E[|✏Z |] ! 0, the composition of the discriminative models

in source environments also approaches the optimal predictor, i.e., 8paY : fs � g(paY ) ! �(paY ).

C.3.2 MULTIVARIATE STATEMENT

Theorem 6. Consider a target variable Y and its direct causes PAY . Suppose that we observe:

• source environment contains variables (Xs, Y ); training a discriminative model on this

environment yields fs(xs) = E[Y | Xs],

• target environment contains variables Xt = PAY

Suppose Y := �(PAY ) + ✏Y and Xs = g(Xt) + ✏s where g is known and invertible with �, g�1

are uniformly continuous and ✏s ?? Xt. Then in the limit of E[|✏s|] ! 0, the composition of fs � g
approaches the optimal predictor, i.e., 8xt : fs � g(xt) ! �(xt).

C.3.3 PROOF

Proof. We first observe the optimal predictive function in the target environment coincides with the
true generating function, written as: ft(PAY ) = E[Y | PAY ] = �(PAY ). Further, g(Xt) = E[Xs |

Xt] due to ✏s ?? Xt. Given g is continuous and invertible, its inverse g�1 exists and is continuous.
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E[Y | xs] = E
⇥
E[Y | xs,Xt]

⇤
(39)

= EPAY |xs

⇥
E[Y | PAY ]

⇤
(40)

= EPAY |xs

⇥
�(PAY )

⇤
(41)

Assume �, g�1 is uniformly continuous. Then �g�1 is uniformly continuous, i.e., for any � 2 R,
there exists �, such that for any x 2 R,

|�g�1(x+ �)� �g�1(x)|  �|�|

Then,

EPAY |xs

⇥
�(PAY )

⇤
= EPAY |xs

⇥
�g�1(xs � ✏s)

⇤
(42)

By the uniform continuity of �g�1, |E[Y | xs] � �g�1(xs)| = |EPAY |xs

⇥
�g�1(xs � ✏s) �

�g�1(xs)
⇤
|  EPAY |xs

⇥
|�g�1(xs � ✏s) � �g�1(xs)|

⇤
 �E[|✏s|]. In the limit of E[|✏s|] ! 0,

the result follows.

C.4 THEOREM 3

C.4.1 SINGLE-VARIATE STATEMENT

Theorem 3. Consider the problem setup in § 3.1 and assume the function � is everywhere twice differ-

entiable with respect to X3. Suppose from the source environment we learn a function fs(x1, x2) =
E[Y | x1, x2]. Using first-order Taylor approximation on the function � : x1 ⇥ x2 ⇥ X3 ! R for

fixed x1, x2, the moments of the residual distribution in the source environment take the form

E[(Y � fs(x1, x2))
n
| x1, x2] =

nX

k=0

✓
n

k

◆
E[✏k]

 
@�

@X3

����
x1,x2,µ3

!n�k

E[(X3 � µ3)
n�k]. (11)

For n = 3, this reduces to

E[(Y � fs(x1, x2))
3
| x1, x2] =

 
@�

@X3

����
x1,x2,µ3

!3

E[(X3 � µ3)
3] + E[✏3]. (12)

C.4.2 MULTIVARIATE STATEMENT

Theorem 7. Consider the problem setup in § 3.1, and assume the function � be a 2-times continuously

differentiable function at the point µPAY := E[PAY ]. Suppose from the source environment we learn

a function fs(xs) = E[Y | xs]. Denote the r-th central moment of Xi as Cr
i = E[(Xi � µi)r].

