
Under review as a conference paper at ICLR 2023

AUTOSPARSE: TOWARDS AUTOMATED SPARSE TRAIN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse training is emerging as a promising avenue for reducing the computational
cost of training neural networks. Several recent studies have proposed pruning
methods using learnable thresholds to efficiently explore the non-uniform distri-
bution of sparsity inherent within the models. In this paper, we propose Gradient
Annealing (GA), a gradient driven approach where gradients of pruned out weights
are scaled down in a non-linear manner. GA provides an elegant trade-off between
sparsity and accuracy without the need for additional sparsity-inducing regulariza-
tion. We integrated GA with the latest learnable threshold based pruning methods
to create an automated sparse training algorithm called AutoSparse. Our algorithm
achieves state-of-the-art accuracy with 80% sparsity for ResNet50 and 75% spar-
sity for MobileNetV1 on Imagenet-1K. AutoSparse also results in 7× reduction in
inference FLOPS and > 2× reduction in training FLOPS for ResNet50 on Ima-
geNet at 80% sparsity. Finally, GA generalizes well to fixed-budget (Top-K, 80%)
sparse training methods, improving the accuracy of ResNet50 on Imagenet-1K,
to outperform TopKAST+PP by 0.3%. MEST (SotA method for fixed-budget
sparsity) achieves comparable accuracy as AutoSparse at 80% sparsity, however,
using 20% more training FLOPS and 45% more inference FLOPS.

1 INTRODUCTION

Deep learning models have emerged as the preferred solution for many important problems in the
domains of computer visionHe et al. (2016); Dosovitskiy et al. (2021), language modeling Brown et al.
(2020), recommender systemsNaumov et al. (2019) and reinforcement learningSilver et al. (2017).
Models have grown larger and more complex over the years, as they are applied to increasingly
difficult problems on ever-growing datasets. In addition, DNN models are designed to operate
in overparameterized regime Arora et al. (2018); Belkin et al. (2019); Ardalani et al. (2019) to
facilitate easier optimization using gradient descent based methods. As a consequence, computational
costs of performing training and inference tasks on state-of-the-art models has been growing at an
exponential rateAmodei & Hernandez. The excess model capacity also makes DNNs more resilient
to noise during training – reduced precision training methodsMicikevicius et al. (2017); Wang et al.
(2018); Sun et al. (2019) have successfully exploited this aspect of DNNs to speed up training and
inference tasks significantly. Today, state-of-the-art training hardware consists of significantly more
reduced-precision FLOPs compared to traditional FP32 computations.

Sparsity is another avenue for improving the compute efficiency by exploiting excess model capacity,
thereby reducing the number of FLOPs needed for each iteration. Several studies have shown that
while overparameterized model helps to ease the training, only a fraction of that model capacity is
needed to perform inference Li et al. (2020); Han et al. (2015); Li et al. (2020); Narang et al. (2017);
Ström (1997); Gale et al. (2019). A wide array of studies have also proposed methods to prune dense
networks to produce sparse models for inference (dense-to-sparse) Molchanov et al. (2017); Zhu
& Gupta (2017); Frankle & Carbin (2019); Renda et al. (2020). More recently, there is a growing
interest in sparse-to-sparse Frankle & Carbin (2019); Mostafa & Wang (2019); Bellec et al. (2018);
Evci et al. (2021); Lee (2021); Dettmers & Zettlemoyer (2019); Jayakumar et al. (2021); Zhang et al.
(2022); Schwarz et al. (2021); Yuan et al. (2021) methods training models with end-to-end sparsity to
reduce the computational costs of training. This paper presents techniques to improve and generalize
sparse training methods for easy integration into different training workflows.

1

Under review as a conference paper at ICLR 2023

Sparse training methods can be broadly divided into two categories – a) deterministic pruning
methods, that initialize the model with a desired fixed sparsity budget at each layer and enforce
it throughout the training cycle, b) learnable threshold pruning methods attempt to discover the
sparsity distribution within the model by learning layer-wise threshold parameters. While these latter
methods can aim for a desired sparsity level by selecting appropriate combination of initialization
and hyper-parameters, the final model sparsity may not be exactly what was desired – hence they are
non-deterministic. Please refer to Hoefler et al. (2021) for detailed categorization and discussion on
various sparsification methods.

Deterministic Pruning: Deterministic pruning methods expect a prior knowledge of how much
sparsity can be extracted out of any given model. This sparsity budget is often determined by trial-
and-error or extrapolated from previously published studies. Once the sparsity budget is determined,
a choice must be made between a uniform or a non-uniform distribution of sparsity across the
layers. Majority of the methods in this category Frankle & Carbin (2019); Bellec et al. (2018);
Evci et al. (2021); Lee (2021); Jayakumar et al. (2021); Zhang et al. (2022); Schwarz et al. (2021);
Zhou et al. (2021); Yuan et al. (2021) opt for uniform sparse distribution because it requires fewer
hyperparameters – a subset of these methods Jayakumar et al. (2021); Zhang et al. (2022); Schwarz
et al. (2021) maintain first and last layers in dense while the sparsity budget is uniformly distributed
across rest of the layers. Fewer methods in this category Mostafa & Wang (2019); Dettmers &
Zettlemoyer (2019) use non-uniform distribution across layers using dynamic weight reallocation
heuristics. Non-uniform distribution allows more degrees of freedom to explore ways to improve
accuracy at any given sparsity budget. The best performing methods in this category are the ones that
skip pruning the first and last layers.

1.1 LEARNABLE THRESHOLD PRUNING

Learnable threshold pruning methods offer a two-fold advantage over deterministic pruning methods,
1) computationally efficient, as the overhead of computation (e.g. choosing Top-K largest) used for
deriving threshold values at each layer is eliminated, 2) learns the non-uniform sparsity distribution
inherent within the model automatically, producing a more FLOPs-efficient sparse model for inference.
For example, 80% sparse ResNet50 produced via fixed-budget method MEST requires 50% more
FLOPS than learned sparsity method AutoSparse (discussed later) as compute profile for various
layers is non-uniform (Figure 1a).

Current state-of-the-art methods in this space Liu et al. (2020); Kusupati et al. (2020) rely on L2
regularization based approaches to guide threshold updates and penalize pruned weights. Dynamic
Sparse Training Liu et al. (2020) is sparse training method that starts with threshold values initial-
ized to ‘zero’ and pushes the small thresholds up using an exponential loss function added to L2
regularization term. Soft Threshold Reparameterization Kusupati et al. (2020) initializes threshold
parameters with large negative values and controls the induction of sparsity using different weight
decay (λ) values for achieving different sparsity levels using L2 regularization. Sparsity vs accuracy
trade-off is a challenge and is discussed below.

Exploring Accuracy Vs. Sparsity Trade-Off:

Deterministic pruning methods, not withstanding their limitations, offer a consistent level of sparsity
throughout the training which in turn can lead to predictable performance improvements. For learnable
threshold methods, the performance can be measured in the form of reduction in training FLOPs
measured across the entire duration of the training. In order to meet this goal, learnable threshold
methods must have the ability to induce sparsity early in the training and provide algorithmic means
to explore the trade-off to increase model sparsity while also reducing accuracy loss. Empirical
studies on aforementioned methodsLiu et al. (2020); Kusupati et al. (2020) have indicated that L2
regularization based approach offers at best, a weak trade-off of better accuracy at the expense of
lower average sparsity. We also found these methods to be susceptible to runaway sparsity (e.g. hit
100% model sparsity), if higher levels of sparsity were induced right from the start of the training.
To mitigate this problem, DST Liu et al. (2020) implements hard upper limit checks (e.g. 99%) on
sparsity to trigger a reset of the offending threshold and all the associated weights to prevent loss of
accuracy. Similarly, STR Kusupati et al. (2020) methods uses a combination of small initial threshold
values with an appropriate λ to delay the induction of sparsity until later in the training cycle (e.g. 30
epochs) to control unfettered growth of sparsity.

