
A Summary of the Proposed Procedure

We summarize all steps required to detect and to localize change point in the following Algorithm 1.

Algorithm 1 Gradual Change Point Detection and Localization

1: input: Kernel matrix K of data {Yt,T }, significance level ↵, smoothness of change point , the
number of nonzero eigenvalues n  T .

2: output: estimated change point location ⇢̂. . ⇢̂ = 1 implies no significant change point
3: prepare:
4: compute bDT (t/T ) for t = 1, 2, · · · , T using Equation (5).
5: compute the first n eigenvalues �̂1, · · · , �̂n of (1/T )K0 using Equation (5) and (11).
6: detection:
7: obtain p-value of bDT (1) using Equation (10) or permutation tests.
8: if p-value > ↵: return ⇢̂ = 1 . accept the null
9: else: go to line 9. . reject the null

10: localization:

11: calculate bT using Equation (13).
12: estimate ⇢̂ using Equation (12).
13: (optional) obtain refined estimator using (14). . max-gap estimator
14: return ⇢̂ (or ⇢̌ if it is computed).

Note that in line 5 of Algorithm 1, we compute the first n  T eigenvalues for K0, where n is chosen
a prior if one believes that the kernel contains at most n nonzero eigenvalues. This effectively reduces
the computational cost: for example, if one believes n = 1, power iteration can be applied to obtain
�̂1 which takes only O(T 2) time and is much cheaper than obtaining the whole spectrum.

Computational complexity analysis. Depending on how we calculate p-value, the proposed pro-
cedure shown in Algorithm 1 takes O(BT 2) time complexity with B number of permutations if
we use permutation tests or O(nT 2) if we use Equation (10). Detailed explanation: one can pre-
compute a T ⇥T matrix where the element on i-th row and j-th column denotes the cumulative sumsPi

l=1

Pj
m=1 k(Yl,T , Ym,T ). Then each bDT (t/T ) can be computed with an additional O(T ) time.

The detection procedure, if using approximation (10), takes O(T 3) for obtaining all eigenvalues; in
practice, however, we may only need to compute the first n ⌧ T eigenvalues which takes O(nT 2);
if the p-value is computed using permutation tests, it takes O(BT 2) where B is the number of per-
mutations we use. The localization procedure takes O(T 2) since we only need the largest eigenvalue
�1 and it can be computed using power iteration with O(T 2) complexity.

B Further Discussions on Improving Localization Accuracy

This section gives some further discussions on (a) why the max-gap estimator has improved accuracy
over the original estimator, and (b) what are other ways to improve accuracy of the original estimator.

Notations. Denote [x]+ = max(x, 0). For any estimator ⇢̂, define the overestimation error as
E[⇢̂� ⇢⇤]+, the underestimation error as E[⇢⇤ � ⇢̂]+, and the overall error as E|⇢⇤ � ⇢̂|.

B.1 Comparison of Original Estimator and the Max-Gap Estimator

As discussed in the main paper, the higher accuracy of the max-gap estimator compared with the
original estimator has a theoretical explanation. Define function w : [0, 1] ! R such that w(u) = 1
for u 2 [0, ⇢⇤], w(u) = T 1/2 for u 2 (⇢⇤, 1]. Theorem 4.4 says that

T [w(u)]�1( bDT (u)�D(u))
w
�! L(u),

where L(u) = L0(u) if u 2 (0, ⇢⇤) and L(u) = L1(u) if u 2 (⇢⇤, 1]. We note that L(u) is a
well-defined, non-degenerate distribution. Thus, TD(u)+w(u)L(u) can be viewed as the population
version of T bDT (u). Define the population version of ⇢̌ as ⇢1:

⇢1 = argmaxu2[0,1] [cT (u)� (TD(u) + w(u)L(u))] .
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We have the following result:
Theorem B.1. Under Assumptions 1, 2, 3, 4, if bT ! 1, bT /T ! 0 as T ! +1, we have

original estimator: [⇢1 � ⇢⇤]+ = Op

 ✓
bT
T

◆1/
!
, [⇢⇤ � ⇢1]+ = Op

✓
P (bT ) exp

✓
�
2bT
�1

◆◆
,

max-gap estimator: [⇢1 � ⇢⇤]+ = op

 ✓
bT
T

◆1/
!
, [⇢⇤ � ⇢1]+ = Op

✓
1

bT

◆
.

where P (bT ) is a known function having polynomially bounded growth as bT ! 1.