Using first-order multivariate Taylor approximation on the function � : xs ⇥Xt\o ! R, denoted as

�
��
xs

and suppose Xt\o have dimension m, the moments of the residual distribution in the source

environment take the form, where f = �
��
xs

for ease of notation,

E[(Y � fs(xs))
n
| xs] =

nX

k=0

✓
n

k

◆
E[✏kY ]⇥

 X

k1+k2+···+km=n�k;k1,k2,...,km�0

(43)

✓
n

k1, k2, . . . , km

◆ mY

i=1

(
@f

@xi
(a))kiCki

i

�
, where a = µxt\o (44)

When n = 3:

E[(Y � fs(xs))
3
| xs] =

mX

i=1

(
@f

@xi
(a))3C3

i + E[✏3Y ] (45)
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C.4.3 PROOF

Notation Let |↵| =
P

i ↵i,↵! =
Q

i ↵i!,x↵ =
Q

i x
↵i
i for ↵ 2 Nn and x 2 Rn. Denote

D↵f =
@|↵|f

@x↵1
1 . . . @x↵n

n

as higher order partial derivatives of f .
Theorem 8 (Multivariate version of Taylor’s theorem (Spivak, 2008)). Let f : Rn

! R be a k-times

continuously differentiable function at the point a 2 Rn
. Then there exist functions h↵ : Rn

! R,

where |↵| = k, such that

f(x) =
X

|↵|k

D↵f(a)

↵!
(x� a)↵ +

X

|↵|=k

h↵(x)(x� a)↵, (46)

and lim
x!a

h↵(x) = 0 (47)

Proof. Let x be a sample from random variable X. Let a = E[X]. Theorem 8 states that

f(x) = f(a) +
X

|↵|=1

Df(a)(x� a) +
X

|↵|=2

h↵(x)(x� a)2

Take first-order Taylor approximation over the generating function, we suppose f(x) ⇡ f(a) +
Df(a)(x� a), 8x. Taking expectations:

E[f(X)] ⇡ f(a) (48)
Consider the difference between f(x) and its expectations and raise it to the power of n, we have:

✓
f(X)� E[f(X)]

◆n

=

✓ X

|↵|=1

D↵f(a)(X� a)↵
◆n

(49)

=

✓ mX

i=1

@f

@xi
(a)(Xi � ai)

◆n

(50)

Taking expectations, on Eq. 49, and let X 2 Rm, we have:

E
�
f(X)� E[f(X)]

�n
�
=

X

k1+k2+···+km=n;k1,k2,...,km�0

✓
n

k1, k2, . . . , km

◆ mY

i=1

(
@f

@xi
(a))kiE

⇥
(Xi � ai)

ki
⇤

(51)
The expectation is taken inside the product term as the covariates are independent of each other.
Take fxs : Xt\o ! R to be the function � : xs ⇥ Xt\o ! R where values xs are fixed. Since
Y = �(xs,xt\o) + ✏, we have

E[(Y � fs(xs))
n
| xs] = E

�
f(x) + ✏� E[f(x)]

�n
�

(52)

=
nX

k=0

✓
n

k

◆
E[✏k]E[(f(x)� E[f(x)])n�k] (53)

where f(x) = fxs(xt\o). The second equality is due to independence of ✏ and f(x)� E[f(x)]. Let
Cr

i denotes the r-th central moment of Xi where Cr
i := E[(Xi �µi)r]. Substitute in Eq. 51, we have

E[(Y � fs(xs))
n
| xs] =

nX

k=0

✓
n

k

◆
E[✏kY ]⇥

 X

k1+k2+···+km=n�k;k1,k2,...,km�0

(54)

✓
n

k1, k2, . . . , km

◆ mY

i=1

(
@f

@xi
(a))kiCki

i

�
(55)

When n = 3:

E[(Y � fs(xs))
3
| xs] =

mX

i=1

(
@f

@xi
(a))3C3

i + E[✏3Y ] (56)
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C.5 COROLLARY 4

Corollary 9. For OOV scenarios described in § 3.1, learning from the moment of the error distribution

allows exact identification of � when �(x1, x2) =
P

p,q cih(x1, x2)px
q
3, where p, q 2 {0, 1} and

ci 2 R, 8i and h can be any function.