2

Under review as a conference paper at ICLR 2023

Motivated by the above challenges, we propose Gradient Annealing (GA) method, to address
the aforementioned issues related to training sparse models. When compared existing methods,
GA offers greater flexibility to explore the trade-off between model sparsity and accuracy, and
provides greater stability by preventing divergence due to runaway sparsity. We also propose a unified
training algorithm called AutoSparse, combining best of learnable threshold methods Kusupati
et al. (2020) with GA that attempts to pave the path towards full automation of sparse-to-sparse
training. Additionally, we also demonstrated that when coupled with deterministic pruning methods
(TopKAST), Gradient Annealing can extract better accuracy at a fixed (80%) sparsity budget. The
key contributions of this work are as follows:

•We present a novel Gradient Annealing (GA) method (+ hyper-parameter α) which is a generalized
and more accurate gradient approximator than STE (Bengio et al. (2013)) and ReLU (e.g. STR
Kusupati et al. (2020)). For training end-to-end sparse models, GA provides greater flexibility to
explore sparsity and accuracy trade-off than other methods.

• We propose AutoSparse, a unified algorithm that combines learnable threshold methods with
Gradient Annealing to create an automated framework for end-to-end sparse training. Our algorithm
outperformed state-of-the-art methods by achieving better accuracy while maintaining consistently
high sparsity throughout the training for ResNet50 and MobileNetV1 on Imagenet-1K dataset.

• AutoSparse achieves best FLOPs efficiency for inference and training among methods with compa-
rable sparsity and accuracy.

•We demonstrate the efficacy of Gradient Annealing as a general learning technique independent of
AutoSparse by applying it to TopKAST method to improve the Top-1 accuracy of ResNet50 by 0.3%
on ImageNet-1K dataset using same fixed sparsity budget of 80%.

2 GRADIENT ANNEALING (GA)

A typical pruning step of deep networks involves masking out weights that are below some threshold
T . This sparse representation of weights benefits from sparse computation in forward pass and in
computation of gradients of inputs. We propose the following pruning step, where w is a weight and
T is a threshold that can be deterministic (e.g., TopK magnitude) or learnable:

(sparse) w̃ = sign(w) · hα(|w| − T)

Forward pass hα(x) =

{
x, x > 0

0, x ≤ 0
(Proxy) Gradient

∂hα(x)

∂x
=

{
1, x > 0

α, x ≤ 0
(1)

where 0 ≤ α ≤ 1. w̃ is 0 if |w| is below threshold T . Magnitude-based pruning is a greedy,
temporal view of parameter importance. However, some of the pruned-out weights (in early training
epochs) might turn out to be important in later epochs when a more accurate sparse pattern emerges.
For this, hα(·) in eqn (1) allows the loss gradient to flow to masked weights in order to avoid
permanently pruning out some important weights. The proposed gradient approximation is inspired
by the Straight Through Estimator (STE) Bengio et al. (2013) which replaces zero gradients of
discrete sub-differentiable functions by proxy gradients in back-propagation. Furthermore, we decay
this α as the training progresses. We call this technique the Gradient Annealing.

We anneal α at the beginning of every epoch and keep this value fixed for all the iterations in that
epoch. We want to decay α slowly in early epochs and then decay it steadily. For this, we compare
several choices for decaying α: fixed scale (no decay), linear decay, cosine decay (same as learning
rate (2)), sigmoid decay (defined in (3)) and Sigmoid-Cosine decay (defined in (4)). For sigmoid
decay in (3), L0 = −6 and L1 = 6. For total epochs T , scale for α in epoch i is

Cosine-Decay(i, T) ci = (1 + cosine(π · i/T))/2 (2)
Sigmoid-Decay(i, T) si = 1− sigmoid(L0 + (L1 − L0) · i/T) (3)

Sigmoid-Cosine-Decay(i, T) = max{si, ci} (4)

Figure 1 shows the effect of various linear and non-linear annealing of α on dynamic sparsity. Fixed
scale with no decay (STE) does not give us a good control of dynamic sparsity. Linear decay is better
than this but suffers from drop in sparsity towards the end of training. Non-linear decays in eqn (2, 3,

3

Under review as a conference paper at ICLR 2023

4) provide much superior trade-off between sparsity and accuracy. While eqn (2) and eqn (4) show
very similar behavior, sharp drop of eqn (3) towards the end of training push up the sparsity a bit
(incurring little more drop in accuracy). These plots are consistent with our analysis of convergence
of GA in eqn (5). Annealing schedule of α closely follows learning rate decay schedule.

Analysis of Gradient Annealing

Here we analyze the effect of the transformation hα(·) on the convergence of the learning process
using a simplified example as follows. Let v = |w| − T , u = hα(v), optimal weights be w∗ and
optimal threshold be T ∗, i.e., v∗ = |w∗| − T ∗. Let us consider the loss function as

min
v
L(v) = 0.5 · (hα(v)− v∗)2

and let ∂hα(v) denote the gradient ∂hα(v)
∂v . We consider the following cases for loss gradient for v.

∂L
∂v

= ∂hα(v)(hα(v)− v∗) =

∂hα(v) · 0 = 0 if hα(v) = v∗

∂hα(v) · (v − v∗) = 1 · (v − v∗) if v > 0 and v∗ > 0

∂hα(v) · (v + |v∗|) = 1 · (v + |v∗|) if v > 0 and v∗ ≤ 0

∂hα(v) · (−v∗) = α · (−v∗) if v ≤ 0 and v∗ > 0

∂hα(v) · (|v∗|) = α · (|v∗|) if v ≤ 0 and v∗ ≤ 0

(5)

Correct proxy gradients for hα(·) should move v towards v∗ during pruning (e.g., opposite direction of
gradient for gradient descent) and stabilize it at its optima (no more updates). Therefore, ∂hα(v) > 0
should be satisfied for better convergence of v to v∗. Our hα(·) satisfies this condition for α > 0.
Furthermore, for v > 0, v gets updated proportional to v − v∗, i.e., how far v is from v∗. As training
progresses and v gets closer to v∗, v receives gradually smaller gradients to finally converge to v∗.
However, for v ≤ 0, v receives gradient proportional to magnitude of α · v∗, irrespective of how close
v is to v∗. Also, note that we benefit from sparse compute when v ≤ 0.

We set initial T high in order to achieve sparsity from early epochs. However, this likely leads to a
large number of weights following condition 4 in eqn (5). Fixed, large α (close to 1) makes large
correction to v and moves it to v∗ quickly. Consequently, v moves from condition 4 to condition 2,
losing out the benefit of sparse compute. A lower α ‘delays’ this transition and enjoys the benefits of
sparsity. This is why we choose α < 1 rather than identity STE as proxy gradient (unlike Tang et al.
(2022)). However, as training progresses, more and more weights move from condition 4 to condition
2 leading to a drop in sparsity. This behavior is undesirable to reach a target sparsity at the end of
training. In order to overcome this, we propose to decay α with training epochs such that we enjoy
the benefits of sparse compute while v being close to v∗. That is, GA provides a more controlled and
stable trade-off between sparsity and accuracy throughout the training.

Note that, GA is applicable when we compute loss gradients for a superset of active (non-zero)
weights that take part in forward sparse computation using gradient descend. For an iteration t, let
the forward sparsity be S. If α = 0, then we need to calculate gradient for only those non-zero
weights as other weights would not receive gradients due to ReLU STE. In order to benefit from such
computational reduction, we can set α = 0 after several epochs of α annealing.