Remark B.2. Theorem B.1 shows that when bT = ⇥(log T ), in the population sense, the max-gap
estimator control of the overestimation/underestimation error has different strengths: compared with
the original estimator, it has a smaller overestimation error and larger underestimation error. Since
overestimation is the major concern in small sample size, the max-gap estimator has usually higher
overall accuracy than the original estimator in experiments.

The above analysis is based on the population versions of the estimators. We also conducted some
experiments to see whether the conclusion holds for finite samples. In Figure 4, we see that the
max-gap estimator performs much better than the original one in terms of overestimation, and slightly
worse in terms of underestimation, which in turn, results in a smaller overall error.
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Figure 4: Empirical comparison of ⇢̂ and ⇢̌ in simulated dataset with Pu = N(µ(u), 0.52), µ(u) =
(3u� 1)/2�1I(1/3  u  2/3) + I(u > 2/3). We set T = 600, and errors are averaged over 10
simulations.

B.2 Bias Correction of Original Estimator

Under some special cases, there is another way to improve the performance of the original estimator
⇢̂. Recall that ⇢1 is the population version of ⇢̂. First, let us introduce a general result:
Theorem B.3. Under Assumptions 1, 2, 3, 4, if bT satisfies bT > �1 log T/(2) and bT /T ! 0 as

T ! +1, when T is sufficiently large, we have

✓
⇢⇤bT
mT

◆1/

+ o((log T/T )1/)  E [⇢1 � ⇢⇤]+



✓
bT
mT

hp
⇢⇤ + �2

max/�1 +
p
�2
max/�1

i2◆1/

+ o((log T/T )1/), (20)

where �2
max = supl,u Var (�l(Yt(u)) and m, are defined in Assumption 4. Notice that we have

�2
max � �1.

Remark B.4. Note that the left hand side and right hand size in Equation (20) are of the same order,
which implies E [⇢1 � ⇢⇤]+ = ⇥

⇣�
bT
mT

�1/⌘
. Thus, the delay in ⇢1 roughly increases with larger

threshold bT , smaller sample size T and smoother change point (larger ).
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In order to alleviate the large delay in ⇢̂, we can subtract the lower bound in Theorem B.3 from the
estimated location ⇢̂. This requires knowledge about ⇢⇤,m,, the latter two of which are hard to
estimate in general. However, under some particular settings, we can estimate m, using empirical
samples. One such simplified setting is when there is a stationary distribution at the beginning and
the end of the sequence, and the changing phase in the middle is a mixture of P0, P1:

Pu =

8
><

>:

P0, u 2 [0, ⇢0],
⇢1�u
⇢1�⇢0

P0 +
u�⇢0

⇢1�⇢0
P1, u 2 (⇢0, ⇢1],

P1, u 2 (⇢1, 1],

(21)

where ⇢0 = ⇢⇤, and ⇢1 2 (⇢⇤, 1). Thus ⇢̂ is essentially an estimator for ⇢0, so we also denote it as
⇢̂0. The estimator for ⇢1 can be obtained using exactly the same way as that for ⇢̂0 by reversing the
sequence.
Corollary B.1. Suppose all assumptions in Theorem B.3 hold.

(1) If Pu satisfies Equation (21), when T is sufficiently large, we have the following bound:

✓
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◆1/2✓bT
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◆1/4
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
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◆1/4

+ o((log T/T )1/4),

where µ0 = EP0�(Y ), µ1 = EP1�(Y ).

(2) If changes are abrupt, i.e., ⇢0 = ⇢1, we have

p
2⇢0

kµ0 � µ1kH

✓
bT
T

◆1/2

 E [⇢1 � ⇢0]+ 

p
2⇢0 + 2�2
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p
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✓
bT
T

◆1/2

.

In practice, we do not know the truth kµ0 � µ1kH. But once we get an initial estimator (⇢̂0, ⇢̂1), we
can estimate it using the following formula:
2

4 1

n0(n� n1)

n0X

i=1

nX

j=n1

k(Yi,T , Yj,T )�
1

2n2
0

n0X

i,j=1

k(Yi,T , Yj,T )�
1

2(n� n1)2

nX

i,j=n1+1

k(Yi,T , Yj,T )

3

5
1/2

.

(22)

with n0 = dT ⇢̂0e, n1 = dT ⇢̂1e.

We note that in the special setting of (21), the performance of the bias corrected estimator

⇢̂�

✓
2(⇢̂1 � ⇢̂0)

kµ0 � µ1kH

p
⇢̂0

◆1/2✓bT
T

◆1/4

is usually better than that of the original estimator and the max-gap estimator. The drawbacks of bias
correction are that it requires specific assumptions on Pu, and it is more computationally expensive
than the max-gap estimator.

