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ABSTRACT

Samples of brain signals collected by EEG sensors have inherent anti-correlations
that are well modeled by negative edges in a finite graph. To differentiate epilepsy
patients from healthy subjects using collected EEG signals, we build lightweight
and interpretable transformer-like neural nets by unrolling a spectral denoising
algorithm for signals on a balanced signed graph—graph with no cycles of odd
number of negative edges. A balanced signed graph has well-defined frequencies
that map to a corresponding positive graph via similarity transform of the graph
Laplacian matrices. We implement an ideal low-pass filter efficiently on the mapped
positive graph via Lanczos approximation, where the optimal cutoff frequency is
learned from data. Given that two balanced signed graph denoisers learn posterior
probabilities of two different signal classes during training, we evaluate their
reconstruction errors for binary classification of EEG signals. Experiments show
that our method achieves classification performance comparable to representative
deep learning schemes, while employing dramatically fewer parameters.

1 INTRODUCTION

We study the problem of classifying EEG brain signals from epilepsy patients and healthy subjects.
Compared to classical model-based methods, such as k-Nearest Neighbors with dynamic time warping
features (Tasci et al., 2023) and feature extraction from time–frequency maps (Shen et al., 2024),
deep-learning (DL) models, such as CNN-based Shen et al. (2024), Bhandage et al. (2024) and Dicsli
et al. (2025) and more recent transformer-based Lih et al. (2023), have achieved state-of-the-art
(SOTA) results (e.g., up to the 90% range). However, the transformer model consumes an enormous
number of parameters and functions as an uninterpretable black box. Thus, parameter reduction and
interpretation of learning models is crucial towards practical implementation on resource-constrained
EEG devices.

An alternative paradigm for data learning is algorithm unrolling (Monga et al., 2021): first design an
iterative optimization algorithm minimizing a mathematically-defined objective, then “unroll” each
iteration into a neural layer, and stack them back-to-back to compose a feed-forward network for data-
driven parameter learning. Notably, Yu et al. (2023) recently unrolls an algorithm minimizing a sparse
rate-reduction (SRR) objective into a transformer-like neural net—called “white-box transformer”—
that achieves comparable performance as SOTA in image classification, while remaining 100%
mathematical interpretable1.

Inspired by Yu et al. (2023), for the EEG signal classification problem we also build transformers
via algorithm unrolling, but from a unique graph signal processing (GSP) perspective (Ortega et al.,
2018; Cheung et al., 2018). GSP studies mathematical tools such as transforms, wavelets, and filters
for discrete signals residing on irregular data kernels described by graphs. Recently, Thuc et al. (2024)
shows that a graph learning module with edge weight normalization plays the role of self-attention
(Bahdanau et al., 2014), and thus unrolling a graph algorithm with graph learning modules inserted
yields a transformer-like neural net. However, Thuc et al. (2024) focuses solely on positive graphs
that model simple pairwise positive correlations among neighboring pixels in a static image.

1Common in algorithm unrolling (Monga et al., 2021), “interpretability” here means that each neural layer
corresponds to an iteration of an optimization algorithm minimizing a mathematically-defined objective.
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For EEG signals, collected samples often exhibit pairwise anti-correlations, which are effectively
modeled by negative edges. Though frequencies for general signed graphs (with both positive and
negative edges) are not well understood, Dinesh et al. (2025) shows that in the special case of
balanced signed graphs—with no cycles of odd number of negative edges—frequencies can be
rigorously defined: the Laplacian matrix LB of a balanced signed graph GB is a similarity transform
of the Laplacian L+ of a corresponding positive graph G+ (hence they share the same eigenvalues),
and the spectra of positive graphs are well understood and utilized in GSP (Ortega et al., 2018). Thus,
widely studied filters for positive graphs (Onuki et al., 2016; Shuman, 2020) can be readily reused for
signals on balanced signed graphs (Yokota et al., 2025).

We leverage this fact to build EEG signal denoisers Ψ(·) as a pretext task2 for later binary classifica-
tion. Specifically, we first learn a balanced signed graph GB from EEG data; graph balance is ensured
during signed edge weight assignment via a novel interpretation of the Cartwright-Harary’s Theorem
(CHT) (Harary, 1953). Next, we construct an ideal low-pass (LP) filter—parameterized by the lone
cutoff frequency ω—for the corresponding positive graph G+ to minimize a denoising objective. The
ideal LP filter is efficiently implemented via Lanczos approximation (Susnjara et al., 2015), which
we unroll into a filter sub-network. The pair of LP filter / graph learning module is repeated to build a
feed-forward network for sparse parameter learning (Thuc et al., 2024; Cai et al., 2025).

Having learned two denoisers Ψ0(·) and Ψ1(·) trained on signals from two different classes 0
(healthy subjects) and 1 (epilepsy patients)—thus capturing their respective posterior probabilities—
we use their reconstruction errors on an input signal for binary classification. Experiments show that
our classification method based on trained balanced signed graph denoisers achieves comparable
performance as SOTA DL schemes, while employing drastically fewer parameters.

Summarizing, our key contributions are as follows:

1. Extending Thuc et al. (2024) that focuses on positive graphs, we unroll a denoising algorithm
for signals on balanced signed graphs with well-defined frequencies—learned directly from
data via feature distance learning—into a lightweight transformer-like neural net.

2. We implement an ideal LP filter on the positive graph G+ corresponding to each learned
balanced signed graph GB (Dinesh et al., 2025) without eigen-decomposition in linear time
via Lanczos approximation (Susnjara et al., 2015), where only the filter cutoff frequency ω
requires tuning from data.

3. We train two class-specific denoisers to learn two different posterior probabilities as a pretext
task, then determine class assignment based on their reconstruction errors. This approach
bridges generative modeling and discriminative classification in a novel manner—both the
algorithm-unrolled denoisers and the classification decision are easily interpretable.

4. Compared to SOTA DL methods, we achieve competitive classification performance on EEG
signals distinguishing epilepsy patients from healthy subjects, while using significantly fewer
parameters (e.g., our scheme achieves 97.6% classification accuracy to transformer-based
model (Lih et al., 2023)’s 85.1%, while employing fewer than 1% of the parameters).