3 AUTOSPARSE : SPARSE TRAINING WITH GRADIENT ANNEALING

AutoSparse is the sparse training algorithm that combines the best of learnable threshold pruning
techniques Kusupati et al. (2020); Liu et al. (2020) with Gradient Annealing (GA). AutoSparse meets
the requirements necessary for efficient training of sparse neural networks, as outlined in Section 1.1.

• Learnable Pruning Thresholds : Eliminate threshold computation, reduce sparsification over-
head compared to deterministic pruning methodsJayakumar et al. (2021). Learn the non-uniform
distribution of sparsity across the layers.

• Sparse Model Discovery : Discover an elegant trade-off between model accuracy vs. level of
sparsity by applying Gradient Annealing method (as shown in Figure 1). Produce a sparse model at
the end of the training with desired sparsity level guided by the hyper-parameter α.

4

Under review as a conference paper at ICLR 2023

(a) Inference FLOPS for 80% sparse ResNet50 pro-
duced by fixed-budget and learned sparsity methods (b) Sparsity achieved for various gradient annealing

Figure 1: Sparse ResNet50 training on ImageNet

• Accelerate Training/Inference : Reduce training FLOPs by training with sparse weights from
scratch, maintaining high levels of sparsity throughout the training, and using sparsity in both forward
and backward pass. Produce FLOPS-efficient sparse model for inference.

Previous proposals using leanable threshold methods such as Liu et al. (2020) and Kusupati et al.
(2020) address the first criterion but do not effectively deal with accuracy vs sparsity trade-off as
they are outperformed by our method. These methods also do not accelerate training by reducing
FLOPS as effectively as our method. Deterministic pruning methods such as Jayakumar et al. (2021);
Evci et al. (2021); Yuan et al. (2021) address the third criterion of accelerating training, but incur
higher sparsfication overheads for computing threshold values and cannot automatically discover the
non-linear distribution of sparsity. This leads to sub-optimal sparse models for inference (Figure 1a).

Formulation: Let D := {(xi ∈ Rd, yi ∈ R)} be the observed data,W be the learnable network
parameters, L be a loss function. For an L-layer DNN, W is divided into layer-wise trainable
parameter tensors, [Wℓ]

L
ℓ=1. As various layers can have widely different number of parameters and

also unequal sensitivity to parameter alteration, we use one trainable pruning parameter, sℓ for each
layer ℓ, i.e., s = [s1, ..., sL] is the vector of trainable pruning parameter. Let g : R→ R be applied
element-wise. For layer ℓ, Tℓ = g(sℓ) is the pruning threshold for Wℓ. We seek to optimize:

min
W,s
L(Shα,g(W, s),D) (6)

where, function Shα,g , parameterized by hα ∈ R→ R that is applied element-wise.

Ŵℓ = Shα,g(Wℓ, sℓ) = sign(Wℓ) · hα(|Wℓ| − g(sℓ)) (7)

Gradient annealing is applied via hα(·) as discussed earlier.

Sparse Forward Pass: At iteration t, for layer ℓ, sparse weights are Ŵ(t)
ℓ = Shα,g(W

(t)
ℓ , s

(t)
ℓ) as

defined in eqn (7). Let the non-zero (active) set of weights A(t)
ℓ = {i : Ŵ(t)

ℓ,i > 0}. For simplicity, let
us drop the subscript notations. Ŵ is used in the forward pass as Y = X⊗ Ŵ where⊗ is tensor MAC
operation, e.g., convolution. Let A denote the fraction of non-zero elements of W belonging to A, i.e,
out forward sparsity is 1−A. Ŵ is also used in computation of input gradient during backward pass.
Every iteration, we update W and construct Ŵ from updated W and learned threshold.

Sparse Compute of Input Gradient: For an iteration and a layer (we drop the subscripts t, ℓ for
simplicity), output of sparse operations in forward pass need not be sparse, i.e., Y = X ⊗ Ŵ is
typically dense. Consequently, gradient of output∇Y is also dense. We compute gradient of input
∇X as Ŵ⊗∇Y . Computation of ∇X is sparse due to sparsity in Ŵ.

Sparse Weight Gradient: Gradient of weights∇W is computed as X⊗∇Y . Note that, for forward
sparsity S, α = 0 implies weight gradient sparsity S as no gradient flows to pruned weights. We can
have a hyperparameter that specifies at which epoch we set α = 0, to enjoy benefits of sparse weight
gradients. However, we need to keep α ̸= 0 for several epochs to achieve high accuracy results,
losing the benefits of sparse weight gradient. In order to overcome this, we propose the following for
the epochs when α ̸= 0.

5

Under review as a conference paper at ICLR 2023

We can make sparse∇W if we compute loss gradient using a subset B of W.

B = {i : Wi ∈ TopK(W, B)}, B ≥ A (8)

where B is a superset of A and TopK(W,k) picks indices of k largest magnitude elements from W.
This constitutes our weight gradient sparsity 1−B.

We apply gradient annealing on set B \ A, i.e., gradients of weights in B \ A are decayed using α.
Note that, α = 0 implies B = A. Gradient computation for parameters W and s are in Appendix.

4 RELATED WORK

Learnable Threshold Methods

STR Kusupati et al. (2020) is a state-of-the-art method that learns pruning thresholds along with
weights. STR prunes weights that are below the threshold using ReLU as a mask function. Setting
α = 0 in (7) reproduces the formulation of STR (however, our method learns completely different
distribution than that of STR). This α = 0 implies identical forward and backward sparsity which
are computationally beneficial. However, this prevents gradients from flowing to pruned out weights
resulting in a sub-optimal trade-off between sparsity and accuracy. This forces STR to run fully
dense training for many epochs (implemented by initializing threshold parameter s to a very large
negative value, e.g., -3200 so that sigmoid(s) ≈ 0, and weight decay on s takes many epochs to
make sigmoid(s) large enough to induce sparsity. Note that, extracting sparsity from early epochs
using STR results in run-away sparsity. Using gradient annealing technique, we are able to extract
sparsity from early epochs to maintain high average sparsity throughout the training, yet achieve
SOTA accuracy.

DST Liu et al. (2020) is also a sparse training algorithm based on learned weights and thresholds,
where a binary weight mask is created by suppressing the weights that are below the threshold (using
step function). they impose exponential decay of thresholds as regularizer. A hyperparameter controls
the amount of regularization, leading to a balance between sparsity and accuracy. In order to reduce
the sensitivity of the hyperparameter, they manually reset the sparsity if it exceeds some predefined
limit (thus occasionally falling into dense training regime). Further, they approximated the gradient of
pruning step function by linearly scaling up the gradient of the elements that are close to the pruning
threshold, and scaling down (fixed scale) the gradient of other elements. This helps some of the
pruned out elements to receive loss gradient.

SCL Tang et al. (2022) learns both network weights as well as mask parameters during training.
These masks are binarized during forward pass to represent network sparsity. This mask information,
along with a decaying connectivity hyperparameter are used as a sparsity-inducing regularizer in the
objective function. During training, the mask is learned as dense parameter tensor. This increases the
effective model size during training, which might create overhead moving parameters from memory.
LTP Azarian et al. (2021) learns the pruning thresholds using soft pruning and soft L0 regularization
where sigmoid is applied on transformed weights and sparsity is controlled by a hyper-parameter.
Savarese et al. (2021) used sigmoidal soft-threshold function as a sparsity-inducing regularization.