C.5.1 PROOF

Proof. When �(x1, x2) =
P

p,q cih(x1, x2)px
q
3, where p, q 2 {0, 1} and ci 2 R, 8i and h can be

any function. Note
fs(x1, x2) = c1 + c2x3 + c3h(x1, x2) + c4h(x1, x2)x3

By Theorem 7, when m = 1, n = 3

E[(Y � fs(x1, x2))
3
| x1, x2] =

� @�
@x3

��
x1,x2,µ3

�3
C3

3 + E[✏3Y ] (57)

@�

@x3

��
x1,x2,µ3

= c2 + c4h(x1, x2) (58)

Then �(x1, x2, x3) = fs(x1, x2) +
@�
@x3

��
x1,x2,µ3

⇤ (x3 � µ3), where fs estimable from the source
environment, and the partial derivative estimable from the residual error distribution and µ3 estimable
from the covariates in the target environment.

C.6 EXTENSIONS TO MORE THAN ONE UNOBSERVED VARIABLE

Here, we consider a function with two variables f(x, y) where variables can be considered as two
unobserved variables from the source environment. Note, the same argument can easily extend to
multivariate functions. Let E[X] = µx,E[Y ] = µy. Expand multivariate Taylor approximations
around the point a = (µx, µy), we have:

f(x, y) =f(µx, µy) +
@f

@x

��
a
(x� µx) +

@f

@y

��
a
(y � µy) (59)

+ C1(x� µx)
2 + C2(x� µx)(y � µy) + C3(y � µy)

3 (60)
With first-order Taylor approximations, we ignore the higher order terms. Taking expectations on
both sides, we have E[f(x, y)] = f(µx, µy). Similarly,

�
f(x, y)� E[f(x, y)]

�n
=
�@f
@x

��
a
(x� µx) +

@f

@y

��
a
(y � µy)

�n (61)

=
nX

k=0

✓
n

k

◆�@f
@x

��
a

�k
(x� µx)

k
�@f
@y

��
a

�n�k
(y � µy)

n�k (62)

Taking expectations on both sides, assuming we can estimate the cross-moments between two unob-
served variables from data, with two unknowns and two equations, we can estimate the unknowns.

D FURTHER EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

In the implementation of the mean imputed predictor, we first impute the missing variable X3 with
its mean and train a source predictor fs from X1, X2,E[X3]. During inference, given a target sample
(x2, x3), MeanImputed(x2, x3) = fs(µ1, x2, x3) where µ1 := E[X1].

In the implementation of the marginal predictor, we first train a source predictor fs with inputs
X1, X2. During inference, given target sample (x2, x3), Marginal(x2, x3) =

P
x1,i

fs(x1,i, x2).

For all our training, we employ a 2-layer MLP with ReLU activation function. All MLPs are trained
to minimize mean squared error loss using SGD. For the Monte Carlo approximation in our proposed
MomentLearn we sample 1, 000 observations of X1 from the source environment.
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D.2 HYPERPARAMETER SWEEP

We have performed a hyperparameter sweep for a total of 8 variations where learning rate varies in
(0.01, 0.001), hidden sizes in the range of (64, 32) and the number of epochs in the range of (30, 50).
Table 1 shows the averaged results over the 8 variations.

D.3 ALGORITHM

Below we detail the exact algorithm for performing OOV learning in our base model illustrated in
Fig. 1a. Note that, we train two neural networks: one to estimate the conditional mean in the source
environment fs, and the other to estimate the partial derivative from modelling the third moment
of the residual distributions. We use 2-layer MLPs with ReLU activation function with hidden size
64 and output size 1. We train with batch size 64, learning rate 0.01 with weight decay 1e�4. We
train the conditional mean estimator for 10 epochs and the partial derivative estimator for 50 epochs.
We perform Monte Carlo estimation using 1000 samples. We sample our data ensuring that the
coefficients for the missing variable are large enough, i.e., |↵3| > 2(|↵2| + |↵1|) for performance
analysis and sample efficiency experiment. Otherwise, we sample coefficients from a standard normal
distribution with mean 0 and variance 1 for the systematic analysis experiment.