2 PRELIMINARIES

2.1 GRAPH SIGNAL PROCESSING DEFINITIONS

A graph G(N , E ,W) is defined by a node set N = {1, . . . , N}, an edge set E , and an adjacency
matrix W ∈ RN×N , where Wi,j = wi,j is the weight of edge (i, j) ∈ E if it exists, and Wi,j = 0
otherwise. In this work, we assume that each edge weight wi,j can be positive or negative to denote
positive / negative correlations; G with both positive and negative edges is a signed graph. We assume
also that edges are bidirectional, and thus wi,j = wj,i and W is symmetric. A combinatorial graph
Laplacian is defined as L ≜ D−W = diag(W1)−W. To account for self-loops, i.e., ∃i,Wi,i ̸= 0,
a generalized graph Laplacian is typically used: L ≜ D−W + diag(W) (Ortega et al., 2018). We
use these Laplacian definitions for both positive and signed graphs.

2See Appendix A for related works.
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Figure 1: Example of a balanced signed graph GB in (a) and its corresponding positive graph G+
in (b). Red and blue nodes in GB denote polarities −1 and 1, respectively. Positive graph can be
extended to incorporate the time dimension via a product graph GP in (c) with temporal edges (red).

2.2 GRAPH LAPLACIAN REGULARIZER

To quantify variation of a signal x over a graph kernel G, the graph Laplacian regularizer (GLR)
Pang & Cheung (2017) is commonly used, defined using combinatorial Laplacian L as

x⊤Lx =
∑

(i,j)∈E

wi,j(xi − xj)
2. (1)

From eq. (1), one can see that x⊤Lx ≥ 0,∀x (L is positive semi-definite (PSD)) if L specifies a
positive graph G+, i.e., wi,j ≥ 0,∀i, j.

2.3 BALANCED SIGNED GRAPHS

A balanced signed graph, denoted by GB , is a graph with no cycle of odd number of negative edges.
An equivalent definition of graph balance is through node polarities. Each node i ∈ V is first assigned
a polarity βi ∈ {1,−1}. By the Cartwright-Harary’s Theorem (CHT) (Harary, 1953), a signed graph
is balanced iff positive/negative edges always connect node-pairs of the same/opposite polarities. In
mathematical terms, a signed graph G is balanced if

βiβj = sign(wi,j), ∀(i, j) ∈ E . (2)

Recently, Dinesh et al. (2025) proved that there exists a simple similarity transform from the
(generalized) graph Laplacian LB of a balanced signed graph GB to a graph Laplacian L+ of
a corresponding positive graph G+, i.e.,

L+ = TLBT−1, (3)

where T = diag(β) is a diagonal matrix with diagonal entries equal to node polarities β =
[β1, . . . , βN ] in GB . Thus, LB and L+ share the same eigenvalues, while LB’s eigenvectors VB =
TV+ are a linear transform of L+’s eigenvectors V+. As an example, consider the 3-node balanced
signed graph GB in Fig. 1 (a) and its corresponding positive graph G+ in (b). GB is balanced since
positive/negative edges connect node-pairs of same/opposite polarities. The balanced signed graph
Laplacian LB and the corresponding positive graph Laplacian L+ are

LB =

[
2 1 1
1 3 −2
1 −2 3

]
, L+ =

[
2 −1 −1
−1 3 −2
−1 −2 3

]
, (4)

where T = diag([−1 1 1]). Given that the graph frequencies of positive graphs are well established3

(Ortega et al., 2018), the graph frequencies of balanced signed graphs are also rigorously defined.

3 BALANCED SIGNED GRAPH CONSTRUCTION & SIGNAL DENOISING

We first discuss construction of a balanced signed graph GB in Section 3.1, which is mapped to a
positive graph G+ via similarity transform of Laplacian matrices. We describe a denoiser Ψ(·) for
signals on G+ based on LP filtering in Section 3.2. Finally, we discuss how Lanczos approximation
is used to efficiently implement a LP filter in linear time.

3Specifically, eigenvectors of a positive graph Laplacian for increasing eigenvalues have non-decreasing
numbers of nodal domains that quantify signal variation across the graph kernel (Davies et al., 2000), and hence
can be rightfully interpreted as frequency components (Fourier modes). See Dinesh et al. (2025) for details.
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3.1 BALANCED SIGNED GRAPH CONSTRUCTION

Polarity Selection: We construct a balanced signed graph GB to connect nodes representing EEG
sensors in an electrode array of size N . Typically, collected data at a sensor i ∈ V is a time-series
signal xi[n], n ∈ Z+. We divide it into H chunks of duration D each, and consecutive chunks of the
same sensor are connected in time using positive edges in a product graph GP of N ×H nodes, as
shown in Fig. 1(c). For simplicity, we assume a single chunk in the sequel, focusing on GB .

To ensure balance in GB , we first initialize polarity βi for each node i as follows. Given an empirical
covariance matrix C̄ ∈ RN×N computed from collected EEG data, we select one row i and initialize
node i’s polarity βi ← 1. Then, for each j, j ̸= i, we initialize βj ← sign(C̄i,j), i.e., node j has the
same polarity as node i if C̄i,j > 0 (positively correlated), and opposite polarity otherwise.

At each subsequent graph learning module (see Section 4.1), polarities βi’s are updated. Given a set
of computed edge weights {wi,j}, for each node i, we first assume a polarity βi ← {1,−1} and flip
signs of {wi,j}j ̸=i so that the graph balance condition eq. (2) is satisfied, resulting in balanced signed
graph Laplacian LB(βi). Using a set of training signals {xq}Qq=1,x

q ∈ RN , we select polarity β∗
i

for node i with the smaller GLR term eq. (1):

β∗
i = arg min

βi∈{1,−1}

Q∑
q=1

(xq)⊤LB(βi)x
q. (5)

In words, eq. (5) chooses polarity β∗
i that results in a graph GB more consistent with smooth dataset

{xq}Qq=1, similar in concept as previous works that learn graph Laplacians from assumed smooth
signals (Dong et al., 2016; Kalofolias, 2016; Dong et al., 2019).

We update each node i’s polarity and corresponding edge weight signs in turn until convergence.

Feature Distance: Given polarities {βi}, we compute signed edge weights {wi,j}. For each node
i, we assume that a feature function F : RE 7→ RK (to be detailed in Section 4.1) computes a
low-dimensional representative feature vector fi = F (ei), fi ∈ RK , from input embedding ei ∈ RE ,
where K ≪ E. Given fi’s, the Mahalanobis distance between nodes i and j is computed as

di,j = (fi − fj)
⊤M(fi − fj), (6)

where M ∈ RK×K is a PSD metric matrix, so that di,j ≥ 0,∀fi, fj (Yang et al., 2022).

For each edge (i, j) ∈ E , we compute signed edge weight wi,j as

wi,j =

{
exp(−di,j) if βi = βj

exp(−di,j)− 1 o.w. . (7)

We see that wi,j ≥ 0 (wi,j ≤ 0) if nodes i and j have the same (opposite) polarities; thus, by eq. (2),
eq. (7) ensures the constructed signed graph GB is balanced. In either case, larger feature distance
di,j means smaller edge weight wi,j . Note that we are the first to map non-negative learned feature
distances di,j’s to signed edge weights wi,j’s of a balanced signed graph.