Deterministic Pruning Methods

GMP Zhu & Gupta (2017) suggests to gradually increase the number of removed weights until
desired sparsity is reached. RigL Evci et al. (2021) proposes to prune out a fraction of weights, and
activates/revives new ones iteratively using infrequent full gradient calculations. Such restriction of
gradient flow causes more accuracy drop. TopKAST Jayakumar et al. (2021) always prunes Top-K
weights, but updates a superset of active weights based on gradients so that the pruned out weights
can be revived. Moreover, they penalize the non-active weights by a factor inversely proportional
to density. This way, the active set of weights becomes stable with epochs as small fraction of
pruned out weights become active again. ITOP Liu et al. (2021) maintains a fixed amount of sparsity
throughout training. They use gradient based weight regrowth used in RigL and SNFS Dettmers &
Zettlemoyer (2019). Applying ITOP in RigL grow stage, i.e., exploring new weights based on (full)
gradient information in Rigl grow stage, RigL+ITOP achieves higher accuracy. PowerPropagation
Schwarz et al. (2021) is a technique to transform weight as w = v|v|α−1, s.t. it creates a heavy-tailed
distribution of trained weights. As an effect, they observe that weights initialized close to 0 are likely
to be pruned out, and weights are less likely to change sign. PP, when applied on TopKAST, i.e.,

6

Under review as a conference paper at ICLR 2023

TopKAST + PP, improves the accuracy of TopKAST. OptG Zhang et al. (2022) learns both weights
and a pruning supermask in a gradient driven manner. They argued in favour of letting gradient flow
to pruned weights so that it solves the ‘independence paradox’ problem that prevents from achieving
high-accuracy sparse results. However, they achieve a given sparsity budget by increasing sparsity
according to some sigmoid schedule (sparsity is extracted only after 40 epochs). This suffers from
larger training FLOPs count. MEST (Yuan et al. (2021)) always maintains fixed sparsity in forward
and backward pass by computing gradients of survived weights only. For better exploration, they
remove some of the least important weights (ranked proportional to magnitude plus the gradient
magnitude) and introduce same number of random ‘zero’ weights to maintain the sparsity budget.
Similar to RigL, they also need to train a lot longer (250 epochs vs 500 epochs in RigL). Gradmax
(Evci et al. (2022)) proposed to grow network by adding more weights gradually with training epochs
in order to reduce overall training FLOPS. SWAT (Raihan & Aamodt (2020)) sparsifies both weights
and activations by keeping TopK magnitudes in order to further reduce the FLOPS.

5 EXPERIMENTS

5.1 EXPERIMENTAL SET UP

Vision Models: ImageNet-1K (Deng et al. (2009)) is a widely used large-scale image classification
dataset with 1K classes. We show sparse training results on ImageNet-1K for two popular CNN
architectures: ResNet50 He et al. (2016) and and MobileNetV1 Howard et al. (2017), to demonstrate
the generalizability of our method. For AutoSparse training, we use SGD as the optimizer, momentum
0.875, learning rate (max) 0.256 using a cosine annealing with warm up of 5 epochs. We run all the
experiments for 100 epochs using a batch size 256. We use weight decay λ = 0.000030517578125
(picked from STR Kusupati et al. (2020)), label smoothing 0.1, s0 = −5. We presented our results
only using Sigmoid-Cosine decay of α (defined in eqn (4)).

Language Models: We choose Transformer models Vaswani et al. (2017) for language translation on
WMT14 English-German data. We have 6 encoder and 6 decoder layers with standard hyperparameter
setting: optimizer is ADAM with betas (0.9, 0.997), token size 10240, warm up 4000, learning rate
0.000846 that follows inverse square root decay. We apply AutoSparse by introducing a learnable
threshold for each linear layer, and we initialize them as s = −7.0. Also, initial α = 0.4 is annealed
according to exponential decay as follows. For epoch t and β > 0 (we use β = 1):

Exponential-Decay (t;β) = e(−β·t) (9)

We keep the first and last layers of transformer dense and apply AutoSparse to train it for 44 epochs.

We repeat the experiments several times with different random seeds and report the average numbers.

Notation: We define the following notations that are used in the tables. ‘Base’: Dense baseline
accuracy, ‘Top1(S)’: Top-1 accuracy for sparse models, ‘Drop%’: relative drop in accuracy for
sparse models from Base, ‘S%’: percentage of model sparsity, ‘Train F’: fraction of training FLOPs
comparing to baseline FLOPs, ‘Test F’: fraction of inference FLOPs comparing to bsaeline FLOPs,
‘Back S%’: explicitly set sparsity in weight gradients (B in eqn (8)), ‘BLEU(S)’: BLEU score for
sparse models. Smaller values of ‘Train F’ and ‘Test F’ suggests larger reduction in computation.

5.2 EFFICACY OF GRADIENT ANNEALING

Comparison with Other Learnable Threshold Methods:

We compare AutoSparse results with STR Kusupati et al. (2020) and DST Liu et al. (2020). Lack of
gradient flow to pruned out elements prevents STR to achieve the optimal sparsity-accuracy trade-off.
For example, they need dense training for many epochs in order to achieve high accuracy results,
losing out the benefits of sparse training. Our gradient annealing overcomes such problems and
achieves much superior sparsity-accuracy trade-off. In Table 1, we achieve better accuracy than STR
for ResNet50 at various sparsity levels 80%, 90%, and 95%, while gaining in FLOPs reduction for
both training and inference. Also, Table 3 shows our superior accuracy for MobileNetV1. Similarly,
our method achieves higher accuracy than DST for both 80% and 90% sparsity budget for ResNet50
(Table 1). However, DST uses separate sparsity-inducing regularizer, whereas our gradient annealing
itself does the trick. SCL Tang et al. (2022) is another dynamic sparse method that learns both

7

Under review as a conference paper at ICLR 2023

Method Base Top1(S) Drop% S% Train F Test F comment

RigL 76.8 74.6 2.86 80 0.33× 0.22× fixed sparsity budget
*SWAT-U 76.8 75.2 2.08 80 0.24× 0.22× TopK weight, act
GMP 77.01 75.6 1.83 80 – 0.2× fixed sparsity budget
TopKAST⋆ 76.8 75.7 0.94 80 0.48× 0.22× fixed sparsity budget
TopKAST⋆+PP 76.8 76.24 0.73 80 0.48× 0.22× fixed sparsity budget
TopKAST∗+GA 76.8 76.47 0.43 80 0.48× 0.22× fixed sparsity budget
MEST1.7×+EM 76.9 76.71 0.25 80 0.57× 0.21× fixed sparsity budget
DST 74.95 74.02 1.24 80.4 – 0.15× learnable sparsity
STR 77.01 76.19 1.06 79.55 0.54× 0.18× learnable sparsity
AutoSparse 77.01 76.77 0.31 79.67 0.46× 0.14× α0=.75,α=0@epoch90
AutoSparse 77.01 76.59 0.55 80.78 0.36× 0.14× α0=.8,α=0@epoch70

MEST1.7×+EM 76.9 75.91 1.29 90 0.25× 0.11× fixed sparsity budget
OptG 77.01 74.28 3.55 90 – –
DST 74.95 72.78 2.9 90.13 – 0.087× learnable sparsity
STR 77.01 74.31 3.51 90.23 0.38× 0.083× learnable sparsity
AutoSparse 77.01 75.9 1.44 85.1 0.37× 0.096× α0=.9,α=0@epoch50
AutoSparse 77.01 75.19 2.36 89.94 0.36× 0.081× α0=.9,α=0@epoch45

STR 77.01 70.4 8.58 95.03 0.246× 0.039× dense to sparse
AutoSparse 77.01 70.84 8.01 95.09 0.182× 0.036× α0=0.8,α=0@epoch20

Table 1: ResNet50 on ImageNet: Comparing accuracy, sparsity and the FLOPS (dense 1×) for
training and inference for selected sparse training methods. TopKAST⋆: TopKAST with 0%
backward sparsity. TopKAST⋆+GA: TopKAST⋆ with Gradient Annealing boosts the accuracy
despite having same training/inference FLOPS. For AutoSparse 79.67% sparsity, α0=0.75 is decayed
till epoch 90 and then set to 0 (implying ∼ 80% forward and backward sparsity after epoch 90).
Similarly, for AutoSparse 95.09% sparsity, α0=0.8 is decayed till epoch 20 and then set to 0. Standard
deviation of results for AutoSparse is less than 0.06.