C Technical Proofs

Notations. For brevity of notation, we write Yi,T as yi, k · kH = k · k, and h·, ·iH = h·, ·i. Denote

�(u, v) =

Z v

0
�(Yt(w))dw � v/u

Z u

0
�(Yt(w))dw,

b�(u, v) = 1/T
P

dvTe

t=1 �(Yt,T )� v/(uT )
P

duTe

t=1 �(Yt,T ).

For a set of constants aT , bT , we write aT . bT if there exist constants C 2 (0,+1), t0 2 Z+ such
that aT  CbT for all T � t0. Define

V1 =
R ⇢⇤

0 I (L0(u) > ubT ) du, V2 =
R 1
⇢⇤I(T 1/2L1(u) + TD(u)  ubT )du. (23)
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C.1 Technical Lemmas

First we will introduce some useful lemmas.
Lemma 1. Suppose Assumption 1, 2, 3, 4 hold, if bT ! +1, bT /T ! 0, we have

EV1 = ⇥ (P (bT ) exp {�2bT /�1}) ,

where P (bT ) is a known function having polynomially bounded growth as bT ! 1.

Lemma 2. Under Assumptions 1, 2, 3, 4, if bT satisfies bT ! 1 and bT /T ! 0 as T ! +1, when

T is sufficiently large, we have

✓
⇢⇤bT
mT

◆1/

+ o((log T/T )1/)  EV2



✓
bT
mT

hp
⇢⇤ + �2

max/�1 +
p
�2
max/�1

i2◆1/

+ o((log T/T )1/),

where �2
max = supl,u Var (�l(Yt(u)). Notice that we have �2

max � �1.

C.2 Derivation for Equation (10)

Denote
Xu(t) = (W (t)� t/uW (u)) /(

p
u/2).

with W (·) the standard Brownian motion.

Obviously Xu is a centered non-stationary Gaussian process with almost surely continuous sample
path. And the variance of Xu attains its maximum over [0, u] at the unique point t = u/2 2 (0, u),
and the maximum variance equals 1. Further, we have

�(t) =
p

Var(Xu(t)) = 1�
2

u2

���t�
u

2

���
2
(1 + o(1)), t !

u

2
,

r(s, t) = Corr (Xu(s), Xu(t)) = 1�
2

u
|t� s| (1 + o(1)), s, t !

u

2
,

E [Xu(t)�Xu(s)]
2


16

u
|t� s|, 8s, t 2 [0, u].

From Theorem 2.1 of Liu and Ji (2014), we have for �1 � �2 � · · · and n mutually independent
Brownian motion Wl’s:

P
 

max
v2(0,u)

nX

l=1

�l

⇣
Wl(v)�

v

u
Wl(u)

⌘2�
> x

!

= P
 

max
v2(0,u)

nX

l=1

�l/�1

⇣
Wl(v)�

v

u
Wl(u)

⌘2
/(u/4)

�
> 4x/ (u�1)

!

= P
 

max
v2(0,u)

nX

l=1

�l/�1[Xu(v)]
2 > 4x/ (u�1)

!

=
21�q/2

�(q/2)

✓
4x

u�1

◆q/2�1/2

exp

⇢
�

2x

u�1

�
M1,2,2/u,2/u2

nY

l=1

(1� �l/�1)
�1/2 (1 + o(1)) , (24)

where q is the multiplicity of �1 and M1,2,2/u,2/u2 = 2
p
2⇡Pic1 with Pic1 the Pickands constant

defined as

Pic1 = lim
s!1

1

S
E
 
exp

(
sup

t2[0,S]

⇣p
2W (t)� t

⌘)!
.

It is known that Pic1 = 1. Replacing q and �l’s by their estimates, we obtain Equation (10).
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C.3 Proof of Theorem 4.4

Proof. When u 2 (0, ⇢⇤]. From Theorem 16 of Tewes (2017), we have
0

@ 1
p
T

dTueX

i=1

(�(yi)� E�(Y ))

1

A

u2[0,⇢⇤]

w
�! (W (u))u2[0,⇢⇤],

where W (·) is a Brownian motion in H and W (1) has the covariance operator ⌃ : H ! H, defined
by

h⌃�(y),�(y0)i = Ey00 [h�(y00)� E�(y00),�(y)ih�(y00)� E�(y00),�(y0)i] , 8y, y0 2 H.