Normalization: We perform the following normalization for weight wi,j of each edge (i, j) ∈ E :

w̄i,j =
wi,j√∑

l | (i,l)∈E |wi,l|
√∑

k | (k,j)∈E |wk,j |
=

βiβj exp(−di,j)√∑
l | (i,l)∈E exp(−di,l)

√∑
k | (k,j)∈E exp(−dk,j)

.

(8)

The resulting adjacency matrix W̄B eq. (8) is a symmetric normalized variant of WB .

PSDness: Combinatorial graph Laplacian4 L̄B = D̄B − W̄B may not be PSD due to the presence
of negative edges. To ensure PSDness, we leverage the Gershgorin Circle Theorem (GCT) (Varga,
2004) and add a self-loop of weight w̄i,i = δ to each node i, where δ is computed as

λ−
min = min

i
L̄B
i,i −

∑
j|j ̸=i

|L̄B
i,j |, δ = max

(
−λ−

min, 0
)
. (9)

4A signed graph Laplacian Ls ≜ Ds−W̄B , where Ds
i,i =

∑
j |W̄

B
i,j |, guaranteed to be PSD can be defined

instead (Dittrich & Matz, 2020), but a corresponding LP filter would promote negative linear dependence rather
than repulsions for negative edges during signal reconstruction. See Appendix C for details.
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λ−
min in eq. (9) is a lower bound of the smallest eigenvalue λmin of L̄B by GCT: each eigenvalue λ of

a symmetric real matrix P must reside inside at least one Gershgorin disc i with center ci = Pi,i and
radius ri =

∑
j|j ̸=i |Pi,j |, i.e., ∃i such that ci − ri ≤ λ ≤ ci + ri. A corollary is that the smallest

Gershgorin disc left-end—λ−
min in eq. (9)—is a lower bound for λmin. Thus, eq. (9) implies that the

eigenvalues of L̄B are shifted up by δ via LB = L̄B + δI to ensure LB is PSD if λ−
min < 0. Note

that LB = L̄B + δI and L̄B share the same eigenvectors, and thus the self-loop additions do not
affect the spectral content of L̄B .

3.2 GRAPH SIGNAL DENOISING

We construct a signal denoiser, given an underlying balanced signed graph GB specified by graph
Laplacian LB . To process signals on a more preferable positive graph G+, we first perform similarity
transform to its corresponding positive graph Laplacian via L+ = TLBT−1 in eq. (3), where
T = diag(β). We employ the graph spectrum of L+ for ideal LP filtering. Each target signal yB on
GB to be denoised is also pre-processed to y+ = TyB as a signal on G+.

Denote by Sω(L+) the low-frequency subspace spanned by the first ω eigenvectors (frequency
components) Vω = [v1;v2; . . . ;vω] ∈ RN×ω of L+ corresponding to the ω smallest eigenvalues.
To denoise observation y+ ∈ RN , we seek a signal x ∈ RN in Sω(L+) closest to y+ in ℓ2-norm5:

min
x∈Sω(L+)

∥y+ − x∥22. (10)

Denote by z ∈ Rω the ω GFT coefficients of x, i.e., x = Vωz. The optimal solution z∗ to eq. (10) is

z∗ = (V⊤
ωVω)

−1V⊤
ω y

+ (a)
= V⊤

ω y
+ (11)

x∗ = Vωz
∗ = VωV

⊤
ω y

+ = Vgω(Λ)V⊤︸ ︷︷ ︸
gω(L+)

y+ (12)

where (a) is true since columns of V are orthonormal by the Spectral Theorem (Hawkins, 1975).
gω(L+) = Vgω(Λ)V⊤ is an ideal LP filter, and gω(Λ) = diag([gω(λ1), . . . , gω(λN )]) has fre-
quency response gω(λi) defined as

gω(λi) =

{
1 if i ≤ ω
0 o.w. . (13)

Solution x∗ in eq. (12) is an orthogonal projection of input y+ onto Sω(L+). Computing x∗ in
eq. (12) requires computation of the first ω eigenvectors Vω of L+ with complexity O(N3) for
ω ≈ N .

Lanczos Low-pass Filter Approximation

Instead of an ideal LP filter in eq. (31), we approximate it via Lanczos approximation in complexity
O(N) (Susnjara et al., 2015). In a nutshell, instead of eigen-decomposing a large matrix L+

m ∈
RN×N , via the Lanczos method we operate on a much smaller tri-diagonal matrix Hm ∈ Rm×m,
where m≪ N is the dimension of the approximating Krylov space. We eigen-decompose Hm =
Zmg(Λm)Z⊤

m, where gξ(λi) is the approximate LP frequency response for cutoff frequency ξ =
round(ωm

N ), which we tune from data after unrolling. See Appendix B for details.

4 ALGORITHM UNROLLING

We implement the graph-based denoising procedure in eq. (12) and a graph learning module re-
peatedly; after a solution x∗ is obtained, representative features {fi} are updated (see Section 4.1),
resulting in new feature distances {di,j} via eq. (6), new signed edge weights {wi,j} via eq. (7), and
new balanced signed graph Laplacian LB and positive graph Laplacian L+ via similarity transform
eq. (3). The concept of iteratively filtering signals, with filter weights updated based on computed
signals, is analogous to bilateral filter (BF) in image denoising (Tomasi & Manduchi, 1998).

5An alternative is a maximum a posteriori (MAP) denoising formulation using GLR as a signal prior (Pang
& Cheung, 2017; Zeng et al., 2020; Dinesh et al., 2020), i.e., minx ∥y+ − x∥22 + µx⊤LBx. However, Bai
et al. (2020) shows that the MAP problem—called the E-optimality criterion in optimal design—minimizes the
worst-case signal reconstruction, while eq. (10) is the A-optimality criterion that minimizes the average case.

5
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Figure 2: Unrolled Graph Signal Denoising Network. Low-pass filter (LPF) computing a solution x∗

via eq. (12) is interleaved with a balanced graph learning (BGL) module that updates balanced signed
graph Laplacian LB , then transforms to L+ via eq. (3). Θt and Ψt are learned parameters.