Method S% Top1(S) Drop% Train F Test F Back(S) comment

AutoSparse 83.74 75.02 2.58 0.328× 0.128× 50 α0=1.0, s0=-8, w grad
50% sparse

TopKAST 80 75 2.34 0.32× 0.22× 50 fwd & in grad 80%, w
grad 50% sparse

Table 2: ResNet50 on ImageNet: AutoSparse with explicitly set sparsity for weight gradient. For
AutoSparse 83.74% sparsity, α0 = 1 is decayed till epoch 100 resulting in identical sparsity for
forward and input gradients, along with 50% sparsity for weight gradient throughout the training
(involves invoking TopK method).

weights and sparsity mask parameters using explicit regularizer with the objective function. They
report 0.23% drop in accuracy at 74% sparsity for ResNet50 on ImageNet. However, their much
lower dense baseline, lower reported sparsity and lack of training FLOPs make it harder for a direct
comparison (inference FLOPs 0.21× of baseline). LTP produces 89% sparse ResNet50 that suffers
from 3.2% drop in accuracy from baseline (worse than ours). Continuous Sparsification Savarese et al.
(2021) induces sparse training using soft-thresholding as a regularizer. The sparse model produced
by them is used to test Lottery Ticket Hypothesis (retrained). Lack of FLOPs number makes it harder
to directly compare with our method. GDP (Guo et al. (2021)) used FLOPS count as a regularizer to
achieve optimal accuracy vs compute trade-off (0.4% drop in accuracy with 0.49× training FLOPS.
Our method achieves slightly higher accuracy with lower FLOPS count.

Comparison with Deterministic Pruning Methods:

RigL Evci et al. (2021) activates/revives new weights iteratively using infrequent full gradient
calculation. Such restriction of gradient flow causes more accuracy drop: 80% sparse model loses

8

Under review as a conference paper at ICLR 2023

Method Base Top1(S) Drop% S% Train F Test F comment

STR 71.95 68.35 5 75.28 0.37× 0.18× dense to sparse
AutoSparse 71.95 70.1 2.57 75.1 0.51× 0.22× α ̸= 0

STR 71.95 64.83 9.9 85.8 0.32× 0.1× dense to sparse
AutoSparse 71.95 64.87 9.84 86.36 0.25× 0.1× α=0 @ epoch 20
AutoSparse 71.95 64.18 10.8 87.72 0.22× 0.08× α=0 @ epoch 20

Table 3: MobileNetV1 on ImageNet: Comparing accuracy, sparsity and FLOPS (dense 1×) for
training and inference for selected sparse training methods. AutoSparse achieves significantly higher
accuracy for comparable sparsity. For AutoSparse 75.1% sparsity, α = 0.4 is decayed till epoch
100, resulting in identical sparsity for forward and input gradient computation. For AutoSparse
(87.72%,86.36%) sparsity, (α = 0.6,α = 0.8) decayed till epoch 20 and then set to 0, which implies
identical forward and backward sparsity after epoch 20.

2.86% top-1 accuracy from dense baseline (table 1). ITOP Liu et al. (2021) maintains a fixed amount
of sparsity throughout training. They use gradient based weight regrowth used in RigL and SNFS
Dettmers & Zettlemoyer (2019). Applying ITOP in RigL grow stage, i.e., exploring new weights
based on (full) gradient information in Rigl grow stage, RigL+ITOP achieves accuracy 75.84 for
sparsity budget 80% ∼ 1.25% off from baseline. OptG Zhang et al. (2022) learns both weights and a
pruning supermask in a gradient driven manner where pruned weights also receives loss gradient.
AutoSparse is better than their accuracy at 90% sparsity budget, despite achieving significantly
higher average sparsity. PowerPropagation Schwarz et al. (2021) transforms weight as w = v|v|α−1,
s.t. it creates a heavy-tailed distribution of trained weights that are more amenable to pruning. PP,
when applied on TopKAST, i.e., TopKAST + PP, improves on TopKAST and achieves 0.73% drop
in accuracy for 80% sparsity budget and 2% drop in accuracy for 90% sparsity budget. Gradient
Annealing, when applied with TopKAST method (without additional regularization) improves these
accuracies while maintaining similar training and inference FLOPs. SWAT-U sparsifies models in the
forward pass and activation in the backpass to reduce the training FLOPs. For models with ReLU
activation, we typically have 50% default sparsity. This would lead to up to 2× further reduction of
training FLOPS for AutoSparse. However, in our analysis we do not count such inherent sparsity of
activations. Finally, MEST (SOTA for fixed-budget sparse training) achieves comparable accuracy for
80% sparse Resnet50, however, using 20% more training FLOPS and 45% more inference FLOPS
(as their sparse model is not FLOPS-efficient).

5.3 AUTOSPARSE FOR LANGUAGE MODELS

We applied our AutoSparse on Transformer model using exponential decay for α = 0.4. This
annealing schedule resulted in a better trade-off between accuracy and sparsity. Also, we set α = 0
after 10 epochs to take advantage of more sparse compute in backward pass.

AutoSparse achieves a BLEU score of 27.57 with overall sparsity 60.99% which incurs an accuracy
drop of 0.93% from dense baseline BLEU score 27.83.

6 CONCLUSION

We propose Gradient Annealing, a novel technique that decays the gradients of pruned out weights in
a non-linear manner. This potentially eliminates the need for explicit regularizer to induce sparsity
in model training. This provides us with a tool to develop an automated sparse training method
to explore the inherent model sparsity without the knowledge of an appropriate sparsity budget.
AutoSparse helps us to achieve state-of-the-art sparsity/accuracy trade-off for two different type
of CNN models: ResNet50 and MobiletNetV1 on ImageNet dataset. Further, we demonstrate the
applicability of our method on Transformer models for language translation task. Interestingly, among
methods producing comparable sparsity, AutoSparse learns a non-linear sparsity distribution that is
the most FLOPs-efficient.

Declaration: The authors read and adhered to the ICLR Code of Ethics and ICLR Code of Conduct.

9

Under review as a conference paper at ICLR 2023

REFERENCES

D. Amodei and D. Hernandez. AI and Compute. https://openai.com/blog/
ai-and-compute/.

N. Ardalani, J. Hestness, and G. Diamos. Empirically Characterizing Overparameterization Impact
on Convergence. In https://openreview.net/forum?id=S1lPShAqFm, 2019.

S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration by
overparameterization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 244–253. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
arora18a.html.

K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort. Learned Threshold Pruning. In https:
//arxiv.org/pdf/2003.00075.pdf, 2021.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1903070116.

G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring: Training very sparse deep
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=BJ_wN01C-.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. In arXiv preprint arXiv:1308.3432, 2013.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J D Kaplan, P Dhariwal, A Neelakantan, P Shyam,
G Sastry, A Askell, S Agarwal, A Herbert-Voss, G Krueger, T Henighan, R Child, A Ramesh,
D Ziegler, J Wu, C Winter, C Hesse, M Chen, E Sigler, M Litwin, S Gray, B Chess, J Clark,
C Berner, S McCandlish, A Radford, I Sutskever, and D Amodei. Language Models are Few-Shot
Learners. In https://arxiv.org/abs/2005.14165, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. A large-scale hierarchical image
database. In IEEE conference on computer vision and pattern recognition, 2009.