Algorithm 1: Out-of-variable learning
Input :Source environment ES with variables X1, X2 and Y ; Target environment Et with

variables X2 and X3.
Output :OOV predictive function f̃t(x2, x3)

1 Step 1: Learn E[Y | X1, X2]
2 Train a neural network fs via minimizing its mean squared error ||Y � fs(x1, x2)||22
3 Step 2: Learn partial derivative h✓ from modelling conditional skew
4 Compute Z = (Y � fs(X1, X2))3.
5 Estimate the skew of X3: k3 = E[(X3 � µ3)3], where µ3 = E[X3].
6 Train a neural network h✓ via minimizing ||Z � k3h✓(x1, x2)3||22
7 Step 3: Monte Carlo Estimation
8 Uniformly sample n observations of X1 from environment ES : {x1,i}

n
i=1.

9 For fixed x2, x3, calculate the proposed zero-shot estimate in Eq. 14.

D.4 REAL WORLD EXPERIMENT

To illustrate the applicability of OOV generalization in real world dataset, we use "mtcars" dataset
extracted from 1974 Motor Trend US magazine. Given the small dataset size, we first augmented
the dataset through resampling with replacement to reach 232 data points. We are interested in
predicting the outcome variable Y miles per gallon (MPG) given variables on the car’s information.
We split the source and target dataset with 80-20 ratio. In the source environment, we observed
the number of cylinders X1 and quarter-mile time (acceleration) X2 and miles per gallon Y . In the
target environment, we observe covariates quarter-mile time X2 and weight of the car X3. We are
interested in leveraging observation from the source environment to yield a better prediction on the
target covariates without observation of the outcome in the target environment. Averaged over 10
random seeds, Table 2 shows the zero-shot prediction for our method and various benchmarks.

Mtcars
MomentLearn 1.09 ± 0.08
MeanImputed 1.48 ± 0.06

Marginal 1.46 ± 0.03

Table 2: Our method’s (“MomentLearn”) OOV prediction performance in the target environment,
compared to the “Marginal” baseline and the predictor that imputes missing variable with its mean
(“Mean Imputed”). Shown are mean and variance of the MSE loss between the predicted and observed
target values on augmented ’Mtcars’ dataset.
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D.5 ROBUSTNESS WITH DIFFERENT NOISE SCALE

To understand the robustness of our method with changing noise level, we vary the standard deviation
of Gaussian noise (with mean 0) in the range of � = [0.01, 0.2, 0.4, 0.6, 0.8, 1.0]. For each noise
setting, we repeat the experiment for 5 random seeds and take the average of MSE loss for each
predictor. Shown are mean and standard deviations of the MSE loss between the predicted and
observed target values in Table 3. We observe MomentLearn outperforms the other baselines for
almost all cases.

P
i ↵iXi

� = 0.01 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0

Oracle 0.30 ± 0.15 0.34 ± 0.14 0.46 ± 0.14 0.67 ± 0.14 0.96 ± 0.13 1.33 ± 0.13
MomentLearn 0.31 ± 0.15 0.35 ± 0.15 0.51 ± 0.19 0.80 ± 0.18 1.13 ± 0.18 1.52 ± 0.17
MeanImputed 0.44 ± 0.20 0.48 ± 0.20 0.61 ± 0.18 0.81 ± 0.17 1.11 ± 0.15 1.48 ± 0.13

Marginal 0.54 ± 0.28 0.58 ± 0.27 0.91 ± 0.24 0.88 ± 0.45 1.20 ± 0.22 1.57 ± 0.20

+
P

i<j �ijXiXj

� = 0.01 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0

Oracle 0.25 ± 0.45 0.29 ± 0.45 0.43 ± 0.44 0.64 ± 0.43 0.93 ± 0.42 1.30 ± 0.40
MomentLearn 0.29 ± 0.43 0.31 ± 0.44 0.45 ± 0.43 0.66 ± 0.42 0.96 ± 0.41 1.33 ± 0.39
MeanImputed 0.49 ± 0.49 0.54 ± 0.49 0.66 ± 0.45 0.88 ± 0.47 1.18 ± 0.46 1.57 ± 0.45