4.1 GRAPH LEARNING MODULE

We unroll this repeated combo of low-pass filter / graph learning module into neural layers to compose
a feed-forward network for data-driven parameter learning via back-propagation; see Fig. 2 for an
illustration. The key to our unrolled neural net is the periodic insertion of a graph learning module
BGL that updates Laplacian L+ for the next LP filter module LPF. Specifically, to compute feature
vector fi ∈ RK for each node i, we define input embedding ei ∈ RE as recovered time series signal
at node i, and implement a shallow CNN to compute fi = CNN(ei), where K ≪ E. Metric matrix
M ∈ RK×K in eq. (6) is also optimally tuned. Together, the CNN parameters and M are the learned
parameters Ψτ for an unrolled block BGLτ . On the other hand, the optimal cutoff frequency ω for the
low-pass filter is learned per block, which constitutes parameters Θτ for LPFτ .

4.2 SELF-ATTENTION MECHANISM

We review the classical self-attention mechanism in transformers (Vaswani et al., 2017). First, given
input embedding xi ∈ RE for token i, affinity ei,j between tokens i and j is computed as the scaled
product of Kxi and Qxj , where K,Q ∈ RE×E are the key and query matrices, respectively. Using
ei,j , non-negative and normalized attention weights ai,j’s are computed using the softmax operator:

ai,j =
exp(ei,j)∑
k exp(ei,k)

, ei,j = (Qxj)
⊤(Kxi). (14)

Finally, output embedding yi is computed as the sum of attention-weighted input embeddings
multiplied by the value matrix V ∈ RE×E :

yi =
∑
j

ai,jxiV. (15)

A transformer concatenates self-attention operations both in series and in parallel (called multi-head).

Remark: Comparing eq. (14) to the right-hand side of eq. (8), we see that by interpreting negative dis-
tance −di,j as affinity ei,j , normalized edge weights w̄i,j are essentially attention weights ai,j . Thus,
a graph learning module with normalized edge weights is a form of self-attention. In implementation,
instead of learning dense and large key and query matrices K and Q, for normalized edge weights
{w̄i,j} we learn only parameters for a shallow CNN to compute features {fi} and low-dimensional
metric matrix M. Further, instead of learning dense and large value matrix V, we learn a single cutoff
frequency ω of an ideal LP filter per block. Thus, our graph-based implementation of self-attention
yields large parameter savings compared to the classical self-attention mechanism.

5 USING GRAPH-BASED DENOISERS FOR CLASSIFICATION

By training two class-conditioned denoisers, Ψ0(·) and Ψ1(·), using a squared error loss function
on signal classes corresponding to healthy subjects and epilepsy patients, we are training them to
compute the posterior mean of their respective classes (though the networks are MAP-inspired); i.e.,
given noisy signal y and known class c, they compute

Ψ0(y) ≈ E[x | y, c = 0], Ψ1(y) ≈ E[x | y, c = 1]. (16)

To accomplish eq. (16), the two denoisers must learn implicitly the posterior probabilities of the two
classes. By the Bayes Theorem, the posterior probability Pr(x|y, c) of signal x given observation y

6
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is proportional to the product of likelihood Pr(y|x, c) times prior Pr(x|c):

Pr(x|y, c) ∝ Pr(y|x, c)Pr(x|c). (17)

Assuming zero-mean additive white Gaussian noise (AWGN) with variance σ2
n, the likelihood is

Pr(y|x, c) = 1

(2πσ2
n)

N/2
exp

(
−∥y − x∥22

2σ2
n

)
. (18)

Given our assumption that signal x resides in low-frequency subspace Sω(L+), the prior is

Pr(x|c) =
{

1 if x ∈ Sω(L+)
0 o.w. . (19)

Thus, given cutoff frequency ω, the signal x that maximizes the posterior Pr(x|y, c) is the signal x∗

in Sω(L+) closest in Euclidean distance to y (so that Pr(x|c) > 0 and Pr(y|x, c) is maximized):

x∗ = arg min
x∈Sω(L+)

∥y − x∥22, (20)

i.e., the orthogonal projection of y onto Sω(L+) in eq. (12).

Conversely, during supervised training of a denoiser Ψc(·), given training pairs {(yc,i,xc,i)} of
class c, parameter set Φ (CNN parameters and cutoff frequency ω) is tuned to minimize the sum of
distances between ground truths xc,i and projections gω(L+)yi of inputs yc,i onto Sω(L+):

min
Φ

∑
i

∥xc,i − gω(L+)yc,i∥22. (21)

Thus, learning of parameter set Φ at different layers in our unrolled network to minimize eq. (21)
amounts to learning of posterior Pr(x|y, c). (Note that noisy signals yi’s with non-negligible noise
variance σ2

n are necessary; a noiseless signal yi = xi means that setting ω ← N—resulting in an
all-pass filter—would yield zero error in eq. (21), and thus no learning of posterior Pr(x|y, c).)
Once the two denoisers are trained, we compute the following given input signal y to determine y’s
class membership:

c∗ = arg min
c∈{0,1}

∥y −Ψc(y)∥22. (22)

The reason is as follows: given that denoiser Ψc(y) computes the posterior mean E[x | y, c] which
is the minimum mean square error (MMSE) estimator, if y truly belongs to class c, its error must be
small. Hence, classification by reconstruction errors6 in eq. (22) is sensible.

Modified Training Objective: To encourage discrimination of the two classes, we adopt a new loss
function during denoiser training. We first identify pairs of signals (x0,i,x1,i) from the two classes
that are close in Euclidean distance (and thus difficult to differentiate). We then train denoiser Ψ0(·)
for class 0 with the following contrastive loss function (similar training procedure for Ψ1(·)):∑

i

∥x0,i −Ψ0(y0,i)∥22 +max
(
ρ− ∥x1,i −Ψ0(y1,i)∥22, 0

)
, (23)

where ρ > 0 is a parameter, and yc,i is a noisy version of xc,i. Doing so means that Ψ0(·) captures
signal statistics for class 0 that are sufficiently different from class 1.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and settings. We evaluate our model on the Turkish Epilepsy EEG Dataset (Tasci et al.,
2023), which is currently the largest publicly available dataset focused on epileptic seizures. The
dataset comprises 10,356 EEG recordings collected from 121 participants, including 50 patients
diagnosed with generalized epilepsy and 71 healthy controls. Each recording contains 35 channels of

6It is also the maximum likelihood estimate (MLE). See Appendix D for explanation.
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EEG signals sampled at 500 Hz for a duration of 15 seconds. To mitigate artifacts typically observed
at the beginning and end of recordings, we discard the first 2 seconds and the last 1 second.

As the default classification task setting, we follow Tasci et al. (2023); Lih et al. (2023); Shen et al.
(2024); Bhandage et al. (2024); Dicsli et al. (2025) and divide the dataset into training, validation,
and test sets in a ratio of 8: 1: 1. To assess the model’s generalization across different subjects, we
also perform a leave-one-out-subject (LOSO) classification task. In this setting, data from one subject
is held out as the test set, while the remaining data is used for training and validation. The training
and validation sets are used for the denoising task, while the test set is reserved for classification.