T. Dettmers and L. Zettlemoyer. Sparse Networks from Scratch: Faster Training without Losing
Performance. In https://arxiv.org/pdf/1907.04840.pdf, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

U. Evci, T. Gale, J. Menick, P.S. Castro, and E. Elsen. Rigging the Lottery: Making All Tickets
Winners. In https://arxiv.org/pdf/1911.11134.pdf, 2021.

U. Evci, B. van Merriënboer, T. Unterthiner, M. Vladymyrov, and F. Pedregosa. GRADMAX:
Growing Neural Networks Using Gradient Information. In International Conference on Learning
Representations (ICLR), 2022.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

T. Gale, E. Elsen, and S. Hooker. The State of Sparsity in Deep Neural Networks. In https:
//arxiv.org/pdf/1902.09574.pdf, 2019.

Y. Guo, H. Yuan, J. Tan, Z. Wang, S. Yang, and J. Liu. GDP: Stabilized Neural Network Pruning via
Gates with Differentiable Polarization. In https://arxiv.org/pdf/2109.02220.pdf,
2021.

10

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openreview.net/forum?id=S1lPShAqFm
https://proceedings.mlr.press/v80/arora18a.html
https://proceedings.mlr.press/v80/arora18a.html
https://arxiv.org/pdf/2003.00075.pdf
https://arxiv.org/pdf/2003.00075.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=BJ_wN01C-
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/1907.04840.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/pdf/1911.11134.pdf
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/pdf/1902.09574.pdf
https://arxiv.org/pdf/1902.09574.pdf
https://arxiv.org/pdf/2109.02220.pdf

Under review as a conference paper at ICLR 2023

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural
network. In In Advances in Neural Information Processing Systems (NeurIPS), 2015.

K. He, X. Zhang, S. ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016.

T. Hoefler, D Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in Deep Learning: Pruning
and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, pp. 1–124, 2021.

A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. In arXiv
preprint arXiv:1704.04861, 2017.

S.M. Jayakumar, R. Pascanu, J.W. Rae, S. Osindero, and E. Elsen. Top-KAST: Top-K Always Sparse
Training. In , 2021.

A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft
Threshold Weight Reparameterization for Learnable Sparsity. In https://arxiv.org/abs/
2002.03231, 2020.

Y. Lee. Differentiable Sparsification for Deep Neural Networks. In https://openreview.
net/forum?id=_x4A8IZ-rRv , 2021.

Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and J. Gonzalez. Train Big, Then
Compress: Rethinking Model Size for Efficient Training and Inference of Transformers. In
https://arxiv.org/pdf/2002.11794.pdf, 2020.

J. Liu, Z. Xu, R. Shi, R.C.C Cheung, and H.K.H So. Dynamic Sparse Training: Find Efficient Sparse
Network from Scratch with Trainable Masked Layers. In International Conference on Learning
Representations (ICLR), 2020.

S. Liu, L Yin, D. C. Mocanu, and M. Pechenizkiy. Do We Actually Need Dense Over-
Parameterization? In-Time Over-Parameterization in Sparse Training. In https://arxiv.
org/pdf/2102.02887.pdf, 2021.

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston,
O. Kuchaiev, G. Venkatesh, et al. Mixed precision training. In arXivpreprintarXiv:
1710.03740, 2017.

D. Molchanov, A. Ashukha, and D. P. Vetrov. Variational Dropout Sparsifies Deep Neural Networks.
In http://proceedings.mlr.press/v70/molchanov17a.html, 2017.

H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In Proceedings of the 36th International Conference on
Machine Learning, pp. 4646–4655. PMLR, 2019.

S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen. Exploring sparsity in recurrent neural networks.
CoRR, abs/1704.05119, 2017. URL http://arxiv.org/abs/1704.05119.

M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N.n Sundaraman, J. Park, X. Wang, U. Gupta, C-J
Wu, A G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy.
Deep learning recommendation model for personalization and recommendation systems. CoRR,
abs/1906.00091, 2019. URL https://arxiv.org/abs/1906.00091.

Md. A. Raihan and T.M. Aamodt. Sparse Weight Activation Training. In Conference on Neural
Information Processing Systems (NeurIPS 2020), 2020.

A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-tuning in neural network pruning.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=S1gSj0NKvB.

11

https://arxiv.org/abs/2002.03231
https://arxiv.org/abs/2002.03231
https://openreview.net/forum?id=_x4A8IZ-rRv
https://openreview.net/forum?id=_x4A8IZ-rRv
https://arxiv.org/pdf/2002.11794.pdf
https://arxiv.org/pdf/2102.02887.pdf
https://arxiv.org/pdf/2102.02887.pdf
arXiv preprint arXiv:1710.03740
arXiv preprint arXiv:1710.03740
http://proceedings.mlr.press/v70/molchanov17a.html
http://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1906.00091
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB

Under review as a conference paper at ICLR 2023

P. Savarese, H. Silva, and M. Maire. Winning the Lottery with Continuous Sparsification. In
https://arxiv.org/pdf/1912.04427.pdf, 2021.

J. Schwarz, S. M. Jayakumar, R. Pascanu, P.E. Latham, and Y. W. Teh. Powerpropagation: A sparsity
inducing weight reparameterisation. In https://arxiv.org/pdf/2110.00296.pdf,
2021.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–, October
2017. URL http://dx.doi.org/10.1038/nature24270.

N. Ström. Sparse Connection And Pruning In Large Dynamic Artificial Neural Networks. In
http://www.nikkostrom.com/publications/euro97/euro97.pdf, 1997.

X. Sun, J. Choi, C-Y Chen, N. Wang, S. Venkataramani, V. Srinivasan, X. Cui, W. Zhang, and
K. Gopalakrishnan. Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural
Networks. In In The Conference and Workshop on Neural Information Processing Systems, 2019.

Z. Tang, L. Luo, B. Xie, Y. Zhu, R. Zhao, L. Bi, and C. Lu. Automatic Sparse Connectivity Learning
for Neural Networks. In https://arxiv.org/pdf/2201.05020.pdf, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention Is All You Need. In Neural Information Processing Systems, 2017.

N. Wang, J. Choi, D. Brand, C-Y Chen, and K. Gopalakrishnan. Training Deep Neural Networks with
8-bit Floating Point Numbers. In https://arxiv.org/pdf/1812.08011.pdf, 2018.

G. Yuan, X. Ma, W. Niu, Z. Li, Z. Kong, N. Liu, Y. Gong, Z. Zhan, C. He, Q. Jin, S. Wang, M. Qin,
B. Ren, Y. Wang, S. Liu, and X. Lin. MEST: Accurate and Fast Memory-Economic Sparse Training
Framework on the Edge. In Neural Information Processing Systems (NeurIPS), 2021.

Y. Zhang, M. Lin, M. Chen, Z. Xu, F. Chao, Y. Shen, K. Li, Y. Wu, and R. Ji. Optimizing Gradient-
driven Criteria in Network Sparsity: Gradient is All You Need. In https://arxiv.org/
pdf/2201.12826.pdf, 2022.

A. Zhou, Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun, and H. Li. Learning n:m fine-grained
structured sparse neural networks from scratch. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=K9bw7vqp_s.

M.H. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. In https://arxiv.org/pdf/1710.01878.pdf, 2017.