From Equation (7) in the main paper, we have under the null,

h⌃�(y),�(y0)i = Ey00

X

l,m

�l(y)�m(y0) [�l(y
00)�m(y00)] =

X

l

�l�l(y)�l(y
0),

as long as the last quantity is well-defined. Thus, we know W (⇢) =
�p

�1W1(⇢),
p
�2W2(⇢), · · ·

�>

where Wl(⇢) and Wm(⇢) are independent, standard Brownian motions if l 6= m. Thus, we have

T bDT (u) =

������
dTue � dTve

dTue

1
p
T

dTveX

i=1

�(yi)�
dTve

dTue

1
p
T

dTueX

i=dTve+1

�(yi)

������

2

w
�!

���W (v)�
v

u
W (u)

���
2
=

1X

l=1

�l

⇣
Wl(v)�

v

u
Wl(u)

⌘2
,

and combined with the fact that D(u) = 0 for anay u 2 [0, ⇢⇤], we get that Equation (16) holds.

When u 2 (⇢⇤, 1]. This part of proof follows from Proof of Theorem 2.1 in Dehling et al. (2017).
First, we have the decomposition

T bDT (u) =

������
dTue � dTve

dTue

1
p
T

dTveX

i=1

(�(yi)� E�(yi))�
dTve

dTue

1
p
T

dTueX

i=dTve+1

(�(yi)� E�(yi))

+
dTue � dTve
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1
p
T

dTveX

i=1

E�(yi)�
dTve

dTue

1
p
T

dTueX
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E�(yi)

������

2

=
���U1 +

p

TU2

���
2
= kU1k

2 + TkU2k
2 + 2

p

T hU1, U2i, (25)

where

U1 =
dTue � dTve

dTue

1
p
T

dTveX

i=1

(�(yi)� E�(yi))�
dTve

dTue

1
p
T

dTueX

i=dTve+1

(�(yi)� E�(yi)) ,

U2 =
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1

T

dTveX

i=1

E�(yi)�
dTve

dTue

1

T

dTueX

i=dTve+1

E�(yi).

Notice that the independence of yi and Assumption 1 implies Theorem 3 in Brown et al. (1971) holds,
which says

1
p
T

dTveX

i=1

(�l(yi)� E�l(yi))
w
�! Gl(v),
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where Gl is a Gaussian process. Moreover, for any l 6= l0,

Cov (Gl(v1), Gl0(v2)) = lim
T!1

E

2

4 1

T

dTv1eX

i=1

(�l(yi)� E�l(yi))

dTv2eX

j=1

(�l0(yj)� E�l0(yj))

3

5
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1

T

dTv1eX

i=1
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1

T
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i=1

dTv2eX

j 6=i

E [(�l(yi)� E�l(yi)) (�l0(yj)� E�l0(yj))] = 0

Thus, for different l, Gl’s are mutually independent.

So by definition of U1, we have
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dTue � dTve
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1
p
T

dTveX

i=1

(�l(yi)� E�l(yi))�
dTve
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1
p
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w
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Since
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���
p
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we have
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⌘
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. (28)

Notice that from the Endpoint Approximation Theorem,
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where (a) follows from Assumption 3 (iii). Similarly,
������
1

T

dTueX

i=dTve+1

µl(i/T )�

Z u

v
µ(w)dw

������


(u� v)2
P

1

l=1 maxw2(u,v) µ
0

l(w)

2T


C 00

T
, (30)
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and
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where (a) uses Cauchy-Schwarz Inequality,(b) follows from Assumption 3 (i), and (c)(d) follows
from the definition of locally stationary process. Similarly we have������
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Combing Equation (28), (29), (30), (31), (32), we have

kU2 ��(u, v)k 
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T
.

Thus,
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Notice that
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thus we have
p

T
�
kU2k

2
�K(u, v)

�


p

T [kU2 ��(u, v)k+ k�(u, v)k]2 �
p

TK(u, v)



p

T
h
kU2 ��(u, v)k2 + k�(u, v)k2

+2 kU2 ��(u, v)k k�(u, v)k]�
p

TK(u, v)



p

T


C2

3

T 2
+ 2

C3

T

p
K(u, v)

�
, (33)
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T [kU2 ��(u, v)k � k�(u, v)k]2 �
p

TK(u, v)

�

p

T
h
kU2 ��(u, v)k2 + k�(u, v)k2 (34)

�2 kU2 ��(u, v)k k�(u, v)k]�
p

TK(u, v)

� �2
p

T kU2 ��(u, v)k k�(u, v)k

� �2
p
K(u, v)

C3

T 1/2
. (35)

Plugging Inequality (33), (35) into (25), we get
p

T
⇣
bKT (u, v)�K(u, v)

⌘
= T�1/2

kU1k
2 +

p

T
�
kU2k

2
�K(u, v)