For graph construction7, each remaining 6,000-point (12 second) sequence is segmented into 6
non-overlapping chunks, resulting in a temporal graph of length 6, where each node corresponds to a
1000-dimensional feature vector. We employ three stacked blocks, each consisting of a BGL module
with three convolutional layers followed by the LPF operation as shown in Figure 2. The term block
here refers to this BGL + LPF unit, which is consistently used in the subsequent ablation studies. All
models are trained on an NVIDIA GeForce RTX 3090.

Baseline methods. We compare the proposed method with several competitive baselines. Non-
graph-based methods include the k-Nearest Neighbors (kNN) classifier combined with Multivariate
Dynamic Time Warping (MDTW) (Tasci et al., 2023). The Transformer-based approach by Lih
et al. (2023) models temporal dependencies in EEG time series data for classification. Additionally,
Shen et al. (2024) employs Regularized O-minus tensor network decomposition (ROD) to derive
features from time-frequency (TF) maps of EEG signals. Convolutional Neural Networks (CNNs)
are used by Bhandage et al. (2024); Dicsli et al. (2025) to extract discriminative features from EEG
spectrograms, with the latter leveraging a deep CNN architecture. On the other hand, graph-based
methods include DGCNN (Song et al., 2018) and GIN (Zhang & Yao, 2021), which represent EEG
data as graphs to capture complex relationships between channels, while EEGNet (Lawhern et al.,
2018) and FBCSPNet (Schirrmeister et al., 2017) utilize graph-based techniques to enhance feature
extraction and classification performance.

6.2 EXPERIMENTAL RESULTS

6.2.1 MAIN RESULTS

Table 1 presents a detailed comparison of our method against several existing approaches, divided into
two main categories: non-graph-based methods in the default task setting and graph-based methods
in the leave-one-subject-out (LOSO) task setting.

Table 1: Comparison of performance of non-graph and graph-based methods.

Method Params # Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1-score
(%)

Non-graph-based Methods in Default Task Setting

MDTW + KNN (Tasci et al., 2023) - 87.78 89.39 81.32 92.68 85.16
TF + ROD (Shen et al., 2024) 18,400 88.08 89.22 82.28 92.46 85.61
CWT + DCNN (Dicsli et al., 2025) 143,297 95.91 94.55 96.98 96.06 95.30
Ours 14,787 97.57 98.58 95.98 97.45 98.01

Large model in Default Task Setting

Transformer (Lih et al., 2023) 1,849,771 85.12 82.00 82.00 87.32 82.00
STFT + CNN (Bhandage et al., 2024) 11,533,928 99.20 99.14 99.46 98.98 99.30

Graph-based Methods in LOSO Task Setting

DGCNN (Song et al., 2018) 149,466 76.74 69.56 62.74 84.60 65.97
GIN (Zhang & Yao, 2021) 25,794 68.82 58.78 44.36 82.55 50.56
EEGNet (Lawhern et al., 2018) 9,170 78.78 81.26 53.25 93.11 64.34
FBCSPNet (Schirrmeister et al., 2017) 98,242 81.76 92.80 53.40 97.67 67.79
Deep4Net (Schirrmeister et al., 2017) 321,227 78.62 73.06 64.20 86.72 68.34
Ours(LOSO) 14,787 90.06 93.48 86.10 91.70 92.59

7See Appendix E for detailed configuration.
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In the default task setting, which involves training and testing on the same dataset split, our model
outperforms most baselines in terms of accuracy, precision, specificity, and F1-score, achieving
97.57%, 98.58%, 97.45%, and 98.01% respectively, with only 14,787 parameters. This demonstrates
the efficiency and effectiveness of our method. While (Lih et al., 2023) based on STFT and CNN
achieves a higher accuracy of 99.20% and F1-score of 99.30%, it requires several orders of magnitude
more parameters (over 11.5 million), making it computationally expensive and memory-inefficient.

In addition to the default setting, we also evaluate our model under the more challenging LOSO
task setting, which tests the model’s ability to generalize across different subjects. Here, our model
demonstrates strong performance with 90.06% accuracy and 92.59% F1-score, outperforming other
graph-based methods such as DGCNN, GIN, and EEGNet. This shows that our model not only excels
in a controlled, single-subject setting but also generalizes well to unseen subjects, a crucial aspect
for real-world applications where the model needs to handle diverse and unknown data distributions.
In this setting, our model maintains a good balance between computational efficiency and high
generalization capability, outperforming many larger models such as Deep4Net and FBCSPNet.

6.2.2 ABLATION STUDIES

We evaluate the impact of graph type on classification performance by comparing the proposed
balanced signed graph with two alternatives: a positive graph and an unbalanced signed graph. The
positive graph assigns all edge weights as positive, disregarding pairwise anti-correlations in data,
while the unbalanced signed graph models pairwise anti-correlations using negative edges, but does
not ensure graph balance, and thus graph frequencies are ill-defined. See Appendix C for details. As
shown in Table 2, the balanced signed graph outperforms both alternatives, achieving an accuracy of
93.68% compared to 84.30% and 78.87% for the positive and unbalanced signed graphs, respectively.
This improvement highlights the importance of both signed edges and graph balance when modeling
EEG signals and implementing LP graph filters for denoising.

Table 2: Comparison of performance of different graph types on LOSO classification task.
Setting Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

Positive Graph 84.30 88.49 76.88 86.00 87.23
Unbalanced

Signed Graph 78.87 86.74 68.22 78.69 82.52

Balanced
Signed Graph 93.68 96.32 89.45 93.61 94.94

In addition to the primary experiments, we also conducted further studies to assess the robustness
and generalizability of our method. These include detailed ablation studies on the loss function,
model architecture, and signal feature distance computation (see Appendix F), validation on the TUH
Abnormal EEG Corpus Obeid & Picone (2016) dataset (see Appendix G), statistical significance tests
for both the default classification task and the LOSO task (see Appendix H), and a comparison of
training and inference times for graph-based baselines (see Appendix I).