Marginal 0.51 ± 0.45 0.56 ± 0.45 0.68 ± 0.45 0.90 ± 0.44 1.58 ± 0.42 1.46 ± 0.19

+
P

i �iX
2
i

� = 0.01 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0

Oracle 0.56 ± 0.32 0.60 ± 0.32 0.72 ± 0.31 0.92 ± 0.31 1.21 ± 0.31 1.59 ± 0.31
MomentLearn 0.71 ± 0.33 0.94 ± 0.45 0.81 ± 0.29 0.99 ± 0.29 1.32 ± 0.24 1.68 ± 0.22
MeanImputed 1.37 ± 0.95 1.43 ± 0.95 1.56 ± 0.96 1.77 ± 0.95 2.08 ± 0.97 2.46 ± 0.98

Marginal 1.74 ± 1.27 1.78 ± 1.27 1.91 ± 1.28 2.13 ± 1.28 2.42 ± 1.29 2.80 ± 1.30

Table 3: Under changing noise level where noise sampled from Gaussian distribution with varying
standard deviation �, our method’s (“MomentLearn”) OOV prediction performance in the target
environment, compared to the “Marginal” baseline, the predictor that imputes missing variable with
its mean (“Mean Imputed”) and the solution that has access to the full joint observations on the target
domain (“Oracle”). Shown are mean and standard deviations of the MSE loss between the predicted
and observed target values.

D.6 ROBUSTNESS WITH HEAVY TAILED

To understand the robustness of our method with non-Gaussian noise, we sample noise from
lognormal distribution with mean 0 and � = 0.5 and repeat the experiment for 5 times averaged over
a hyperparameter sweep. We see a decrease in performance for our method as expected by Theorem
3 due to the entanglment of noise skew with the signal skew. Table 4 shows the detailed result.

E DISCUSSION

E.1 MORE ENVIRONMENTS

To understand how multi-environments could in some cases help the OOV problem, recall Theorem
2 where the dependence structure among covariates is assumed to be known. Such an assumption
can be replaced with a realistic scenario where we observe all input variables for the source and
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P
i ↵iXi +

P
i<j �ijXiXj +

P
i �iX

2
i

Oracle 0.69 ± 0.14 0.63 ± 0.43 0.93 ± 0.33
MomentLearn 0.91 ± 0.34 0.97 ± 0.50 1.20 ± 0.30
MeanImputed 0.89 ± 0.31 1.00 ± 0.53 1.76 ± 0.86

Marginal 0.93 ± 0.23 0.90 ± 0.45 2.11 ± 1.30

GP1(X1, X2) + ↵3X3 +GP2(X1, X2) ·X3 +GP3(X1, X2) ·X2
3

Oracle 0.39 ± 0.03 0.44 ± 0.08 0.54 ± 0.16
MomentLearn 0.82 ± 0.35 0.72 ± 0.21 1.40 ± 0.66
MeanImputed 0.85± 0.42 0.78 ± 0.41 1.31 ± 0.95

Marginal 0.65 ± 0.15 0.79 ± 0.39 1.81 ± 1.22

Table 4: Under heavy tailed noise sampled from lognormal distribution with µ = 0 and � = 0.5, our
method’s (“MomentLearn”) OOV prediction performance in the target environment, compared to
the “Marginal” baseline, the predictor that imputes missing variable with its mean (“Mean Imputed”)
and the solution that has access to the full joint observations on the target domain (“Oracle”). Shown
are mean and standard deviations of the MSE loss between the predicted and observed target values.
GPi(·) denotes a function sampled from a Gaussian Process with zero mean and Gaussian kernel.
MomentLearn performs as expected by our theoretical results and even exhibits a degree of robustness
to function classes that are not covered by Theorem 3.

target environments in another environment and thus estimate g through learning in this environment.
If additional environments contain covariates unique to the target environment and covariates in
the source environment, such information is in general helpful. One can thus learn their functional
relationship and impute with the estimated value to achieve a more accurate predictor in the target
environment.

E.2 ASSUMPTIONS

To facilitate a full understanding of our theorems, we provide a bullet list of assumptions required and
discuss their implications and robustness to their violations. Here we focus on uni-variate discussion
and multivariate extension is easy to generalize.