�
+ 2hU1, U2i

 T�1/2
kU1k

2 +
p

T


C2

3

T 2
+ 2

C3

T

p
K(u, v)

�
+ 2hU1, U2i,

p

T
⇣
bKT (u, v)�K(u, v)

⌘
= T�1/2

kU1k
2 +

p

T
�
kU2k

2
�K(u, v)

�
+ 2hU1, U2i

� T�1/2
kU1k

2
� 2
p
K(u, v)

C3

T 1/2
+ 2hU1, U2i.
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Then in view of (26), we get
p

T
⇣
bKT (u, v)�K(u, v)

⌘
w
�! 2

1X

l=1

(Gl(v)� v/uGl(u))�l(u, v) =: G(v, u), (36)

where the right hand side is well defined because for each v, u, it is a normal random variable with
mean 0 and variance

Var(G(v, u)) = 4
1X

l=1

Var (Gl(v)� v/uGl(u))�
2
l (u, v)

 C4

1X

l=1

�2
l (u, v)  C4K(u, v)  C4D(u). (37)

C.4 Proof of Corollary 4.1

Proof. Notice that for any fixed constant C > 0,

P
⇣
T bDT (u) > C

⌘
= P

⇣
T 1/2 bDT (u) > CT�1/2

⌘
.

From Theorem 4.4, we know that

T 1/2 bDT (1) = ⇥(T 1/2) +Op(1).

Thus, the desired conclusion follows directly.

C.5 Proof of Theorem 4.8

Proof. Notice
|EV1 � EV2|  l1(⇢

1) = E |V1 � V2|  EV1 + EV2.

Then Theorem 4.8 is a direct conclusion of Lemma 1 and 2, which show that the order of EV1

decreases when bT increases, while that of EV2 increases when bT increases. Thus, the optimal bT
which minimizes l11 should satisfy EV1 = ⇥(EV2), which directly leads to Theorem 4.8.

C.6 Proof of Lemma 1

Proof. On one hand, for any u 2 (0, 1), we have from Lemma 1 of Inglot and Ledwina (2006) that

P
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v2(0,u)

1X

l=1

�l

⇣
Wl(v)�
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u
Wl(u)

⌘2�
> cT (u)
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"✓
Wl(

u

2
)�

1

2
Wl(u)
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> cT (u)

!

�P
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4cT (u)
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◆
� C1


cT (u)

u

�q/2�1

exp

⇢
�
2cT (u)

u�1

�
, (38)

where q is the multiplicity of �1.

On the other hand, for any u 2 (0, 1), from Chernoff bound, for any positive constant C2, we have

P
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v2(0,u)

1X

l=1

�l

⇣
Wl(v)�

v

u
Wl(u)

⌘2�
> cT (u)

!

E exp

(
�C2cT (u) + C2 max
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v

u
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⌘2�
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= e�C2cT (u)
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l=q+1

E exp

⇢
C2�l max

v2(0,u)

⇣
Wl(v)�

v

u
Wl(u)

⌘2�
. (39)
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where (a) follows from the fact that Wl(·)’s are mutually independent processes. We know that for
all a > 0,

P
✓

max
v2(0,u)

⇣
Wl(v)�

v

u
Wl(u)

⌘
� a

◆
= exp

⇢
�
2a2

u

�
.

We write Zl(u) = exp
n
C2�l maxv2(0,u)

�
Wl(v)�

v
uWl(u)

�2o and �q+1/�1 = ⇠ 2 (0, 1).

We take C2 = 2�"T
u�1

with "T = 1/bT . For all l > q, we have

EZl(u) = 1 +

Z
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1
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>
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◆�
da
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Z
1

1

"
P
 

max
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Z
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1
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Z
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1
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1

2/(uC2�l)� 1

= 1 +
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 1 +

�l

�1

2(2� "T )

(2� (2� "T )⇠)
< 1 +

�l

�1

2
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. (41)

Notice that
1Y

l=q+1

EZl =
1Y

l=q+1


1 +

2�l

�1(1� ⇠)

�
< +1, (42)

is always satisfied since
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log


1 +

2�l

�1(1� ⇠)

�
<

1X

l=q+1

2�l

�1(1� ⇠)
<

2Ek0(y, y)
�1(1� ⇠)

< +1.

Similar to (41), we can prove that when T is sufficiently large, for all l  q,

EZl(u) < 1 +
2(2� "T )

"T
= 1 + 2bT (2� 1/bT ) < 5bT . (43)

Plugging (42) and (43) into Equation (39), we have
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Combining Inequality (38) and (44), for any fixed u, by definition of V1, we have

cT (u)

u

�q/2�1
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�
2cT (u)
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. EV1 .
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.