7 CONCLUSION

To differentiate between EEG brain signals from epilepsy patients and those from healthy subjects,
we unroll iterations of a balanced signed graph algorithm that minimizes a signal denoising objective
into a lightweight and interpretable neural net. A balanced signed graph can capture pairwise anti-
correlations in data, while retaining the frequency notion for efficient spectral filtering. Via a signed
edge weight assignment that leverages the Cartwright-Harary Theorem, graph balance is ensured
when mapping from learned positive feature distances. Denoising is achieved via a sequence of
graph learning / ideal low-pass filtering modules, where the cutoff frequencies are learned from
data. We show that our graph learning module with normalization plays the role of self-attention,
and thus our graph-based denoisers are transformers. Using two denoisers trained to learn posterior
probabilities of two signal classes, our method achieves competitive binary classification as SOTA
deep learning models, while requiring far fewer parameters. One limitation is that our method is
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currently suitable only for binary classification. For future work, we consider an extension to build a
multi-class classification tree from graph-based denoisers.
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- APPENDIX -

LIGHTWEIGHT TRANSFORMER FOR EEG CLASSIFICATION VIA
BALANCED SIGNED GRAPH ALGORITHM UNROLLING

A RELATED WORK IN DENOISERS AS PRETEXT TASK

Given that a denoiser can learn compact representations from sufficient training data, there are
existing works that train denoisers as a pretext task for other downstream applications (Ho et al.,
2020; Wu et al., 2023; Clark & Jaini, 2023). Denoiser Diffusion Probabilistic Model (DDPM) (Ho
et al., 2020) employs a learned denoiser in a reverse path to gradually remove Gaussian noise from a
pure noise image, in order to generate a realistic image. Wu et al. (2023) employs a denoising masked
autoencoder to learn latent representations from Gaussian-noise-corrupted images, which can benefit
downstream tasks such as classification. Clark & Jaini (2023) shows that a denoiser-based diffusion
model can be repurposed for zero-shot classification. Our approach to binary EEG classification
differs in the following aspects. First, we train one class-specific denoiser Ψc(·) per class c, so that
the posterior probability distribution unique to that class is learned. Second, we use reconstruction
errors of the two trained denoisers operating on an input signal to determine its class assignment. In
so doing, we achieve model interpretability for both the denoising step and the classification step (the
denoiser is built by unrolling a graph-based denoising algorithm), while minimizing the number of
parameters used.

B LANCZOS LOW-PASS FILTER APPROXIMATION

Similarly done in Vu et al. (2021), we approximate a low-pass graph filter output g(L+)y+ via
Lanczos approximation (Susnjara et al., 2015) as follows. Denote by Um ∈ Rm×N , m < N ,
a matrix containing as columns m orthonormal basis vectors of a Krylov space Km(L+,y) =
span{y,L+y, . . . , (L+)m−1y}. Um can be computed using the Lanczos method in O(m |E|). Um

tri-diagonalizes L+ ∈ RN×N into HM ∈ Rm×m, i.e.,

Hm = U⊤
mL+Um =


α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βm

βm αm

 . (24)

We approximate a low-pass filter g(L+)y+ as

g(L+)y+ ≈ ∥y+∥2Umg(Hm)c1, (25)

where c1 is the first canonical vector. Eigen-decomposition g(Hm) = Zmg(Λm)Z⊤
m can be com-

puted in O(m2) for a tridiagonal, sparse and symmetric matrix, using a specialized algorithm such as
the divide-and-conquer eigenvalue algorithm (Cuppen, 1980). Assuming m≪ N and the number of
edges |E| is O(N), complexity of eq. (25) is O(N).

C USE OF CONVENTIONAL GRAPH LAPLACIAN VERSUS SIGNED GRAPH
LAPLACIAN

We show that the eigenvectors of the conventional graph Laplacian L ≜ D −W better capture
pairwise (dis)similarities (quantified by feature distance in equation 6) in our signed graph G for
LP signal reconstruction than the signed graph Laplacian Ls ≜ Ds −W, where Ds

i,i =
∑

j |Wi,j |
Dittrich & Matz (2020). Eigenvectors {vi} of L are successive norm-one vectors that minimize the
Rayleigh quotient:

vi = arg min
v |v⊥vj ,j<i

x⊤Lx =
∑

(i,j)∈E

wi,j(xi − xj)
2. (26)
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For wi,j < 0, minimizing x⊤Lx promotes repulsion, i.e., |xi − xj | should be large, and xi and xj

should be different / dissimilar.

In contrast, using the signed graph Laplacian Ls, the Rayleigh quotient is

x⊤Lsx =
∑

(i,j)∈E

|wi,j |(xi − sign(wi,j)xj)
2. (27)

If wi,j < 0, then |wi,j |(xi− sign(wi,j)xj)
2 = |wi,j |(xi +xj)

2. Thus, minimizing x⊤Lsx promotes
negative linear dependence, i.e., |xi + xj | should be small and xi ≈ −xj . While negative linear
dependence is a specific structured form of repulsion, they are not the same. In our case, given
that negative edge weights are encoding anti-correlations, anti-correlated samples i and j do not
imply xi ≈ −xj if they have non-zero means. Experimentally, we found that using the conventional
graph Laplacian L to define balanced signed graph frquencies outperforms using Ls in EEG signal
denoising and classification.

We demonstrate also the importance of signed graph edges as well as graph balance in modeling
EEG data with anti-correlations. A positive graph G+ with positive edges can have weights defined
as wi,j = exp(−di,j), given positive feature distance di,j in eq. (6). A general signed graph G can
define signed edge weight wi,j ∈ [−1, 1] using a shifted logistic function:

wi,j =
−2

1 + e−(di,j−d∗)
+ 1, (28)

where d∗ > 0 is a parameter. Like eq. (7), eq. (28) states that edge weight wi,j has smaller weight for
larger feature distance di,j but it does not guarantee graph balance. Using the signed graph Laplacian
definition Ls = Ds −W, one can then perform spectral low-pass filtering as done previously. We
show in Section 6 that both positive graph and unbalanced signed graph are inferior to balanced
signed graph in classification performance.

D JUSTIFICATION FOR THE RECONSTRUCTION ERROR METRIC

We provide an alternative explanation of why the reconstruction error criterion eq. (22) to determine
class assignment for an input signal y is reasonable. Given our assumed AWGN noise model eq. (18),
the signal x∗ that maximizes the likelihood term Pr(y | x, c) is the one between x∗

0 = Ψ0(y) and
x∗
1 = Ψ1(y) that minimizes the numerator of the exponential function, i.e.,

x∗ = arg min
x∗
c | c∈{0,1}

∥y − x∗
c∥22 = arg max

x∗
c | c∈{0,1}

Pr(y | x∗
c , c) (29)

which is the reconstruction error criterion. Thus, our class assignment based on reconstruction error
criterion equation 22 is also the maximum likelihood estimate (MLE).

E MODEL SETUP

This section provides a detailed description of our model architecture and experimental configuration.