12

https://arxiv.org/pdf/1912.04427.pdf
https://arxiv.org/pdf/2110.00296.pdf
http://dx.doi.org/10.1038/nature24270
http://www.nikkostrom.com/publications/euro97/euro97.pdf
https://arxiv.org/pdf/2201.05020.pdf
https://arxiv.org/pdf/1812.08011.pdf
https://arxiv.org/pdf/2201.12826.pdf
https://arxiv.org/pdf/2201.12826.pdf
https://openreview.net/forum?id=K9bw7vqp_s
https://arxiv.org/pdf/1710.01878.pdf

Under review as a conference paper at ICLR 2023

7 APPENDIX A

7.1 GRADIENT COMPUTATION

Let I(·) denote an indicator function, ⟨·, ·⟩ denote inner product, ⊙ denote elementwise product, and
S denote Shα,g. g should be continuous so that we can apply gradient descend for learning. Using the
definition in eqn (1), loss gradients for Wℓ and sℓ are

L(t) ← L(S(W(t), s(t)),D), G
(t)
ℓ ← ∇S(Wℓ,sℓ)L

(t)

∇
W

(t)
ℓ

S(Wℓ, sℓ)← G
(t)
I , G

(t)
I ← I{S(W(t)

ℓ , s
(t)
ℓ) ̸= 0}+ α · I{S(W(t)

ℓ , s
(t)
ℓ) = 0}

(Loss grad for W) ∇
W

(t)
ℓ

L(t) ← G
(t)
ℓ ⊙G

(t)
I (10)

(Loss grad for s) ∇
s
(t)
ℓ

L(t) ← −g′(s(t)ℓ)
〈
G

(t)
ℓ , sign(W(t)

ℓ)⊙G
(t)
I

〉
(11)

Apart from the classification loss, standard L2 regularization is added on Wℓ and sℓ, ∀ ∈ [L] with
weight decay hyperparameter λ. Gradients received by Wℓ and sℓ for regularization are λ ·Wℓ and
λ · sℓ, respectively. Parameter updates involve adding momentum to gradients, and multiplying by
learning rate η. We choose Sigmoid function for g(s) as in Kusupati et al. (2020), however, with a
different way to control sparsity.

7.2 AVERAGE TRAINING SPARSITY

AutoSparse achieves higher average training sparsity compared to comparable learnable threshold
based methods Kusupati et al. (2020); Zhang et al. (2022). Our methods achieves this by introducing
sparsity right from the scratch and is able to maintain higher levels of sparsity without causing the
model to diverge. Figure 2 shows model sparsity achieved by AutoSparse method on ResNet50
(Imagenet-1K) compared with STR Kusupati et al. (2020) and OptG Zhang et al. (2022) method.
Our methods clearly outperforms both these techniques by sustaining higher average sparsity right
from epoch ‘5’ – in contrast both STRKusupati et al. (2020) and OptG Zhang et al. (2022) run dense
training until 25 to 30 epochs.

Figure 2: Dynamic Sparsity: Our AutoSparse achieves significantly higher average sparsity (lower
average FLOPs) than STR (learned-threshold) and OptG (budget-based). For 90% sparsity target,
OptG and STR achieves average sparsity 45% and 60%, respectively, while AutoSparse achieves
average 86% sparsity. Similarly, for sparsity target of 80%, these achieved average sparsity numbers
are 40%, 46% and 71%, respectively.

7.3 ABLATION STUDIES

We conducted additional studies on STRKusupati et al. (2020) method to test if the average training
sparsity can be improved by selecting different hyper-parameters. We initialized the threshold
parameters sinit with larger values to introduce sparsity in the early epochs – we also appropriately
scaled the value of λ. Figure 4 shows that when sinit value is increased to −5 from the original value
of −3200), the method introduces sparsity early in the training – however the model quickly diverges
after about 5 epochs.

13

Under review as a conference paper at ICLR 2023

(a) Various Gradient Annealing Schedules (b) Sparsity achieved for non-linear annealing

Figure 3: Various schedule for annealing α and their effect on dynamic sparsity for ResNet50.

Figure 4: Ablation study on early sparse training on STR and AutoSparse. sinit = −5 for all the cases.
STR 80: λ = .000017 (used for STR 80%), STR: λ = .000030517578125209, AutoSparse 80 and
AutoSparse 90 both have λ = 0.000030517578125209. Sparsity for both STR and STR 80 rapidly
grow in an uncontrolled manner to prune out all the parameters in few epochs, while AutoSparse
achieves sparsity in a controlled manner.

7.4 SPARSITY DISTRIBUTION

AutoSparse achieves higher sparsity in earlier layer which leads to significant reduction in FLOPS
despite having similar final sparsity of the model.

Figure 5: AutoSparse learns a different sparsity distribution from STR. STR achieves higher sparsity
for later layers (higher parameter density) whereas AutoSparse produces more sparsity for earlier
layers, leading to significant FLOP reduction despite having the same final model sparsity.

Results with Backward Sparsity

14

Under review as a conference paper at ICLR 2023

Method Base Top1(S) Drop% S% Train F Test F comment

RigL 76.8 74.6 2.86 80 0.33× 0.22× fixed sparsity budget
SNFS+ERK 77.01 75.2 2.35 80 – –
RigL+ERK 76.8 75.1 2.21 80 – –
*SWAT-U 76.8 75.2 2.08 80 0.24× 0.22× TopK weight, act
*SWAT-ERK 76.8 76 1.04 80 0.4× 0.41× TopK weight, act
GMP 77.01 75.6 1.83 80 – 0.2× fixed sparsity budget
DNW 77.01 76 1.31 80 – 0.2× fixed sparsity budget
RigL+ITOP 76.8 75.84 1.25 80 – –
GraNet 76.8 75.8 1.3 80 – –
TopKAST⋆ 76.8 75.7 0.94 80 0.48× 0.22× fixed sparsity budget
TopKAST⋆+PP 76.8 76.24 0.73 80 0.48× 0.22× fixed sparsity budget
TopKAST∗+GA 76.8 76.47 0.43 80 0.48× 0.22× fixed sparsity budget
MEST1.7×+EM 76.9 76.71 0.25 80 0.57× 0.21× fixed sparsity budget
DST 74.95 74.02 1.24 80.4 – 0.15× learnable sparsity
STR 77.01 76.19 1.06 79.55 0.54× 0.18× learnable sparsity
AutoSparse 77.01 76.77 0.31 79.67 0.46× 0.14× α0=.75,α=0@epoch90
AutoSparse 77.01 76.59 0.55 80.78 0.36× 0.14× α0=.8,α=0@epoch70

GMP 77.01 73.91 4.03 90 – 0.1× fixed sparsity budget
DNW 77.01 74 3.91 90 – 0.1× fixed sparsity budget
MEST1.7×+EM 76.9 75.91 1.29 90 0.25× 0.11× fixed sparsity budget
OptG 77.01 74.28 3.55 90 – –
DST 74.95 72.78 2.9 90.13 – 0.087× learnable sparsity
STR 77.01 74.31 3.51 90.23 0.38× 0.083× learnable sparsity
AutoSparse 77.01 75.9 1.44 85.1 0.37× 0.096× α0=.9,α=0@epoch50
AutoSparse 77.01 75.19 2.36 89.94 0.36× 0.081× α0=.9,α=0@epoch45

GMP 77.01 70.59 8.34 95 – 0.05× deterministic
DNW 77.01 68.3 11.3 95 – 0.05× deterministic
STR 77.01 70.4 8.58 95.03 0.246× 0.039× dense to sparse
AutoSparse 77.01 70.84 8.01 95.09 0.182× 0.036× α0=0.8,α=0@epoch20

Table 4: ResNet50 on ImageNet: Comparing accuracy, sparsity and the FLOPS (dense 1×) for
training and inference for selected sparse training methods. TopKAST⋆: TopKAST with 0%
backward sparsity. TopKAST⋆+GA: TopKAST⋆ with Gradient Annealing boosts the accuracy
despite having same training/inference FLOPS. For AutoSparse 79.67% sparsity, α0=0.75 is decayed
till epoch 90 and then set to 0 (implying ∼ 80% forward and backward sparsity after epoch 90).
Similarly, for AutoSparse 95.09% sparsity, α0=0.8 is decayed till epoch 20 and then set to 0. Standard
deviation of results for AutoSparse is less than 0.06.