C.7 Proof of Lemma 2

Proof. Notice that

EV2 =

Z 1

⇢⇤
P
⇣
T 1/2L1(u) + TD(u)  ubT

⌘
du.
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Upper bound for EV2. Recall that Equation (37) says

Var (G(v, u))  C4D(u).

Then, 8v0 2 argmaxv2[0,u] K(u, v), define
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⇣
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Then, from Section C.3, we know
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When (u� ⇢0)
 > ubT

(1�2")mT : from Assumption 4 and bT /T ! 0, we know that for any positive
constant � > 0, when T is sufficiently large,
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Denote

a = exp

⇢
�
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�
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Combing the cases where (u� ⇢0)



cT (u)
(1�2")mT and (u� ⇢0)

 > cT (u)
(1�2")mT , and denote ⇢0 = ⇢⇤,

we have when T is sufficiently large,
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We choose " as the solution to
(2� �)2"2�1⇢0

16(1� �")(1� 2")C3
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Thus we get
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p
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Plugging into (46) and let " ! 0, we have
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Lower bound for EV2. For any positive constant ", when (u� ⇢0)
 (1 + 2") � cT (u)

Tm , we have

P
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where G(v, u) is defined in (36) and (a) follows from the fact that bT ! 1 and Equation (37) which
says that

maxv2[0,u] G(v, u)
p
D(u)

= Op(1), ) P
 
maxv2[0,u] G(v, u)

p
D(u)

> "

s
cT (u)

(1 + ")(1 + 2")

!
= o(1).

Thus, for any " 2 (0, 1), we have

EV2 =

Z 1

⇢0

P
⇣
T 1/2L1(u) + TD(u)  cT (u)

⌘
du � (1� ") (C9 � ⇢0) = (1� ")

✓
⇢0bT

(1 + 2")Tm

◆1/

.

(48)

Combining (47) and (48) and let " ! 0 in (48), we obtain the desired conclusion.

C.8 Proof of Theorem 4.10

Proof. Let f(·) =
���
R 1
⇢⇤ I (·  cT (u)) du+

R ⇢⇤

0 [I (·  cT (u))� 1] du
��� . We know that f is a

bounded, continuous function when cT (·) is continuous. Since l1(·) = Ef(·), from Portmanteau
Theorem, we have

l1(⇢
1)� l1(⇢̂) ! 0, as T ! 1.

Similarly,
l1(⇢1)� l1(⇢̌) ! 0, as T ! 1.

Then, Theorem 4.10 is a direct consequence of Theorem B.1.

C.9 Proof of Theorem B.1

Proof. Notice that
E[⇢1 � ⇢⇤]+  EV2, E[⇢⇤ � ⇢1]+  EV1,

where V1, V2 are defined in Equation (23). Thus, the bound on E[⇢1� ⇢⇤]+, E[⇢⇤� ⇢1]+ is a direct
consequence of Lemma 1 and Lemma 2.

Thus, we only need to prove the bounds for [⇢1 � ⇢⇤]+ and [⇢⇤ � ⇢1]+. The key is that the basic
inequality always holds:
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where (a) follows from Equation (38), and (b) follows from taking � = 1 in Equation (45) of Section
C.7.
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Let x =
�
4bT
mT

�1/
. Obviously for T sufficiently large, there exists some "0 2 (0, 1/2) such that

x >
⇣

2(⇢⇤+x)bT
(1�")mT

⌘1/
is satisfied. Then we have

P
 
⇢1 > ⇢⇤ +

✓
4bT
mT

◆1/
!

! 0.

Then, we have for any x > 0,

P (⇢1 > ⇢⇤ + x)

=P
⇣
(⇢1 � ⇢⇤) bT � TD(⇢1) + T 1/2L1(⇢1)� L0(⇢

⇤), ⇢1 > ⇢⇤ + x
⌘

=P
⇣
L1(⇢1)� T�1/2L0(⇢

⇤)  T�1/2(⇢1 � ⇢⇤)bT � T 1/2
D(⇢1), ⇢1 > ⇢⇤ + x,

⇢1 < ⇢⇤ + (4bT /(mT ))1/
⌘
+ P

⇣
⇢1 � ⇢⇤ + (4bT /(mT ))1/

⌘

P
⇣
L1(⇢1)� T�1/2L0(⇢

⇤)  (4bT /(mT ))1/ T�1/2bT � T 1/2
D(⇢1), ⇢1 > ⇢⇤ + x

⌘
+ o(1)

=P
 
L1(⇢1)� T�1/2L0(⇢⇤)p

D(⇢1)
 T 1/2

"
Cp

D(⇢1)

✓
bT
T

◆1/+1

�

p
D(⇢1)

#
, ⇢1 > ⇢⇤ + x

!
+ o(1).