E.1 GRAPH CONSTRUCTION SETUP

Since EEG signals are computed between pairs of electrodes, we model the basic spatial structure
using a line graph derived from an undirected primary graph Go = (N o, Eo), where each vertex
i ∈ N o corresponds to an EEG electrode and each edge (i, j) ∈ Eo represents a bipolar EEG channel
(i.e., a signal computed between two electrodes). The line graph G = (N , E) is then constructed
such that each node k ∈ N corresponds to an edge ek ∈ Eo in the original graph Go. Two nodes
k, l,∈ N in the line graph are connected by an edge (k, l) in E if and only if the corresponding edges
ek, el ∈ Eo in the original graph share a common vertex. Formally,

N = Eo, E = {(ei, ej) ∈ Eo × Eo | ei ∩ ej ̸= ∅} . (30)

This construction emphasizes the edge-centric structure of EEG signal representation, which naturally
aligns with the properties of bipolar recordings. To capture temporal dynamics, we segment the EEG
signal of length 6000 into 6 non-overlapping temporal windows, each of length 1000. A distinct line
graph is instantiated for each window, resulting in a temporal graph composed of 6 time-specific
subgraphs, effectively modeling time-evolving edge dependencies.

14
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E.2 BALANCED GRAPH LEARNING MODULES SETUP

Each Balanced Graph Learning (BGL) module is designed to extract local temporal features from
EEG edge signals using a lightweight convolutional architecture. Specifically, the module processes
edge-level input through a sequence of four convolutional blocks, each consisting of a 2D convolution
layer with kernel size (1, 5) and stride (1, 2) along the temporal dimension, followed by batch
normalization and a LeakyReLU activation with a negative slope of 0.01. This gradually compresses
the temporal length while preserving the spatial (node) dimension. A final 1× 1 convolution reduces
the channel dimension to one, and an adaptive average pooling layer projects the output to a fixed-size
feature map of shape (N, d), where N = 210 is the number of nodes (6 time slices × 35 EEG
channels) and d = 63 is the feature dimension per node.

To construct the graph structure within each BGL module, we compute a sample-specific signed
and normalized affinity matrix W ∈ RN×N based on the extracted features f ∈ RB×S×N . A
Mahalanobis-like distance is first evaluated as equation equation 6, where M = QiQ

⊤
i is a symmetric

positive semi-definite matrix adaptively selected from a learnable candidate set. The distances
are normalized to [0, 1] per sample, and converted into affinities using a radial basis function:
wij = exp(−dij). These affinities are then symmetrically normalized as W̄ = D−1/2WD−1/2 (8)
to obtain a stable and scale-invariant edge weight matrix.

E.3 LOW-PASS FILTER MODULES SETUP

To enable learnable frequency responses in the low-pass filter modules, we adopt a parameterized
sigmoid function to approximate the ideal low-pass characteristic. Specifically, given the eigenvalues
{λi}Si=1 of the graph Laplacian L+ ∈ RS×S , we define the frequency response function as:

g(λi) = σ (α(ω − λi)) , (31)

where σ(·) denotes the sigmoid function, α is a steepness parameter set to 10 controlling the sharpness
of the transition band, and ω is a learnable threshold representing the cutoff frequency. which allows
the model to softly suppress high-frequency components (i.e., those with larger λi) while retaining
low-frequency information in a differentiable and trainable manner. This formulation ensures smooth
gradients during back-propagation and avoids the non-differentiability of hard thresholding.

E.4 DENOISER TRAINING SETUP

All models are trained for up to 100 epochs using the Adam optimizer with an initial learning rate
of 1× 10−3. A cosine annealing scheduler with warm restarts is applied to adjust the learning rate
dynamically, with the first restart period set to T0 = 5, a multiplier Tmult = 1, and a minimum
learning rate of 1× 10−5. The parameter ρ in the contrastive loss function equation 23 is fixed at 1.0.
Training is conducted on a single NVIDIA GeForce 3090 GPU with a batch size of 8. Early stopping
is implemented with a patience of 10 epochs based on validation performance.

F MORE ABLATION STUDIES

In this section, we investigate the impact of different model design choices on classification perfor-
mance. Specifically, we evaluate the effect of temporal sequence length, CNN block number, and
distance metric selection on the overall model performance.

F.1 CLASSIFICATION WITH DENOISERS TRAINED SINGLE MSE LOSS

Table 3: Classification results with denoisers trained using different loss functions.

Loss Function Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1-score
(%)

Single MSE 81.44 77.36 97.67 99.32 86.97
Contrastive MSE 97.57 98.58 95.98 97.45 98.01
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To examine the impact of loss function design in denoiser training on downstream classification, we
compare two alternatives. The first employs a conventional MSE loss computed between clean and
noisy signal pairs. The second introduces a contrastive formulation as defined in Eq. equation 23,
where the reconstruction error from mismatched (negative) samples is promoted via a margin-based
loss term. As shown in Table 3, the contrastive loss leads to consistent improvements across all
evaluation metrics. This indicates that contrastive guidance encourages the denoiser to retain class-
discriminative information, benefiting subsequent EEG-based classification.

F.2 ABLATION STUDY ON TEMPORAL SEQUENCE LENGTH

We explore the influence of temporal sequence length on the model’s performance. As shown in Table
4, increasing the temporal sequence length from 3 to 10 consistently improves accuracy and other
evaluation metrics, highlighting the model’s ability to better capture temporal context. However, when
the sequence length exceeds 10, performance improvements plateau, and the model’s computational
cost and memory consumption increase. These findings suggest diminishing returns with longer
sequence lengths, emphasizing the need for a balanced choice of sequence length.

Table 4: Ablation study on the temporal sequence length
Sequence
Length Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

3 92.66 95.39 88.26 92.92 94.14
6 95.85 96.03 95.53 97.49 96.75

10 97.57 98.58 95.98 97.45 98.01
12 97.43 98.40 95.81 97.30 97.85
15 95.77 96.21 95.49 97.38 96.63
20 95.50 95.87 94.88 97.10 96.12
30 92.42 94.90 88.10 92.65 93.75
40 91.23 93.15 86.80 91.80 92.30
50 90.78 92.76 86.20 91.12 91.84
60 89.95 91.90 85.33 90.60 90.90
100 88.10 90.20 83.92 89.42 89.88

F.3 ABLATION STUDY ON CNN BLOCK NUMBER

We analyze the impact of varying the number of CNN blocks on model performance. As shown in
Table 5, increasing the number of CNN blocks leads to improved performance in terms of accuracy,
precision, and F1-score. However, the performance improvements start to plateau after 6 blocks, with
further increases in depth providing diminishing returns. This suggests that a deeper network helps
improve feature extraction initially, but excessive depth increases computational complexity without
significantly improving classification accuracy.