In AutoSparse, the forward sparsity is determined by weights that are below the learned threshold (let
this dynamic sparsity be S). We decay α = 0.85 throughout sparse training and apply TopK to select
indices of 50% largest magnitude weights (during forward pass) that are used in computation of loss
gradients (S ≥ 50%). These weights are superset of non-zero weights used in forward computation.
This way, we have sparsity S for forward and input gradient compute, and 50% sparsity for weight
gradient. Gradient annealing is applied on gradients of those weights that appear in these top 50% but
were pruned in forward pass. We compare our results with TopKAST 80% forward sparsity and 50%
backward sparsity in Table 2. We produce 85.7% sparse model that significantly reduces inference
FLOPs (0.11× of baseline and 0.5× of TopKAST) while achieving similar accuracy using similar
training FLOPs as TopKAST.

15

Under review as a conference paper at ICLR 2023

Method Dense BLEU(S) Drop % S%

AutoSparse 27.83 27.57 0.93 60.99

Table 5: Transformer on WMT: For AutoSparse, α = 0.4 is annealed exponentially till epoch 10 and
then set to 0 for remaining epochs. This implies identical sparsity for forward and input gradient
computation for 10 epochs, then identical sparsity for forward and backward pass.

16

Under review as a conference paper at ICLR 2023

8 APPENDIX B

8.1 PYTORCH CODE FOR AUTOSPARSE WITH AUTOTUNE

This code is built using the code base for STR Kusupati et al. (2020). The main changes are: (1)
replace ReLU with non-saturating ReLU (class NSReLU), (2) decay the gradient scaling of negative
inputs of NSReLU (neg_grad which is denoted by α in the paper) every epoch, (3) auto-tune this α
based on (dense) ref_loss for initial few epochs (function grad_annealing)

#—————————————————
def set_neg_grad(neg_grad_val = 0.5):

NSReLU.neg_grad = neg_grad_val

def get_neg_grad():
return NSReLU.neg_grad

def set_neg_grad_max(neg_grad_val = 0.5):
NSReLU.neg_grad_max = neg_grad_val

def get_neg_grad_max():
return NSReLU.neg_grad_max

#—————————————————
class NSReLU(torch.autograd.Function):

neg_grad = 0.5
neg_grad_max = 0.5
#topk = 0.5 # for backward sparsity

@staticmethod
def forward(self,x):

self.neg = x < 0
#k = int(NSReLU.topk * x.numel()) # for backward sparsity
#kth_val, kth_id = torch.kthvalue(x.view(-1), k) # for backward sparsity
#self.exclude = x < kth_val # for backward sparsity
return x.clamp(min=0.0)

@staticmethod
def backward(self,grad_output):

grad_input = grad_output.clone()
grad_input[self.neg] *= NSReLU.neg_grad
#grad_input[self.exclude] *= 0.0 # for backward sparsity
return grad_input

#—————————————————
def non_sat_relu(x):

return NSReLU.apply(x)

def sparseFunction(x, s, activation=torch.relu, g=torch.sigmoid):
return torch.sign(x)*activation(torch.abs(x)-g(s))

def initialize_sInit():
if parser_args.sInit_type == "constant":

return parser_args.sInit_value*torch.ones([1, 1])
#—————————————————
class STRConv(nn.Conv2d):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.activation = non_sat_relu

if parser_args.sparse_function == ‘sigmoid’:

17

Under review as a conference paper at ICLR 2023

self.g = torch.sigmoid
self.s = nn.Parameter(initialize_sInit())

else:
self.s = nn.Parameter(initialize_sInit())

def forward(self, x):
sparseWeight = sparseFunction(self.weight, self.s, self.activation, self.g)
x = F.conv2d(x, sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return x

#—————————————————

#—————————————————
from utils.conv_type import get_neg_grad, set_neg_grad, get_neg_grad_max, set_neg_grad_max
#—————————————————
def grad_annealing(epoch, loss, ref_loss):

ref_loss: reference dense loss for auto-tuning
number of auto-tuning epochs
old_neg_grad = get_neg_grad()
new_neg_grad = 0.0

if epoch < len(ref_loss):
dense_loss = float(ref_loss[str(epoch)])
eps_0 = 0.01
eps_1 = 0.05
eps_2 = 0.005
if loss > dense_loss * (1.0 + eps_0):

new_neg_grad = old_neg_grad * (1.0 + eps_1)
else:

new_neg_grad = old_neg_grad * (1.0 - eps_2)
else:

if epoch == len(ref_loss):
set_neg_grad_max(get_neg_grad())

new_neg_grad = _sigmoid_cosine_decay(len(ref_loss),
args.epochs - len(ref_loss), epoch - len(ref_loss), get_neg_grad_max())

set_neg_grad(new_neg_grad)
#—————————————————
def _cosine_decay(total_epochs, epoch, neg_grad_max):

PI = torch.tensor(math.pi)
return 0.5 * neg_grad_max * (1 + torch.cos(PI * epoch / float(total_epochs)))

def _sigmoid_decay(start_epoch, rem_total_epochs, rem_epoch, neg_grad_max):
Lmax = 6
Lmin = -6
return neg_grad_max * (1 - torch.sigmoid(torch.tensor(Lmin+(Lmax - Lmin) *

(float (rem_epoch) / rem_total_epochs))))

def _sigmoid_cosine_decay(start_epoch, rem_total_epochs, rem_epoch, neg_grad_max):
cosine_scale = _cosine_decay(rem_total_epochs, rem_epoch, get_neg_grad_max())
sigmoid_scale = _sigmoid_decay(start_epoch, rem_total_epochs,

rem_epoch, get_neg_grad_max())
return max(cosine_scale, sigmoid_scale)

#—————————————————
def train(train_loader, model, criterion, optimizer, epoch, ref_loss, args):

losses = AverageMeter("Loss", ":.3f")
top1 = AverageMeter("Acc@1", ":6.2f")
top5 = AverageMeter("Acc@5", ":6.2f")

18

Under review as a conference paper at ICLR 2023

switch to train mode
model.train()
if epoch == 0:

set_neg_grad(args.init_neg_grad)
batch_size = train_loader.batch_size
num_batches = len(train_loader)
for i, (images, target) in tqdm.tqdm(enumerate(train_loader),

ascii=True, total=len(train_loader)):
output = model(images)
loss = criterion(output, target.view(-1))
acc1, acc5 = accuracy(output, target, topk=(1,5))
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()

— anneal gradient every epoch —
grad_annealing(epoch, losses.avg, ref_loss)
return top1.avg, top5.avg

19

	Introduction
	Learnable Threshold Pruning

	Gradient Annealing (GA)
	AutoSparse : Sparse Training with Gradient Annealing
	Related Work
	Experiments
	Experimental Set up
	Efficacy of Gradient Annealing
	AutoSparse for Language Models

	Conclusion
	Appendix A
	Gradient Computation
	Average Training Sparsity
	Ablation Studies
	Sparsity Distribution

	Appendix B
	PyTorch Code for AutoSparse with AutoTune