Let

x =

✓
bT

mT log bT

◆1/

.

From Assumption 4, we have for all ⇢1 > ⇢⇤ + x and T sufficiently large,
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and thus,
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Underestimation. On the other hand, from Markov Inequality, notice L0 > 0, we have

P (⇢⇤ � ⇢1 > x)  P (xbT < (⇢⇤ � ⇢1) bT  �L0(⇢1) + L0(⇢
⇤))

 P (xbT < L0(⇢1) + L0(⇢
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
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=
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Thus,
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C.10 Proof of Theorem B.3

Upper Bound for Delay. Recall that

E [⇢1 � ⇢0]+ = E [V2 � V1]+  EV2,

From Lemma 2, we know that when T is sufficiently large,
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where  and m depends on the actual change.

Lower Bound for Delay. Using Jensen’s Inequality, we have

E [⇢1 � ⇢0]+ = E [V2 � V1]+ � [EV2 � EV1]+ .

When bT > �1 log T
2 , Lemma 1 implies EV1 = o

⇣�
bT
T

�1/⌘
. Combined with Lemma 2, we have

E [⇢1 � ⇢0]+ � [EV2 � EV1]+ �
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⇢0bT
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+ o
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C.11 Proof of Corollary B.1

Proof. In mixture setting where Equation (21) holds, we have

 = 4, m =
kµ0 � µ1k

2

4(⇢1 � ⇢0)2
.

In the abrupt case, we have

 = 2, m =
kµ0 � µ1k

2

2
.

Thus, we can directly obtain Corollary B.1 by plugging the value of  and m into Theorem B.3.

D Experimental Details and Additional Results

Baseline setup. For Zw, we construct the binary graph using the 5-MST as suggested by Chu et al.
(2019) and after construction, it is implemented by the R package gSeg (Chen et al., 2014). For
⇢̂mix, we use the Cramer-von Mises measure �CvM defined in Section 5.1 of Quessy (2019) because
empirical studies in Quessy (2019) shows that �CvM slightly outperforms the other two measures it
proposed.

For Zw and Q, we need to choose a distance measure d (which generalizes the Euclidean distance
used in Matteson and James (2014)). For KCpA and the proposed estimator ⇢̂, ⇢̌, we need to choose
a kernel k. For Vogt and Dette (2015), we need to choose a function class F . The choice of d,
k, F have critical influence on the performance of estimators. For fairness, we set them to be as
similar to each other as possible. In location model, we set F = {f : x 7! xi, 8i = 1, · · · , d}, and
d(yi, yj) = kyi�yjk2 with k ·k being Euclidean distance, and k(yi, yj) = y>i yj . In volatility model,
we set F = {f : x 7! x2

}, and d(yi, yj) = (y2i � y2j )
2, and k(yi, yj) = y2i y

2
j . In network model,

we set F = {f : x 7! xij , 8i, j = 1, · · · , 10}, d(yi, yj) = kyi � yjk2F with k · kF being Frobenius
norm, and k(yi, yj) = vec(yi)>vec(yj) with vec(x) being a vectorized version of x.

Power comparison. Notice that ⇢̂poly, ⇢̂one-sided, ⇢̂gen do not consider detection, and ⇢̂mix is computa-
tionally expensive with 500 permutations, and are thus excluded from power comparisons.

With the data generating process described in the main paper, most methods have an empirical power
equal to 1, which makes the comparison of power not so informative. Thus, we focus on a more
challenging setting with a modified data generating scheme. For location model (2), we include
univariate cases with "t ⇠ N(0, 1) and µ1, µ2, µ3, µ4 defined in the main paper replaced by 0.3µ1,
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Table 2: Comparison of empirical power averaged over 20 simulations. Numbers after ± is the standard
deviation of the empirical power p̂ calculated via p̂(1� p̂)/

p
20.