Table 5: Ablation study on the block number of CNN
Block

Numbers Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

1 65.15 29.12 92.45 74.50 41.87
3 94.31 96.57 90.62 94.37 95.46
4 96.12 96.00 94.10 96.20 95.02
6 97.57 98.58 95.98 97.45 98.01
9 97.44 98.40 96.00 97.40 97.90

12 97.42 98.35 95.95 97.38 97.85

F.4 ABLATION STUDY ON DISTANCE METRIC

We evaluate the influence of different distance metrics on classification performance. Table 6 shows
the performance of four commonly used distance metrics: Mahalanobis Distance, Euclidean Distance,
Cosine Similarity, and Manhattan Distance. The Mahalanobis Distance, which incorporates trainable
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parameters, provides the best performance in terms of accuracy, precision, and F1-score, with an
accuracy of 97.57%, precision of 98.58%, and F1-score of 98.01%. However, it requires longer
convergence time (2 hours 14 minutes) compared to the simpler metrics such as Euclidean Distance,
which achieves a slightly lower accuracy of 96.80% and converges in 1 hour 55 minutes. These
results highlight the trade-offs between performance and computational efficiency, with Mahalanobis
Distance offering the best results at the cost of increased computational overhead.

Table 6: Ablation study on the distance metric
Distance
Metric

Accuracy
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1-score
(%)

Convergence
Time

Mahalanobis Distance 97.57 98.58 95.98 97.45 98.01 2 h 14 min
Euclidean Distance 96.80 97.85 94.65 96.55 96.92 1 h 55 min
Cosine Similarity 96.40 97.60 94.80 96.70 96.90 1 h 40 min
Manhattan Distance 96.20 97.35 94.50 96.40 96.85 1 h 50 min

G CLASSIFICATION TASK ON TUH ABNORMAL EEG COUPUS DATASET

We also evaluated our method on the TUH Abnormal EEG Corpus Obeid & Picone (2016), which is
widely used in epilepsy detection. This dataset consists of 2,993 EEG segments from 2,329 patients,
with 70% of the data used for training and 30% for testing, following the protocol in Chen et al.
(2025). The comparison is made with several baseline results from Chen et al. (2025). As shown in the
table 7, our model achieves an accuracy of 90.69%, an F1-score of 92.60%, and a G-mean of 89.76%.
These results are superior to several baseline methods. For instance, methods like BD-Deep4 and
WaveNet-LSTM have lower accuracies of 85.40% and 88.76%, respectively. Traditional approaches
such as DWT + CSP + CatBoost also achieve 90.22% accuracy, but our method outperforms them
by achieving higher F1-scores and G-mean. Overall, our model demonstrates strong performance,
surpassing a wide range of classical and deep learning methods, highlighting its effectiveness in
detecting epileptic seizures in diverse datasets.

Table 7: Comparison of performance on TUH Abnormal EEG Corpus
Method Accuracy (%) F1-score (%) G-mean (%)

BD-Deep4 85.40 82.52 84.08
AlexNet + MLP 89.13 87.06 88.02
AlexNet + SVM 87.32 84.97 86.24
WaveNet-LSTM 88.76 88.32 88.39
HT + RG 85.86 83.40 85.19
LSTM + Attention 79.05 79.00 79.00
WPD + CatBoost 87.68 86.06 87.24
Multilevel DWT + KNN 87.68 86.07 87.24
WPD + CatBoost 89.13 87.60 88.60
DWT + CSP + CatBoost 90.22 88.89 89.76
Ours 90.69 92.60 89.76

H STATISTICAL SIGNIFICANCE TESTING

To ensure the robustness and statistical significance of our results, we conducted extensive experi-
ments, including t-tests and ANOVA.

T-test: We conducted 100 independent experiments across 10 random data partitions, with each
partition containing 10 runs, each initialized randomly. The mean classification accuracies (± standard
deviation) of our method and three baseline models are presented in Table 8. Paired t-tests show that
our method outperforms all baselines significantly (p < 0.001), demonstrating the effectiveness and
robustness of our approach.

ANOVA-test: In addition to the default evaluation, we also assess cross-subject generalization on
the Turkish Epilepsy EEG Dataset. Since other seizure-focused datasets utilize different electrode
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Table 8: T-test Results for Performance Comparison
Model Accuracy (mean ± std) p-value vs Ours

Ours 97.44 ± 0.40 -
EEGNet 93.30 ± 0.60 p « 0.0001
FBCSPNet 96.91 ± 0.50 p 0.0001
Deep4Net 96.58 ± 0.55 p 0.0001

montages, direct cross-dataset validation is not feasible. We adopted a leave-one-subject-out (LOSO)
protocol across all 121 subjects. Under this stricter data split, our model achieved 93.68% accuracy
and 94.94% F1-score, demonstrating strong performance across subjects. To further evaluate the
consistency of performance across individuals, we performed a one-way ANOVA on the per-subject
LOSO accuracies and F1-scores. The ANOVA results, shown in Table 9, revealed no significant
differences between subjects (Accuracy: F = 0.85, p = 0.65; F1-score: F = 1.02, p = 0.42), confirming
stable and consistent performance across different individuals.

Table 9: ANOVA Results for Per-Subject LOSO Evaluation
Metric Mean ± Std (%) ANOVA F-value p-value

LOSO Accuracy 93.68 ± 1.20 0.85 0.65
LOSO F1-score 94.94 ± 1.10 1.02 0.42

I COMPUTATIONAL EFFICIENCY EVALUATION

To assess the computational efficiency of our method, we compared the training and inference times of
our approach with three state-of-the-art baselines: EEGNet, FBCSPNet, and Deep4Net. Our method
significantly outperforms these baselines in both training and inference times. Specifically, training
our model takes only 2 hours and 14 minutes, compared to 5 hours 33 minutes for EEGNet, 9 hours 1
minute for Deep4Net, and 22 hours 19 minutes for FBCSPNet. Inference time is also considerably
shorter, with our method requiring only 55 seconds, whereas EEGNet, FBCSPNet, and Deep4Net
take 613 seconds, 396 seconds, and 455 seconds, respectively. These results demonstrate that our
model offers substantial reductions in computational cost, making it more efficient for real-time
applications while maintaining strong performance.

Table 10: Comparison of Training and Inference Times
Method Training Time Inference Time

EEGNet 5 hours 33 minutes 613 seconds
FBCSPNet 22 hours 19 minutes 396 seconds
Deep4Net 9 hours 1 minute 455 seconds
Ours 2 hours 14 minutes 55 seconds
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