Theorem 3 presents an analytical formula on how the moments of the residual distribution relate to
transferable signals (partial derivative in Eq. 10), moments of the out-of-variable, and noise effect.
Assumptions involved are:

• continuous covariates X are causes of the outcome variable Y and Y = �(X) + ✏

• � is everywhere twice-differentiable with respect to the out-of-variable X3

Corollary 4 presents an identification result on when our method ”MomentLearn” can achieve perfect
transferring ability. Assumptions involved are:

• continuous covariates X are causes of the outcome variable Y and Y = �(X) + ✏

• � satisfies {�|�(x) =
P

p,q cp,qh(x1, x2)px
q
3, p, q 2 {0, 1}, ci 2 R, 8h}

• noise ✏ is symmetric

E.2.1 ROBUSTNESS TO VIOLATIONS OF ASSUMPTIONS

Causal assumptions We study the OOV problem under a causal framework. As discussed in Section
§ 2, while there is nothing causal about the OOV problem, we utilize structural causal model to study
cases that provably exhibit OOV generalization. If no knowledge about the graph is available, then
things can go arbitrarily wrong. E.g., the relationship of X3 can be arbitrarily related to the target
variable and this cannot be inferred from the source environment unless further assumptions are made
(as indicated in Section 3.3.1). It is conceivable that results could be obtained in broader settings,
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e.g., if the target covariates have relationships with the source covariates in a more complex causal
graph, partial information may be recoverable, though it is out of scope for the current paper.

Robustness to function class We performed systematic analysis on how our method performs
with respect to different function classes in Section 4 with results record in Table 1. We observe
”MomentLearn” performs as expected by our theoretical results and even exhibits a degree of
robustness to function classes that are not guaranteed as in Corrolary 4.

Robustness to noise We perform further experimental analysis on how our method performs when
the standard deviation of Gaussian noise increases and when the noise is asymmetric (e.g., follows a
log-normal distribution). Table 3 and 4 records the result. We observe ”MomentLearn” performs as
expected by our theoretical results: consistently outperforms other baselines facing Gaussian noise
with increasing noise levels but deteriorates in performance when noise is asymmetric.

E.3 OOD VS. OOV AND ITS APPLICATIONS

Here we provide a brief discussion on OOD and OOV’s relationship and ground the OOV problem in
potential real-world applications.

Under no distribution shift, problems can exhibit the need to generalize OOV. This is evident in
real-world scenarios as datasets are often inconsistent. For example, consider two medical labs
collecting different sets of variables. Lab A collects X1 = lifestyle factors and X2 = blood test; Lab
B, in addition to X2, collects X3 = genomics. Lab A is hospital-based with data capacity, whereas
lab B is research-focused. The OOV problem asks: given a model trained to predict the likelihood
of a disease Y on Lab A’s data, how should Lab B use this model for its own dataset that differs
in the set of input variables? Situations as described often happen in the real-world (e.g. hospitals,
consumer industries) as different institutions have imbalanced resources to collect data and have a
different market focus which reflects on the type of variables collected.

Problems exhibit distribution shifts may also be due to hidden OOV problems. Guo et al. (2022)
provides theoretical evidence that exchangeable sequences of causal observations (i.e., a set of causal
observations that come from different distributions and satisfy exchangeability) can be equivalently
modelled as a set of identical distributions conditioned on latent variables. One may thus interpret
distribution shifts as a lack of knowledge of the latent variable. In practice, for example, different
treatment effects on patients may be due to unobserved variables idiosyncratic to individual patients.

Often in real-world applications, problems exhibit both OOD and OOV. For example, to assess the
effect of a policy, decision-makers need to synthesize information from multiple sources containing
different variables, and account remaining randomness as distribution shifts for risk measure. To
effectively tackle real world problems, with the power of AI, we believe one need to solve both
OOD and OOV problems. We envision this work is conceptually novel, explicating the capability of
generalization is intricately related to the knowledge of variables and their relationships. We think
this is likely to trigger significant follow-up work.
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