MODEL LOCATION VOLATILITY NETWORK

DIM 1 1 1 1 10 20 50 1 1 102

CHANGE LINEAR QUADRATIC ONE-SIDED COMPLEX LINEAR LINEAR LINEAR LINEAR COMPLEX LINEAR

⇢̌, ⇢̂ 0.85±0.03 0.90±0.02 0.60±0.05 0.70±0.05 0.65±0.05 0.20±0.04 0.85±0.03 0.60±0.05 0.70±0.05 0.65±0.05

Q 0.75±0.04 0.90±0.02 0.55±0.06 0.65±0.05 0.45±0.06 0.10±0.02 0.55±0.06 0.45±0.06 0.70±0.05 0.60±0.05
KCPA 0.75±0.04 0.90±0.02 0.55±0.06 0.65±0.05 0.45±0.06 0.20±0.04 0.45±0.06 0.45±0.06 0.70±0.05 0.35±0.05
Zw 0.15±0.03 0.10±0.02 0.20±0.04 0.05±0.01 0.15±0.03 0.10±0.02 0.00±0.00 0.00±0.00 0.00±0.00 0.05±0.01

Table 3: Type I error of proposed method estimated using Equation (10) averaged over 100 simulations, and
under significance level ↵ = 0.05.

DIMENSION 1 5 10 20 50

TYPE I ERROR 0.06 0.06 0.09 0.34 0.91

0.3µ2, 0.2µ3, and 0.1µ4. For multivariate Yt,T 2 Rd where "t ⇠ Nd(0, Id): we replace µ1 by 0.1µ1

for d = 10 and 0.07µ1 for d = 20, 50. For volatility model (3), we replace �1 = µ1+1,�4 = µ4+1
by �1 = 0.17µ1 + 1 and �4 = 0.08µ4 + 1. For network model, we change the original p(u) into
p(u) = 0.05I(1/3  u  2/3)(3u� 1) + 0.05I(u � 2/3) + 0.1 with the other settings unchanged.

Results on power comparison are summarized in Table 2. We observe that power of the proposed
method is slightly higher than that of Q and KCpA. All three of them (the proposed method, Q
and KCpA) perform significantly better than Zw, which is as expected because Zw uses the binary
similarity graph to contruct statistics and is less informative than the other three.

Type I error (calibration). We evaluate the calibration of p-values using Equation (10). We
generate multivariate normal random vectors from N(0, Ip) where p is the dimension. And we
choose d as squared Euclidean distance. Results are summarized in Table 3. We observe that for low
dimensions p  10, the estimated type I error is close to significance level ↵ = 0.05; as dimension p
grows, however, p-value yielded from (10) severely under-estimates the true type I error. The root
reason is that in our setting, as p grows, the multiplicity q of leading eigenvalue grows, and the error
in the estimated leading eigenvalue also increases dramatically. Thus, under cases where q might be
large, we suggest using permutation tests instead to estimate p-value.

String data. One advantage of the proposed kernel-based method is its ability to handle structured
data. Thus, here we look into its performance on string data. We generate data in this way: each Yt,T is
a length-3 string with each character in string randomly sampled from some set with replacement. For
⇢⇤  1/3, this set is {“a”, “b”, “c”}, and we denote the distribution of strings generated in this way
by F0; for ⇢⇤ � 2/3, this set is {“A”, “B”, “C”}, and similarly we define F1; for ⇢ 2 (1/3, 2/3),
each string is generated from a mixture of F0 and F1: (2� 3⇢)F0 + (3⇢� 1)F1. Here we compare
against KCpA and we set kernel to be k(y, y0) = exp{�ky � y0k2/h} where k · k denotes the edit
(Levenshtein) distance (Levenshtein et al., 1966) between two strings. Again the bandwidth h is
tuned among {0.01, 0.05, 0.1, 1, 5, 10, 20, 50, 100, 500}. The results are shown in the last column of
Table 4. We observe that again ⇢̂, ⇢̌ are performing better than KCpA.

Table 4: Comparison of localization error averaged over 20 testing sets. Numbers after ± is the standard
deviation of localization error. The choice of bandwidth h for both methods are tuned on 20 independently
generated tuning sets.

METHOD l1 ERROR

⇢̂ 0.08±0.01

⇢̌ 0.09±0.01

KCPA 0.16±0.01
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E More Related Work

Trend filtering. Trend filtering was recently proposed by Kim et al. (2009) for nonparametric
regression, and has been developed by Tibshirani (2014); Wang et al. (2015); Ramdas and Tibshirani
(2016); Sadhanala and Tibshirani (2017); Moghtaderi et al. (2013). The goal of trend filtering is to
estimate the trend of a time series while penalizing for changes in the absolute k-th order discrete
derivatives over the input points. We note that it is a related, but different problem from what we
consider in this work. One difference is that, in our setting, we deal with data with no trend, while
trend filtering aims to estimate the trend as well as the changes in the trend. Another difference is
that trend filtering was originally designed for scalar type of observations, and extension for other
type of observations has to be developed case-by-case. In contrast, our framework naturally allows
general types of observations.
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